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(I) Primary Flow 

As the length of the microchannel in the present experiment is of two orders greater than 
its width and height and the Reynolds number is of order unity, the primary flow in the 
microchannel is the Poiseuille flow, the fully-developed laminar flow in a rectangular channel, 
with velocity components [26] (refer to reference [26] of the paper, and similar for later 
citations in this file) 
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and the volume flow rate  
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in terms of the notations in Figure 1a of the paper. Here (u, v, w) are the velocity components 
in the (x, y, z) coordinates, /dp dx  is the pressure gradient along the x-direction,  is the 
dynamic viscosity of the fluid (which is taken as 1.2 cP here for the mixture of whole blood 
and PBS solution). The stress components are: 
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with all other components zero. Here 
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The maximum magnitude of the mechanical shear stress, max , occurs at the locations (x, 
0.5a, 0) and (x, 0.5a, b) in Figure 1a, for the present device, and 
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For a given volume flow rate Q, dp/dx can be estimated through Equation (S2), and thus 
u, zx, yx and max, can be calculated using Equations (S1), (S3a), (S3b), and (S5), respectively. 

In real situation, the flow field in the channel is not strictly parallel to the channel wall. 
There are velocity components v and w in the cross sectional plane, though they are small in 
comparison with u, due to the entrance effect, the secondary flow generated in the bend [27], 
the flow generated by Joule heating [19–20], and the local unsteady flow associated with 
rupture of cells. These transverse flows, especially the last two, are helpful for effective cell 
lysis in the present continuous flow-through device as discussed in Section 4.2 of the paper. 
However, Equations (S3a), (S3b) and (S5) provide us adequate estimations, at least of the 
correct order of magnitudes, for the mechanical shear stresses contributed by the fluid flow in 
the device. 

(II) Electric Field and Maxwell Stress Tensor 

The electric field, and thus the Maxwell stress tensor, is periodic along the axis of the 
channel for most of the region in the device except near the inlet and the bend in Figure 1b of 
the paper. The electric potential in the fluid medium (with electrical conductivity  1 S/m here) 
is governed by the Laplace Equation [28], and was solved in the region 0 ,x    0 ,y a   
and 0 z b   in Figure 1b, subject to specified ac potentials on the electrodes, insulated 
boundary conditions at the glass (electrical conductivity  10−15–10−11 S/m) and PDMS 
(electrical conductivity  10−15–10−11 S/m) walls, and periodic condition along the x-direction. 
Such a geometric configuration and boundary conditions suggest that the electric potential, 
 , to be two-dimensional in the xz-plane and varying with time, t, and can be written as  
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Equation (S7) with boundary conditions (S7ae) were solved numerically using finite 
difference approximation and the Gauss-Seidel iterative method. With electric potential 
known, the electric field,  , ,x z tE , can be calculated through 
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with xe  and ze  the unit vectors along the x and z directions, respectively. The 
corresponding electric field components Ex and Ez are time varying functions in the ac field, 
and their time averages are zero. We will examine the electric field phasor components, Epx 
and Epz, and the root mean square of the electric field,  
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where the “mean” refers to the average over time for one period (2/) of electric field 
variation.  

The Maxwell stress, expressed in index form [24], is  
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0 8.854 10 m kg s A      is the permittivity in vacuum, r is the relative 

permittivity of the medium, ij  is the Kronecker delta, indices i or j stand for x, y or z, and 
2 2 2

k k x y zE E E E E   . The time mean Maxwell stress tensor over a period of electric excitation 

of the present electric field, expressed in matrix form, is 
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We have stress components Txx, Tzz and Txz on the xz-plane, as well as a compressive 
component Tyy, for the present two-dimensional electric field in the xz-plane.  

The stress components change with the orientation of the surface they applied. The 
principal stresses (extreme stresses) at a point among different orientations of the surface they 
exerted are obtained by solving [29] 
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are three invariants of the tensor. The three solutions are  
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For the time mean Maxwell stress components shown in Equation (S11),  
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It follows that  
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Here the magnitudes of the maximum shear stresses 1 2 p1 p2 1 3 p1 p3,    T T T T T T     and

2 3 p2 p3T T T   . Among the four solutions in Equations (S16a–d), we pick the case (i.e., 

Equation (S16b) or (S16c)) with the maximum value of the shear stress, and denote it as Ts, 
with the corresponding principal stresses denoted by Ttensile (for tensile stress) and Tcompressive 
(for compressive stress). The final results are  
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