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Abstract: The objective of this research was to develop a surface-acoustic-wave (SAW) sensor of
cigarette smoke to prevent tobacco hazards and to detect cigarette smoke in real time through
the adsorption of an ambient tobacco marker. The SAW sensor was coated with oxidized hollow
mesoporous carbon nanospheres (O-HMC) as a sensing material of a new type, which replaced a
polymer. O-HMC were fabricated using nitric acid to form carboxyl groups on carbon frameworks.
The modified conditions of O-HMC were analyzed with Scanning Electron Microscopy (SEM), Fourier
transform infrared spectrometry (FTIR), and X-ray diffraction (XRD). The appropriately modified
O-HMC are more sensitive than polyacrylic acid and hollow mesoporous carbon nanospheres
(PAA-HMC), which is proven by normalization. This increases the sensitivity of a standard tobacco
marker (3-ethenylpyridine, 3-EP) from 37.8 to 51.2 Hz/ppm and prevents the drawbacks of a
polymer-based sensing material. On filtering particles above 1 µm and using tar to prevent
tar adhesion, the SAW sensor detects cigarette smoke with sufficient sensitivity and satisfactory
repeatability. Tests, showing satisfactory selectivity to the cigarette smoke marker (3-EP) with
interfering gases CH4, CO, and CO2, show that CO and CO2 have a negligible role during the
detection of cigarette smoke.

Keywords: surface acoustic wave; second-hand smoke; 3-ethenylpyridine; oxidized hollow
mesoporous carbon nanosphere

1. Introduction

Second-hand smoke (SHS), which is also called environmental tobacco smoke (ETS) or passive
smoking, is a serious environmental pollution, composed of the main-stream smoke exhaled by active
smokers and the side-stream smoke expelled from the lit tobacco product, such as a cigarette [1].
More than 4700 substances are now recognized as constituents of cigarette smoke [2]. More than
60 compounds are known to cause cancer in a human body [3], such as tar (including mutagenic
and carcinogenic agents produced from incomplete combustion during smoking), tobacco-specific
nitrosamines (TSNA), polonium-210, polycyclic aromatic hydrocarbons (PAH), etc. [4]. SHS is harmful
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for everybody, especially pregnant women and children. Statistical data reveal that people exposed to
SHS have a greater risk of lung cancer (20–30%), oral cancer, asthma, chronic obstructive pulmonary
disease (COPD), coronary heart disease (25%), and childhood illness [5,6]. A medical report states
that, from 2010 to 2014 in the USA, smoking rates of adults fell from 43% (1965) to 18% today, but the
number of deaths caused by smoking and exposure to SHS is still estimated to be about 480,000 per
year [7].

In the complicated mixture of SHS, nicotine and 3-ethenylpyridine (3-vinylpyridine, 3-EP) are two
important markers for sensing cigarette smoke because they are specific to tobacco and the vapor phase
in SHS. 3-EP is a pyrolysis product of nicotine [8]. Even though the concentration of 3-EP in a smoke
area is typically less than nicotine, the stable characteristics and smaller rate of surface absorption of
3-EP leads to it still being used as an SHS marker in various related research [9]. Most measurements
of ambient nicotine are analyzed with a gas chromatograph - mass spectrometer (GC-MS) and typically
have a prolonged sampling period of days because of the small effective rates of sampling [10,11].
At present, conductive polymer-based sensors have been designed to monitor a tobacco-specific vapor
such as nicotine or 3-EP for real-time detection, but some drawbacks such as a lack of repeatability or a
long response time must be improved [12,13].

Devices based on microelectromechanical systems (MEMS) have been widely used in many
areas such as particle separation [14], chemical detection [15,16], biomedical detection [17], and
microfluidics [18,19]. Surface-acoustic-wave (SAW) devices are easily manufactured with MEMS
techniques and are used for gas sensing. The basic principle of a SAW sensor is that the coated
interdigital transducer (IDT) stimulates a piezoelectric substrate with a stable electrical resonant
frequency when a radio frequency (RF) signals in and converts it to propagate mechanical waves along
the surface of the device, which is known as a surface acoustic wave. When the target is adsorbed by
the sensing layer, the surface acoustic wave slows because of the mass loading. The resonant frequency
decreases and the mass change would be proportional to the gas concentration observed as a frequency
shift. Because the energy of SAW highly concentrates on the substrate surface [20], it is sensitive to
any perturbation on the surface such as temperature, mass change, conductivity, and elasticity. These
properties endow SAW devices with many advantages such as extremely high sensitivity, small size, a
wireless sensing platform, and a low working temperature [15].

The sensitive coating of an SAW sensor is typically a polymer film with a suitable functional group,
polarity, molecular geometry, and more. Some devices in the literature combine nanomaterials such as
nanowire, carbon nanotube (CNT), graphene into the polymer for improved detection performance
on increasing the sensing area, and leading to an increased mass loading [21–23]. However, a
polymer-based sensing film has some drawbacks including lack of thermal stability and a mismatch
between glass transition temperature and ambient temperature. Furthermore, some target vapor
permeates into the polymer causing the polymer film to expand, called a swelling effect [24]. In this
research, a surface-acoustic-wave (SAW) sensor is used to detect an SHS marker at a small concentration
and cigarette smoke with sensing materials of two kinds – hollow mesoporous carbon nanospheres
(HMC) combined with a polymer as a nanocomposite, and a modified nanomaterial without a polymer
called oxidized hollow mesoporous carbon nanospheres (O-HMC). A sensitive and real-time cigarette
sensor can help one avoid the SHS damage in public places such as a hospital and a school.

2. Materials and Methods

2.1. Preparation of a Surface-Acoustic-Wave (SAW) Sensor

The SAW chips with a delay line were fabricated with MEMS techniques on a 128◦ YX-lithium
niobate (LiNbO3) piezoelectric substrate, which has a large electromechanical coupling coefficient
(K2, 5.5%) and large velocity (3992 m/s) [25]. The delay line consisted of a pair of input and output
interdigital transducers (IDT) with each having 50 pairs of fingers with gold (thickness 100 nm) and
chromium (20 nm) deposited with an e-gun evaporator. The acoustic wavelength of the interdigital
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transducers (IDT) is designed to be about 34 µm. The operating frequency of the SAW device is about
114.2 MHz near 23 ◦C The insertion losses (IL) range from 6 to 9 dB, which is characterized with a
network analyzer.

To complete the fabrication, the finished wafer was cut into chips. The dimensions of each device
were 13.4 mm × 7.4 mm × 0.5 mm. To decrease the gas diffusion volume and to decrease the response
time, a self-designed micro-chamber (800 µL) is mounted on a printed-circuit board (PCB). The gas is
delivered with dispensing needles, which is shown in Figure 1a.
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Figure 1. (a) Image of surface-acoustic-wave (SAW) sensor with a micro-chamber. (b) Spin-coated SAW
chip with oxidized hollow mesoporous carbon nanospheres (O-HMC). (c) Schematic diagram of SAW
sensing system.

2.2. Sensitive Materials

In this research, sensing materials of two types were chosen for the detection of cigarette smoke.
One is a polymer-based and the other is only a nanostructure, without a polymer. For a polymer-based
sensing film, poly-acrylic acid (PAA) is used for its universality. It has a glassy state near 23 ◦C because
its glass transition temperature is about 106 ◦C, so it is hard to adsorb a target like a flexible polymer
film [26]. To increase the reaction area and to decrease the response time, hollow mesoporous carbon
nanospheres (HMC) are used to produce a nanocomposite sensing material (PAA-HMC). Each HMC
has a specific surface area about 2350 m2/g. The average size is in the range of 80 to 120 nm with a
porosity of 4 nm.

To avoid the disadvantages of a polymer, a non-polymer-based sensing material, oxidized hollow
mesoporous carbon nanospheres (O-HMC) is a suitable material for detection since it combines the
properties of functional groups of a polymer (carboxyl group) and a large specific surface area of
a nanomaterial. The fabrication of O-HMC is simple, modified by liquid-phase oxidation of HMC
directly, and treated with nitric acid (2.5 M) at an appropriate temperature and for an appropriate
period to introduce functional groups on the carbon framework [27]. These two sensing materials
are solid after fabrication. In attempt to facilitate the coating, a sensing material (10 mg) is added to
ethanol (1 mL) as a solvent. Before coating, the aggregation of this sensing material was prevented
through ultra-sonication for 20 min, spin coating with great uniformity at 1500 rpm, and heating at
90 ◦C for 10 min to remove the solvent, which is shown in Figure 1b. The black dots on the delay line
are the O-HMC.
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2.3. Sensing System

The SAW sensing system is shown in Figure 1c. A standard gaseous SHS marker (3-EP) is
prepared on dipping 3-ethenylpyridine liquid into a polytetrafluoroethene-based (PTFE) sampling bag
to produce a saturated vapor. A three-way valve installed on the sampling bag can switch a sample or
dry air from an air compressor (relative humidity about 20%). A sample of cigarette smoke is collected
from a lit cigarette (Marlboro, tar 10 mg and nicotine 0.8 mg per cigarette) and placed on the bottom
of a glass syringe. The cigarette smoke was drawn with a pump (Thomas, diaphragm pump 2002,
400 mL/min) into a sampling bag. Before detection of the cigarette smoke, the sampling bag was left at
ambient temperature for 15 min to preclude any influence of temperature. For a dynamic detection, a
gas sample was drawn into the micro-chamber with a peristaltic pump (flow rate of 20 mL/min). At the
beginning of tests, dry air flowed into the chamber until the frequency response was stable. The gas
sample channel was then switched for adsorption, and, eventually, the dry air valve was opened again
to purge the sensing material and to complete one cycle. Since the temperature and humility effects
by a piezoelectric subtract would be relatively large, the un-coated sensing chip would be used to
eliminate the environmental interferences. All detection took an untreated HMC-coated SAW sensor
as a reference for improved stability [15,16,28,29]. The frequency response was recorded in a computer
with a general purpose interface bus (GPIB) card, which was connected to a frequency counter, and
which monitored the frequency change between the sensing chip and the reference.

3. Results

3.1. Sensitive Analysis of a Material

The surface morphologies of HMC and O-HMC with varied chemically modified parameters
were analyzed using a scanning electron microscope (SEM), as shown in Figure 2. The original HMC
showed the size to range from 80 to 120 nm and its mesopores to have a diameter about 4 nm, which is
shown in Figure 2a. After oxidation, some carbon species were cleaved from the carbon nanospheres,
which made an incomplete spherical appearance shown in Figure 2b. When the modified conditions
are too harsh, the carbon nanospheres are damaged with HNO3, which leads to structural collapse to
decrease the pore size. This might be explained by the repair of surface oxygen on the carbon walls [27].
The O-HMC seem to crosslink with each other, shown in Figure 2c, and show a serious aggregation
problem that many O-HMC aggregate into clumps of diameter greater than 1 µm, which is shown in
Figure 2d.
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small scale.
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Considering the sensing application, the chemical structure of HMC and O-HMC was characterized
with infrared spectra (FTIR) and scanned in a range from 500 to 4000 cm−1, as shown in Figure 3.
The HMC before and after oxidation seem to have a similar spectrum, but show a significant difference
of the C=O vibrational line at 1730 cm−1. A comparison with the spectrum before oxidation indicates
that this signal denotes the presence of carbonyl or carboxyl groups. When HMC were treated with
nitric acid, the stronger oxidation increased the intensity at 1730 cm−1, which means that more carboxyl
groups were modified.
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The XRD pattern of the HMC shows three signals that are indexed as (110), (211), and (220)
reflections of structure Ia3d, shown as Figure 4 [30]. A transformation of structure occurred after the
removal of the silica template. The carbon framework became atomically disordered, as revealed by
the (110) signal appearing. The (110) reflection is symmetrically forbidden for Ia3d [31]. Too much
oxidation leads to structural changes, revealed by the weakened (110) and (211) XRD reflections by
damaging the original structure or cleavage of the carbon. Based on the above analysis, to retain
sufficient modification for great sensitivity and the complete nanostructures for a large surface area,
O-HMC-80 ◦C-15 h was chosen as the appropriate sensing material for subsequent detection.
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3.2. Detection of the Standard Cigarette Marker

Figure 5 shows the frequency response of 3-EP detection (3 ppm) with sensing material of three
types. It clearly shows that the sensing layer of O-HMC without a polymer is more sensitive than
polymer-based PAA-HMC for detection of 3-EP, which is a greater frequency shift of 90 Hz. Taking
60 s for the adsorption, the desorption time is 90 s. Hydrogen bonding between the carboxylic acid
and 3-EP become desorbed to the original frequency. Showing an effective reversible detection, this
result proves that the modified O-HMC is a suitable choice to replace a polymer-based sensing material
(PAA-HMC). In addition, the non-treated HMC shows slight adsorption, likely because some 3-EP is
trapped in the porous nanostructure.
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3.3. Normalization

The mass loading of the sensitive layer is an important factor for the sensor performance. In general,
more sensing material coating can cause a greater frequency shift. However, too much sensing material
results in small energy transmission. To compare the sensitivity of various sensing materials with no
influence caused by the amount of coating, normalization is a necessary step. The frequency shift of
a surface-acoustic-wave sensor is assumed to conform to Equation (1) for an acoustically thin and
perfectly elastic thin film, k1 and k2 are piezoelectric material parameters, f 0 is the central frequency
of the SAW device, h is the thickness of the sensing film, ρ is the density of the sensing film, m is the
mass of adsorbed molecules, and A is the coated area [32]. Equation (2) is derived from Equation (1)
because mcoating and 4f coating are constant after coating. mgas is linear with 4f gas, which means that
the frequency shift caused from an inconsistent amount of coating can be calibrated on dividing by
4f coating. In this research, the normalized frequency shift is defined as a ratio of the frequency shift
caused by detection and coating (4f gas/4f coating) [16].

4 f = (k1 + k2) f02h ρ = (k1 + k2) f02 m/A (1)

4 fgas/ 4 fcoating = mgas/mcoating (2)

This frequency shift caused on coating is shown in Table 1. In the non-polymer-based sensing
materials, it can observe that, when the chemical oxidation is stronger, the material surface is more
hydrophilic because of more oxygen-containing functional groups introduced. The deposited amount
after spin coating (1500 rpm, 30 s) remaining in the sensing area (gold) is greater, which results in a
large frequency shift. The HMC has a hydrophobic property. Therefore, under the same conditions of
spin, the coating remains less than O-HMC. The original frequency shift and normalized frequency
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shift with 3-EP at varied concentrations is shown in Figure 6. Both types of sensing materials present
satisfactory linearity, and the sensitivity (defined as the slopes of the regression line, 4f gas/sample
concentration) of PAA-HMC and O-HMC are 37.8 and 51.1 Hz/ppm. The detection limit (LOD) of the
sensor is less than 1 ppm. Furthermore, it is insufficiently accurate to analyze the sensitivity of sensing
materials of the two types from the original frequency shift because the deposited O-HMC is much less
than PAA-HMC. The frequency shifts of the coatings (∆f coating) were 60 kHz for O-HMC and 120 kHz
for PAA-HMC. After normalization, it shows a larger difference and the sensitivity can be more clearly
compared for the two sensing materials. The slope of the regression line for O-HMC is about 2.7 times
that for PAA-HMC.

Table 1. Surface-acoustic-wave (SAW) Resonant frequency before and after coating.

Sensing Materials Before Coated (MHz) After Coated (MHz) Coated Frequency Shift (Hz)

Polymer based
PAA-HMC 114.71 114.59 120,000

Non-polymer based
O-HMC-110 ◦C-24 h 114.98 114.88 100,000
O-HMC-80 ◦C-15 h 114.12 114.07 50,000
O-HMC-80 ◦C-3 h 114.16 114.11 50,000

HMC 114.16 114.13 30,000
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3.4. Detection of Cigarette Smoke

Besides the detection of pure 3-ethenylpyridine, cigarette smoke is also detected with the same
system and same sensing material. Unlike the pure compound of 3-EP, the cigarette smoke is a
complicated mixture, including toxic volatile organic compounds (VOC) of many kinds such as
benzene, toluene, formaldehyde, phenol, and sticky tar, which is produced by incomplete combustion.
Figure 7a is the frequency response of cigarette smoke (burning 1 cigarette) detected with O-HMC,
but the sample of cigarette smoke was collected without a filter. It shows that the frequency response
continuously decreases when the cigarette smoke flows into the micro-chamber. The adsorption cannot
achieve a dynamic balance and desorption cannot fully return to the original resonant frequency. This
abnormal phenomenon of detection was likely due to the surface adhesion of tar. When the cigarette
smoke sample was collected without a filter, sticky tar and particulate matter (PM) might cover the
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detection area, even sticking to the porous structure of the sensing material, which makes permanent
mass loading and causes incomplete desorption.

Figure 7b is the frequency response for detecting cigarette smoke with O-HMC for five successive
cycles. The sample of cigarette smoke (1 cigarette burning) is collected with a 1-µm filter. The SAW
frequency decreased immediately when the cigarette smoke was introduced. Compared to the sample
of cigarette smoke without a filter, the filtered cigarette smoke sample took about 4 min to complete the
adsorption and 15 min to complete the desorption and to recover to the original frequency. The average
frequency shift was about 4200 Hz. After filtering, it can also detect repeatedly like the detection of pure
3-ethenylpyridine, but unfiltered tar still slightly influences the sensor performance in repeatability.
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3.5. Selectivity of an Oxidized Hollow Mesoporous Carbon Nanospheres (O-HMC)-Coated SAW Sensor

When a cigarette burns, many chemical compounds are released into the air such as carbon oxide,
carbon dioxide, methane, furans, PAH, nicotine, and 3-EP [4,13,33]. Because the properties of some
compounds in cigarette smoke are similar to those of the cigarette marker and are also adsorbed on the
sensing material, it is difficult to conclude that the total frequency shift in the detection of cigarette
smoke is contributed from the cigarette marker. To determine the influence of non-cigarette- related
substances, a selectivity test is necessary. Figure 8 shows a comparison of sensitivity of the SAW
sensor coated with an O-HMC-sensitive material towards CO, CO2, CH4, and 3-EP (SHS marker),
which indicates a high selectivity to the cigarette smoke marker because of the high affinity of 3-EP to
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O-HMC. These results indicate that the frequency shift due to CO and CO2 could be negligible during
the detection of cigarette smoke, but CH4 shows a larger adsorption to O-HMC as the micro-pores
and meso-pores in the carbon of diameter less than 2 nm has an effective adsorption capacity for
methane [34]. As the SAW sensor performance is also seriously affected by moisture, the frequency
shift at varied relative humidity (RH) is also measured to calibrate the influence of water molecules.
Overall, the selectivity of O-HMC toward cigarette smoke is adequate to apply the SAW sensor and
detection under real conditions.Micromachines 2019, 10, x 9 of 11 
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4. Conclusions

Statistical data indicate that persons exposed to second-hand smoke (SHS) have a greater risk
of lung cancer and coronary heart disease. The surface-acoustic-wave (SAW) gas sensor coated with
oxidized hollow mesoporous carbon nanospheres (O-HMC) detects the second-hand smoke marker
(3-ethenylpyridine) and cigarette smoke. This non-polymer sensitive coating is made through treatment
with nitric acid and has many carboxyl groups to bond with the tobacco marker. The O-HMC is
more sensitive than PAA-HMC and can avoid the shortcomings of a polymer-based sensing material.
It shows satisfactory selectivity to CO, CO2, CH4, and 3-EP. The large specific surface area caused by
the porous structure and the self-designed micro-chamber lead to rapid detection at a small flow rate.
Besides the detection of the pure compound, the SAW sensor detects cigarette smoke repeatedly with a
filter of suitable size to remove excess tar and particles, which have great potential as a real-time smoke
detector. This SAW sensor is an important distinction from passive sampling and time-consuming
measurements of ambient nicotine. It allows for a demonstration of the concentration changes in the
air cigarette marker from a specific smoking condition and provides the immediate protection from
tobacco hazards.
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