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1. Supplementary Figures  

 

Figure S1. Device fabrication schematic. Top view of: (a) bottom layer of photoresist, (b) top layer of 

photoresist, and (c) full device. 

 

Figure S2. (a) Convolutional neural network architecture for regression of bead z-displacement to the 

focal plane. Convolutional blocks have kernel size 3×3, stride 1, leaky ReLU activation and batch 

normalization in every block but the last, unless otherwise specified; (b) Siamese neural network 

architecture for regression of yeast z-distance to reference. Reference images are embedded using a 

neural network block along the reference path, while target images are embedded along the target 

path. The reference and target embeddings are concatenated and a linear transformation produces 

the final regression result. 
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Figure S3. Variational autoencoder training. For a batch of training data (observations) with size N, 

data are encoded and samples zi are drawn from the variational posterior. The total correlation (red), 

Kullback-Leibler divergence to the prior (purple) and the reconstruction loss (grey) are estimated 

from the density ratio of all samples in the batch. The encoder and decoder networks are trained by 

minimizing the weighted sum of these, as shown at the top. Here, KL(p || q) denotes the Kullback-

Leibler divergence of two distributions. 

 

Figure S4. X-direction velocity profile simulation for the 60 μm (10 + 50 μm) device, constrained to 

velocities less than zero, with flow velocity constraints (sample flow 0.25 μL/min, sheath flow 50 

μL/min) substituted by comparable pressure constraints. Negative x-direction flow, i.e. backflow with 

flow velocities on the order of 70 mm/s can be observed at the sample inlet. Backflow is not predicted 

in simulations using flow-velocity constraints, as those constraints fully specify the direction and 

velocity of flow through their inlets. 
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Figure S5. Flow focusing at four positions within the device with respect to the junction. (i) 100 μm 

away, (ii) 500 μm away, (iii) 1.1 mm away, (iv) 2.1 mm away. (Top) Confocal microscopy images at 

these positions. (Bottom) Equivalent thresholded images along with the measured fluorescein height. 

 

Figure S6. Qualitative shear force distribution due to xy-velocity gradients in the z direction, 

assuming zero z-velocity for a 120 m (10 + 110 μm) device at sample flow-rate 0.25 μL/min and 

sheath flow rate 100 μL/min, displaying the downward force causing flow focusing. Magnitude of 

downward force increases from dark red (minimum) through green (zero) to dark blue (maximum). 
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Figure S7. Theoretical flow focusing behavior dependent on x-velocity on the symmetry-plane of a 

10 + 110 μm device at a sample flow rate of 0.25 μL/min and different sheath flow rates. (A) 

Streamlines for sheath flow rate 0.25 μL/min show defocusing away from the coverslip in accordance 

to the shear force exerted by the velocity gradient. (B) Streamlines for sheath flow rate 100 μL/min 

show focusing towards the coverslip in accordance to the shear force exerted by the velocity gradient. 

2. Supplementary Methods and Theory 

2.1. Device Physics 

Given the device of Figure 1, consider an incompressible Newtonian fluid inside the device and 

laminar inflow at the inlets. Given a volume element ��within the device moving with velocity 

projected unto the xy-plane���(�, �, �). It is subjected to a shear force in the z-direction: 

�� = �� ������(�, �, �) + ������(�, �, �)��

= � ���������(�, �, �) + ��������(�, �, �)� 

Thus, the volume element experiences a downward force if its velocity in the xy-plane is higher 

than that of the element below it, generating a z-direction force profile as shown in Figure S6. This in 

turn causes a downward flow resulting in y-dimension focusing towards the cover slip. For this to 

happen, sheath flow velocity at the height of the sample inlet has to be higher than sample flow 

velocity at that height, when exiting the sample inlet, requiring sheath flow rate to be much higher 

than sample flow rate, as seen in Figure S7. Otherwise, focusing towards the cover slip cannot be 

observed. 

2.2. Neural Network for Bead z-Displacement Regression 

A shallow neural network consisting of three convolutional blocks with batch normalization and 

leaky rectified linear unit activation, followed by global averaging and a final linear layer was set up 

as seen in Figure S2a. The neural network was trained on a dataset comprised of 822 random crops 

of the same 6 μm beads used in experiment, at defined z-positions relative to their focal plane, 
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ranging from -8 μm to 8 μm in steps of 0.5 μm. The images were normalized to mean zero and 

standard deviation one. To prevent rapid overfitting, the dataset was augmented by random 

cropping, rotation and gaussian noise with mean zero and standard deviation 0.1. The neural 

network was trained for 350 steps (1090 epochs, or until convergence) using the Adam optimizer at 

learning rate 0.001 with a constant learning rate schedule and batch size 128. Training was performed 

with the PyTorch library using synchronous stochastic gradient descent on 20 processes. 

2.2.1. Siamese Neural Network for Yeast z-Distance Regression 

A densely connected neural network consisting of five convolutional blocks and a final 

convolutional output layer was implemented in PyTorch. Each convolutional block consisted of a 3×3 

convolutional kernel, followed by a 1×1 convolutional kernel and another 3×3 kernel. ReLU activation 

and batch normalization were applied after each convolution. All convolutional blocks but the first 

used depth-wise separable convolutions for parameter reduction. The output of each convolutional 

block was concatenated with its input and fed into the next convolutional block. The network was 

applied to pairs of single, or dividing cell crops of yeast cells. Results were concatenated and fed into 

a final linear layer for distance regression (Figure S2b). The neural network was trained on a dataset 

comprised of multiple acquired fields of view of imaged S. cerevisiae, S. ludwigii and S. pombe cells, 

cropped to 128×128-pixel images containing single or budding cells. The neural networks were 

trained using the Adam optimizer at learning rate 0.001 with a constant learning rate schedule and 

batch size 128 until convergence. Training was performed with the PyTorch library using 

synchronous stochastic gradient descent on an NVidia GTX 1080 GPU. 


