

Micromachines 2019, 10, x; doi: www.mdpi.com/journal/micromachines

Article

Self-Learning Microfluidic Platform for Single-Cell
Imaging and Classification in Flow

Iordania Constantinou 1,2,3,†,*, Michael Jendrusch 1,†, Théo Aspert 4,5,6,7, Frederik Görlitz 1,

André Schulze 1, Gilles Charvin 4,5,6,7 and Michael Knop 1,8,*

1 Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance,

Universität Heidelberg, 69120 Heidelberg, Germany;

jendrusch@stud.uni-heidelberg.de (M.J.);f.goerlitz@gmx.net (F.G.);

a.schulze@zmbh.uni-heidelberg.de (A.S.)
2 Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany
3 Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig,

Germany
4 Developmental Biology and Stem Cells Department,

Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch-Graffenstaden, France;

aspertt@igbmc.fr (T.A.), charvin@igbmc.fr (G.C.)
5 Centre National de la Recherche Scientifique, 67400 Illkirch-Graffenstaden, France
6 Institut National de la Santé et de la Recherche Médicale, 67400 Illkirch-Graffenstaden, France
7 Université de Strasbourg, 67400 Illkirch, France
8 Cell Morphogenesis and Signal Transduction, German Cancer Research Center (DKFZ),

DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany

* Correspondence: i.constantinou@tu-braunschweig.de (I.C.); m.knop@zmbh.uni-heidelberg.de (M.K.);

Tel.: +49-0531-391-9769 (I.C.); +49-6221-54-4213 (M.K.)
† These authors contributed equally to this work.

Contents

1. Supplementary Figures

2. Supplementary Methods and Theory

2.1. Device Physics

2.2. Neural Network

Micromachines 2019, 10, x 2 of 6

1. Supplementary Figures

Figure S1. Device fabrication schematic. Top view of: (a) bottom layer of photoresist, (b) top layer of

photoresist, and (c) full device.

Figure S2. (a) Convolutional neural network architecture for regression of bead z-displacement to the

focal plane. Convolutional blocks have kernel size 3×3, stride 1, leaky ReLU activation and batch

normalization in every block but the last, unless otherwise specified; (b) Siamese neural network

architecture for regression of yeast z-distance to reference. Reference images are embedded using a

neural network block along the reference path, while target images are embedded along the target

path. The reference and target embeddings are concatenated and a linear transformation produces

the final regression result.

Micromachines 2019, 10, x 3 of 6

Figure S3. Variational autoencoder training. For a batch of training data (observations) with size N,

data are encoded and samples zi are drawn from the variational posterior. The total correlation (red),

Kullback-Leibler divergence to the prior (purple) and the reconstruction loss (grey) are estimated

from the density ratio of all samples in the batch. The encoder and decoder networks are trained by

minimizing the weighted sum of these, as shown at the top. Here, KL(p || q) denotes the Kullback-

Leibler divergence of two distributions.

Figure S4. X-direction velocity profile simulation for the 60 μm (10 + 50 μm) device, constrained to

velocities less than zero, with flow velocity constraints (sample flow 0.25 μL/min, sheath flow 50

μL/min) substituted by comparable pressure constraints. Negative x-direction flow, i.e. backflow with

flow velocities on the order of 70 mm/s can be observed at the sample inlet. Backflow is not predicted

in simulations using flow-velocity constraints, as those constraints fully specify the direction and

velocity of flow through their inlets.

Micromachines 2019, 10, x 4 of 6

Figure S5. Flow focusing at four positions within the device with respect to the junction. (i) 100 μm

away, (ii) 500 μm away, (iii) 1.1 mm away, (iv) 2.1 mm away. (Top) Confocal microscopy images at

these positions. (Bottom) Equivalent thresholded images along with the measured fluorescein height.

Figure S6. Qualitative shear force distribution due to xy-velocity gradients in the z direction,

assuming zero z-velocity for a 120 m (10 + 110 μm) device at sample flow-rate 0.25 μL/min and

sheath flow rate 100 μL/min, displaying the downward force causing flow focusing. Magnitude of

downward force increases from dark red (minimum) through green (zero) to dark blue (maximum).

Micromachines 2019, 10, x 5 of 6

Figure S7. Theoretical flow focusing behavior dependent on x-velocity on the symmetry-plane of a

10 + 110 μm device at a sample flow rate of 0.25 μL/min and different sheath flow rates. (A)

Streamlines for sheath flow rate 0.25 μL/min show defocusing away from the coverslip in accordance

to the shear force exerted by the velocity gradient. (B) Streamlines for sheath flow rate 100 μL/min

show focusing towards the coverslip in accordance to the shear force exerted by the velocity gradient.

2. Supplementary Methods and Theory

2.1. Device Physics

Given the device of Figure 1, consider an incompressible Newtonian fluid inside the device and

laminar inflow at the inlets. Given a volume element ��within the device moving with velocity

projected unto the xy-plane���(�, �, �). It is subjected to a shear force in the z-direction:

�� = �� ������(�, �, �) + ������(�, �, �)��

= � ���������(�, �, �) + ��������(�, �, �)�

Thus, the volume element experiences a downward force if its velocity in the xy-plane is higher

than that of the element below it, generating a z-direction force profile as shown in Figure S6. This in

turn causes a downward flow resulting in y-dimension focusing towards the cover slip. For this to

happen, sheath flow velocity at the height of the sample inlet has to be higher than sample flow

velocity at that height, when exiting the sample inlet, requiring sheath flow rate to be much higher

than sample flow rate, as seen in Figure S7. Otherwise, focusing towards the cover slip cannot be

observed.

2.2. Neural Network for Bead z-Displacement Regression

A shallow neural network consisting of three convolutional blocks with batch normalization and

leaky rectified linear unit activation, followed by global averaging and a final linear layer was set up

as seen in Figure S2a. The neural network was trained on a dataset comprised of 822 random crops

of the same 6 μm beads used in experiment, at defined z-positions relative to their focal plane,

Micromachines 2019, 10, x 6 of 6

ranging from -8 μm to 8 μm in steps of 0.5 μm. The images were normalized to mean zero and

standard deviation one. To prevent rapid overfitting, the dataset was augmented by random

cropping, rotation and gaussian noise with mean zero and standard deviation 0.1. The neural

network was trained for 350 steps (1090 epochs, or until convergence) using the Adam optimizer at

learning rate 0.001 with a constant learning rate schedule and batch size 128. Training was performed

with the PyTorch library using synchronous stochastic gradient descent on 20 processes.

2.2.1. Siamese Neural Network for Yeast z-Distance Regression

A densely connected neural network consisting of five convolutional blocks and a final

convolutional output layer was implemented in PyTorch. Each convolutional block consisted of a 3×3

convolutional kernel, followed by a 1×1 convolutional kernel and another 3×3 kernel. ReLU activation

and batch normalization were applied after each convolution. All convolutional blocks but the first

used depth-wise separable convolutions for parameter reduction. The output of each convolutional

block was concatenated with its input and fed into the next convolutional block. The network was

applied to pairs of single, or dividing cell crops of yeast cells. Results were concatenated and fed into

a final linear layer for distance regression (Figure S2b). The neural network was trained on a dataset

comprised of multiple acquired fields of view of imaged S. cerevisiae, S. ludwigii and S. pombe cells,

cropped to 128×128-pixel images containing single or budding cells. The neural networks were

trained using the Adam optimizer at learning rate 0.001 with a constant learning rate schedule and

batch size 128 until convergence. Training was performed with the PyTorch library using

synchronous stochastic gradient descent on an NVidia GTX 1080 GPU.

