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Abstract: The micro electrical discharge machining (micro-EDM) process is extensively used in
aerospace, automotive, and biomedical industries for drilling small holes in difficult-to-machine
materials. However, due to the complexity of the electrical discharge phenomena, optimization of the
processing parameters and quality control are time-consuming operations. In order to shorten these
operations, this study investigates the applicability of a process fingerprint approach in micro-EDM
drilling. This approach is based on the monitoring of a few selected physical quantities, which
can be controlled in-line to maximize the drilling speed and meet the manufacturing tolerance.
A Design of Experiments (DoE) is used to investigate the sensitivity of four selected physical
quantities to variations in the processing parameters. Pearson’s correlation is used to evaluate
the correlation of these quantities to some main performance and hole quality characteristics. Based
on the experimental results, the potential of the process fingerprint approach in micro-EDM drilling
is discussed. The results of this research provide a foundation for future in-line process optimization
and quality control techniques based on machine learning.
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1. Introduction

Micro electrical discharge machining (micro-EDM) drilling is a well-established non-contact
thermal process for making small holes in electrically conductive materials, such as cooling holes in
turbine blades and diesel injector nozzles [1,2]. In this process, the removal of material occurs through
sequences of high-frequency electrical discharges within an electrically insulated gap between two
electrodes. Deionized water or hydrocarbon oil are commonly applied as dielectric medium. Tubular
tools of brass or copper material are used to increase the drilling speed [3,4].

Due to the complexity involved in the electrical discharging process, optimization of the
processing parameters in micro-EDM drilling is an iterative and time-consuming process, which
is often based on manual experimentation and user experience. Likewise, the complexity of the
discharging phenomena does not facilitate the establishment of correlations between the applied
processing parameters and the final hole quality. It follows that significant post-processing metrology
efforts are often required for quality control and tolerance verification of micro-EDMed holes. Recent
advancements in machine learning techniques offer new solutions for shortening and automating
process optimization and allow for the creation of technology databases to reduce post-process
metrology [5,6]. However, effective and reliable approaches for correlating the processing parameters
and the relevant outputs in terms of efficiency of the drilling process and hole quality are needed for
these purposes.

Traditionally, a so-called ‘direct approach’ has been used for optimizing the processing parameters
and predicting the hole quality in micro-EDM drilling. As shown in Figure 1, this approach focuses on
establishing direct correlations between the processing parameters and the performance and quality
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characteristics. Extensive research has been conducted in recent years to establish such correlations.
For instance, Lin et al. [7] used a response surface method to model the effects of different processing
parameters on the material removal rate (MRR), tool wear rate (TWR), and diameter overcut (DOC) in
micro-EDM of carbon tool steel. Jung et al. [8] and Ay et al. [9] used gray relational analysis for multiple
performance optimization when processing stainless steel and Inconel 718 as a workpiece material.
D’Urso et al. [10] defined two process windows representing the TWR and MRR as a function of the
hole depth, considering various processing parameters and electrode materials. Jahan et al. [11] studied
the influence of the process-energy parameters on the MRR and taper ratio (TR) in micro-EDM drilling
of tungsten carbide. Suganthi et al. [12] used adaptive neuro-fuzzy inference system and artificial
neural networks to predict the MRR, TWR, and surface roughness (SR) from the processing parameter
settings. Although using direct correlations could be an effective solution for optimizing the processing
parameters, no real-time feedback can be obtained during the drilling process to check whether any
variation from the process conditions, under which the correlations were established, is occurring.
Therefore, post-processing measurements are required to check the hole quality. Accurately performing
these measurements could be tedious or, in some cases, not even possible. (e.g., small hole size or
accessibility problems).
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Figure 1. Following the process fingerprint approach, in-line monitored quantities can be used for
optimizing the processing parameters and predicting the hole quality. This could reduce or even omit
the post-processing metrology efforts required when following the direct approach.

An alternative to the direct approach could be the process fingerprint approach, which attempts
to find correlations between the performance and quality characteristics and measurable physical
quantities that can be monitored and controlled in-line (Figure 1). In this context, the term ‘process
fingerprint’ refers to what is left on the workpiece after the manufacturing process, considering the
mechanism and dynamics of the material removal process. The physical quantities, which are strongly
correlated to the process fingerprint and are in-line monitored and controlled, can be denoted as
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indicators for the process fingerprint. The process fingerprint has previously also been referred to as
‘process signature’ in the specific case of surface integrity or surface modification in manufacturing
processes [13,14]. For example, Sealy et al. [15] identified energy process signatures for the surface
integrity problem in hard milling. Klink [16] introduced the concept of process signatures from the
point of view of part functionality and surface modification in electrochemical machining (ECM)
and EDM.

Following the process fingerprint approach, real-time optimization algorithms and
decision-making systems can be implemented to maximize the drilling rate and meet the
manufacturing tolerance by keeping the in-line monitored quantities within a desired range.
Hence, the time for reaching the optimal setting of processing parameters could be shortened and
post-processing metrology efforts could be drastically reduced or even omitted. The applicability of
the process fingerprint approach to some micro-manufacturing processes has been proved, such as
for micro-milling [17] and micro-injection moulding [18]. However, despite its unique advantages,
the approach has not currently been applied in micro-EDM drilling.

In order to shorten the process optimization time and reduce post-process metrology efforts
in micro-EDM drilling, this paper explores the applicability of the process fingerprint approach by
quantitatively studying the correlations between some selected physical quantities, and the main
performance and hole quality characteristics. Four quantities that are conventionally used for in-line
monitoring of the micro-EDM process are investigated as potential indicators of the process fingerprint.
A Design of Experiments (DoE) is used as a screening methodology to analyze the sensibility of these
quantities to variations in the processing parameters. A correlation study is performed to identify
the quantities that are mostly correlated to the main outputs in terms of drilling efficiency (MRR and
TWR) and hole quality (DOC and TR). The most suitable indicators to be considered for the process
fingerprint are subsequently identified and discussed.

2. Materials and Methods

2.1. Experimental Setup

Micro-EDM drilling experiments were carried out on a SARIX® SX-100-HPM (Sarix SA,
Sant’Antonino, Switzerland) machine tool, which was equipped with the latest SARIX® PULSAR pulse
generator. A tool guiding system was used to reduce the run out of the tool when approaching the
workpiece (Figure 2). This system consists of a ceramic tool guide and a guide holder. The tool guide
was positioned at a distance of approximately 2 mm above the top surface of the workpiece.
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Ti6Al4V was chosen as the workpiece material, since it is an alloy widely-used in biomedical
and aerospace industries due to its excellent biocompatibility, high corrosion resistance, and good
mechanical properties at high temperatures [19–22]. Commercial brass tubes provided by SARIX®

(outer diameter: 350 µm, inner diameter: 130 µm) were used as the tool electrode. Hydrocarbon oil
(HEDMA® 111) was applied as dielectric liquid. A combination of side and internal flushing was used.
The flushing pressures were set to 0, 2, and 4 MPa respectively.

Series of through-holes were drilled into Ti6Al4V small plates of 2 mm thickness and 6 mm width.
The plates were fixed as cantilevers into the workpiece holder to allow the tool to be fed through
the hole outlet after the breakthrough. A digital microscope (Dino-Lite® Edge AM4115ZT, AnMo
Electronics Corporation, Hsinchu, Taiwan) was used to monitor the drilling process and interrupt the
process as soon as a breakthrough was observed.

2.2. Process Monitoring

During the experiments, five variables were monitored in-line by the monitoring system
embedded in the power generator of the SARIX® machine. The main advantage of using this embedded
system is that no external sensors or data processing systems are required. This considerably simplifies
potential future implementations of the monitoring operations performed in this research into an
industrial production environment.

The monitored variables were (i) np: The number of normal discharge pulses, (ii) ns: The number
of short circuits, (iii) um: The average gap voltage, (iv) ∆z: The z-axis displacement of the ram of the
machine tool, and (v) t: The drilling time. In particular, np, ns, and um were recorded through the pulse
generator system, ∆z was monitored by means of the z-axis encoder of the machine tool, and t was
recorded using the clock of the computer of the control unit.

These five variables were synchronized and simultaneously updated at a rate of 100 Hz by the
control unit of the machine, whereby a cumulative sum of each variable was stored. In order to
monitor the variables at regular intervals, the drilling process was divided into steps of 50 µm in depth.
This value refers to the nominal drilling depth as read by the z-axis encoder of the machine. Therefore,
it does not correspond to the depth of the hole being drilled because of the longitudinal wear of the
tool. At the end of each step, four quantities were computed in-line from the cumulative sums of np,
ns, um, ∆z and t, which were subsequently zeroed. These quantities are:

• Pulse frequency (f p): The amount of normal discharge pulses per time unit,
• Short circuit frequency (f s): The amount of short circuits and arcs per time unit,
• Feed rate (fr): The speed at which the tool electrode is advanced into the workpiece, and
• Differential gap voltage (∆u): The difference between the open voltage and average gap voltage.

Figure 3 provides a summary of the operations performed to compute these four quantities, which
are considered as potential indicators for the process fingerprint in this research. While f p, f s, and
fr are quantities that are conventionally monitored in micro-EDM operations for various purposes
such as tool wear compensation [23,24] and breakthrough detection [25,26]. For the purposes of this
study, the meaning of ∆u deserves a more detailed explanation. This ∆u quantity varies with the
number of normal and abnormal discharge pulses, depending whether the abnormal discharges are
short circuits or open circuits. In particular, ∆u is expected to approach zero when the discharging
process is mostly in the state of open circuit, while it increases with the amount of normal discharge
pulses or short circuits. Since short circuits and arcs are characterized by a lower discharge voltage
than normal discharge pulses [27], the increase of ∆u is larger at the occurrence of short circuits and
arcs rather than normal discharge pulses.

At the end of each drilling experiment, a comma-separated value (.csv) text file including the
monitored values of f p, f s, fr, and ∆u at every 50 µm drilling step was automatically generated.
The text files were later post-processed in order to identify the most suitable indicators for the
process fingerprint.
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Figure 3. In-line calculation of the four quantities that are investigated as potential indicators for
the process fingerprint of the micro electrical discharge machining (micro-EDM) drilling process
(np: Number of normal discharge pulses, ns: Number of short circuits and arcs, uo: Open voltage, um:
Average gap voltage, ∆z: Nominal drilling depth, t: Drilling time, f p: Frequency of normal discharge
pulses, f s: Frequency of short circuits and arcs, fr: Feed rate, ∆u: Differential voltage).

2.3. Process Fingerprint Analysis

A post-process analysis was carried out to evaluate the correlation of the potential indicators
for the process fingerprint to the performance and hole quality characteristics. A three-step analysis
process was followed. First, the sensitivity of each indicator to changes of the processing parameters
was investigated. Secondly, the correlation of each indicator to the MRR and TWR was evaluated.
Thirdly, the correlations to the DOC and TR were computed. The Pearson’s correlation coefficient [28]
was chosen to evaluate all correlations since it is a widely-used metric to evaluate the strength of the
statistical relationship between two variables [29,30].

First, a DoE approach was adopted to investigate the sensitivity of the potential indicators for the
process fingerprint to changes to the processing parameters. In particular, four processing parameters
were varied in a two-level full factorial design. Four repetitions were carried out for each experiment,
resulting in a total of 64 experimental runs. The selected processing parameters were the (A) pulse
off-time, (B) open voltage, (C) servo adjustment factor, and (D) reference gap voltage. The servo
adjustment factor is the proportional gain factor of the servo control loop. The processing parameters
were chosen in order to include changes related either to the cycle time of the power supply system
(A), to the energy input per discharge (B), or to the settings of the servo feed control system (C,D).
The levels of the processing parameters were set so as to cover a wide process window. The selection
was carried out according to the machine vendor’s recommendation and to previously reported
experimental research involving a similar combination of tool and workpiece materials [4,22,25].
Table 1 is a summary of the experimental factors and their levels.

Table 1. Design of Experiments (DoE): factors and levels.

Factor Process Parameter Unit Level −1 Level +1

A Pulse off-time µs 5 20
B Open voltage V 80 160
C Servo adjustment factor – 20 80
D Reference voltage V 30 70
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The following processing parameters, not included in the DoE, were kept unchanged during the
experiments: Pulse on-time – 4 µs, energy index – 301, current index – 70, tool rotation – 750 rpm,
tool polarity – negative. According to the machine vendor, the energy index determines the energy
and shape of the discharge pulses. The energy index 301 provides triangular pulses of medium-high
energy content. When this energy index is selected, the current index can be used to regulate the pulse
peak current.

Secondly, the correlation of each indicator to the MRR and TWR was analyzed in order to
investigate the possibility of using the indicators of the process fingerprint for the purpose of optimizing
the processing parameters. The MRR was calculated as the ratio between the volume of material
removed from the workpiece (Vw) and the total machining time (T), approximating the through-holes
to a conical frustum:

MRR =
Vw

T
=

π
12 H(D2

in + D2
out + Din Dout)

T
(1)

where H is the thickness of the workpiece, and Din and Dout are the inlet and outlet diameters of
the holes, respectively, which were measured using a Werth VideoCheck HA coordinate measuring
machine in optical mode. Similarly, the TWR was computed as the ratio between the volume of
material removed from the tool (Vt) and the total machining time (T). To compute such volume,
the nominal inner (dt) and outer (Dt) diameters of the tool were used, while the longitudinal wear was
calculated by subtracting the workpiece thickness (H) to the monitored value of the drilling depth at
the occurrence of breakthrough (Zb) as shown in Equation (2).

TWR =
Vt

T
=

π
4 (D2

t − d2
t ) (Zb − H)

T
(2)

Lastly, the DOC and TR were used to evaluate the quality of the drilled holes, since these
are the two parameters that are mostly considered for assessing the geometrical characteristics of
micro-EDMed holes [4,5,31–34]. The DOC was computed as:

DOC = Dout − Dt (3)

while the TR was calculated as:
TR =

Dout − Din
H

(4)

The Pearson’s correlation coefficient (rp) was then calculated for all possible combinations between
the indicators for the process fingerprint and the performance and hole quality characteristics. The rp

coefficient was computed as [28]:

rp =
∑64

i=1(xi − x)(yi− y)√
∑64

i=1 (xi − x)2
√

∑64
i=1 (yi − y)2

(5)

where x and y are the vectors containing the datasets of the two quantities that are correlated, and x
and y are their respective mean values. The average values of the indicators for the process fingerprint
in each of the 64 experimental runs were considered. The value of rp can vary between −1 and +1,
which correspond to a perfect negative correlation and a perfect positive correlation, respectively.
A value equal to 0 indicates the absence of a correlation between two considered data sets. Therefore,
the closer the value of rp to −1 or +1, the stronger the linear correlation between the two data sets.

3. Results and Discussion

3.1. Sensitivity to Changes to the Processing Parameters

Figure 4 shows the data sets resulting from the 64 experimental runs. These data sets were
used to analyze the sensitivity of the four potential indicators for the process fingerprint to changes
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to the processing parameters. For each indicator, the main effects plot and the Pareto chart of the
effects are provided in Figure 5. The main effects plots can be used for analyzing the overall influence
of each processing parameters on the indicators, while the Pareto charts show which effects are
significant. This is of particular interest in this study since the indicators for the process fingerprint
should be sensitive to variations to the process conditions, especially for the purpose of optimizing the
processing parameters.

Micromachines 2018, 9, x FOR PEER REVIEW  7 of 14 

 

3. Results and Discussion 

3.1. Sensitivity to Changes to the Processing Parameters 

Figure 4 shows the data sets resulting from the 64 experimental runs. These data sets were used 
to analyze the sensitivity of the four potential indicators for the process fingerprint to changes to the 
processing parameters. For each indicator, the main effects plot and the Pareto chart of the effects are 
provided in Figure 5. The main effects plots can be used for analyzing the overall influence of each 
processing parameters on the indicators, while the Pareto charts show which effects are significant. 
This is of particular interest in this study since the indicators for the process fingerprint should be 
sensitive to variations to the process conditions, especially for the purpose of optimizing the 
processing parameters. 

  

Figure 4. Plots of the data sets for the four potential indicators for the process fingerprint. Each data 
point corresponds to one of the 64 experimental runs. 

From the main effect plots it can be seen that fp increased when a shorter pulse off-time, a higher 
energy amount per discharge pulse (i.e., higher open voltage), or more aggressive settings of the 
servo control system (i.e., higher servo adjustment factor or lower reference voltage) were applied. 
These effects are in line with previously reported results [24,31]. Therefore, they are not further 
discussed. Similar responses can be seen for fs and fr, even though in both cases the effects of one 
factor (the open voltage for fs, and the pulse off-time for fr) were considerably less important than the 
ones of the other three factors. On the contrary, Δu shows an increasing trend with the pulse off-time. 
This effect can be explained by the fact that a longer pulse off-time reduced the occurrence of both 
normal pulses and short circuits, thus increasing the amount of time spent in open-circuit state. 

The Pareto charts reveal that all factors and second-order interactions, besides the one between 
the open voltage and reference voltage, had a significant influence on fp. This was deduced from the 
fact that the standardized effects were above the significance level. Moreover, fp displayed similar 
standardized effects for the four factors. This means that fp varied rather uniformly when changing 
different processing parameters. This is an appreciable characteristic for a process fingerprint 
indicator. Regarding the other three indicators, the Pareto charts show that fs, fr,,and Δu were all 
sensible to changes to the single processing parameters, but not to most of the second-order 
interactions. In particular, fr was sensible to only one second-order interaction, i.e., the interaction 
between the open voltage and reference gap voltage. Furthermore, unlike fp, it can be noticed that fs, 
fr, and Δu did not display a limited variability of the standardized effects. For instance, Δu was highly 
sensible to changes to the open voltage, and fr to changes to the servo control parameters. 

0

10

20

30

40

50

60

0

5

10

15

20

25

30

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0

20

40

60

80

100

120

fp (kHz) fs (kHz) fr (mm/s) Δu (V)

Figure 4. Plots of the data sets for the four potential indicators for the process fingerprint. Each data
point corresponds to one of the 64 experimental runs.

From the main effect plots it can be seen that f p increased when a shorter pulse off-time, a higher
energy amount per discharge pulse (i.e., higher open voltage), or more aggressive settings of the servo
control system (i.e., higher servo adjustment factor or lower reference voltage) were applied. These
effects are in line with previously reported results [24,31]. Therefore, they are not further discussed.
Similar responses can be seen for f s and fr, even though in both cases the effects of one factor (the open
voltage for f s, and the pulse off-time for fr) were considerably less important than the ones of the other
three factors. On the contrary, ∆u shows an increasing trend with the pulse off-time. This effect can be
explained by the fact that a longer pulse off-time reduced the occurrence of both normal pulses and
short circuits, thus increasing the amount of time spent in open-circuit state.

The Pareto charts reveal that all factors and second-order interactions, besides the one between
the open voltage and reference voltage, had a significant influence on f p. This was deduced from the
fact that the standardized effects were above the significance level. Moreover, f p displayed similar
standardized effects for the four factors. This means that f p varied rather uniformly when changing
different processing parameters. This is an appreciable characteristic for a process fingerprint indicator.
Regarding the other three indicators, the Pareto charts show that f s, fr„and ∆u were all sensible
to changes to the single processing parameters, but not to most of the second-order interactions.
In particular, fr was sensible to only one second-order interaction, i.e., the interaction between the
open voltage and reference gap voltage. Furthermore, unlike f p, it can be noticed that f s, fr, and ∆u
did not display a limited variability of the standardized effects. For instance, ∆u was highly sensible to
changes to the open voltage, and fr to changes to the servo control parameters.

Based on the Pareto charts, it can be concluded that f p, f s, fr, and ∆u could be suitable quantities
to be considered as indicators for the process fingerprint of the micro-EDM drilling process. This
conclusion is drawn since the four indicators were at least sensible to changes to the single processing
parameters. Nevertheless, thanks to more uniform sensitivity properties to changes to the processing
parameters, f p was the quantity that shows the highest potential.
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Figure 5. Influence of the four factors on the four potential indicators for the process fingerprint.
The main effects plots (left column) and Pareto charts of the standardized effects (right column)
are shown. The red vertical line in the Pareto charts corresponds to the significance level at 95%
confidence level.

3.2. Correlation with Performance Characteristics

The correlation coefficients of the potential indicators for the process fingerprint to the MRR
and TWR are shown in Figure 6. It is evident that the correlation coefficient of f s was significantly
lower than the others. The reason for this can be found in the fact short circuits do not contribute to
material removal in a predictable manner, as do normal discharge pulses. Short circuits are normally
considered to be harmful to the drilling speed [35]. This explains why the correlation coefficients of
f s were negative, while the correlations coefficients of f p were positive. Besides f s, the other three
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indicators displayed positive and relatively good correlations with the MRR and TWR. This indicates
that maximization of f p, fr, or ∆u could be a viable way to increase the MRR, while minimization of one
of these quantities could be pursued to reduce the TWR. The fact that the values of the rp coefficients
of fr were higher than the ones of f p and ∆u suggests that fr could be the most suitable quantity to be
monitored in-line for optimizing the processing parameters with respect to performance characteristics.
Therefore, a linear regression analysis was carried out to further investigate the correlation of fr with
the MRR and TWR.
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Figure 6. Pearson’s correlation coefficients (rp) of the four potential indicators for the process fingerprint
with respect to the material removal rate (MRR) and tool wear rate (TWR). Mean values and ranges of
the four experimental repetitions are shown.

Figures 7 and 8 show the correlation plots of fr against the MRR and TWR. A limited dispersion
of the data points around the linear regression lines can be observed in both cases. This means strong
positive linear correlations existed between fr and the MRR and TWR. The strength of the correlations
is highlighted by the R2 coefficients above 0.8. Despite the better sensitivity property of f p, the result of
this correlation analysis can be used to conclude that fr is the best quantity to be considered as process
fingerprint for the purpose of optimizing the processing parameters.
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Figure 7. Correlation plot of the feed rate (fr) against the MRR. Each data point corresponds to one of
the 64 experimental runs. The dashed line is the linear regression line.
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Figure 8. Correlation plot of fr against the TWR. Each data point corresponds to one of the 64
experimental runs. The dashed line is the linear regression line.

A possible algorithm to optimize the processing parameters could be based on a stochastic
optimization technique [36]. However, in comparison with a previous application of this technique [6],
the processing parameters could be varied during the drilling process of a single hole when following
an approach based on in-line monitoring of fr. This would reduce the amount of time spent in each
optimization iteration. As shown in Figure 9, after the touch-in stage, fr reached a stable value rather
quickly when varying the processing parameters during the drilling process. This suggests that
different settings of the processing parameters could be tried at regular steps during the drilling
process (e.g., steps of 0.5 mm in depth). The measurement cycles to estimate the tool wear at the end of
each drilling process could also be avoided. In this way, the time to reach the optimal setting of the
processing parameters would be significantly reduced.
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Figure 9. A comparison of the evolution of fr during four different drilling experiments. In three
experiments the reference voltage (Ue) is unvaried, while in the other experiment Ue is varied at steps
of 0.5 mm in depth after touch-in (first 0.5 mm in depth). The data points correspond to the in-line
monitored values of fr during the latter experiment. The other parameters are unvaried during the four
experiments. In particular, the levels of the factors are: A = +1, B = −1, C = −1.

3.3. Correlation with the Hole Quality

Figure 10 shows the values of the correlation coefficients of f p, f s, fr, and ∆u to the DOC. Since
short circuits and arcs do not contribute to material removal in a predictable manner, no correlation
exists between f s and the diameter of the hole inlet. On the contrary, the other three process fingerprint
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candidates showed a relatively good correlation with DOC. A possible reason can be that the DOC
depends on the amount of discharge pulses occurring on the side of the tool and on the size of the
discharge gap, which is dependent on the discharge energy. The main effect plots in Figure 5 confirm
that f p, fr and ∆u tended to increase when the discharge energy increased or when the settings of the
servo control system were more aggressive, a condition which might favour the ignition of discharges
on the tool side. The fact that the rp coefficient of f p was lower than the ones of fr and ∆u could imply
that a higher frequency of discharges does not correspond to a higher probability of discharges on the
side of the tool. Both fr and ∆u could be used as indicators for the process fingerprint for in-line control
of the DOC, since the mean values of rp are above 0.8 for both quantities. Nevertheless, fr can be
considered most suitable for controlling the DOC, considering that it displays a more limited variation
of the rp coefficient among the four experimental runs.
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Figure 10. Pearson’s correlation coefficients (rp) of the potential indicators for the process fingerprint
with respect to the diameter overcut (DOC). Mean values and ranges of the four experimental repetitions
are shown.

Figure 11 depicts the evolution of fr during the two drilling experiments resulting in the minimum
and maximum DOC. The trends of the two sets of in-line monitored data points are not overlapping
each other, and a relevant difference in the average values of fr can be observed. This confirms the
suitability of using the average value of fr as the output of a real-time algorithm for controlling the
DOC during the drilling process.

Figure 12 shows the correlation coefficients of the potential indicators for the process fingerprint
to the TR. It can be clearly noticed that the mean values or the rp coefficients of f p and f s were extremely
low (less than 0.25). Moreover, the ranges of these coefficients considering the four experimental runs
were relatively wide and around the zero point. Hence the correlations of f p and f s to the TR were
weak. The rp coefficient of ∆u was also low, while fr displayed a relatively good correlation to the
TR. This means that fr is the only quantity that can be monitored in-line for controlling the taper of
the micro holes among the four quantities considered in this research. The hole taper was mainly
determined by the shape modifications of the tool tip due to the occurrence of discharge pulses on
the side of the tool electrode. Therefore, the value of the correlation coefficients analysis suggest that
the discharge pulses were more likely to occur on the side of the tool when the average feed rate of
the tool electrode increased rather than when the total number of discharges was higher. This also
explains why the correlation of fr and ∆u to DOC were higher than the one of f p.

It should be highlighted that a constant hole aspect ratio was considered in this research. However,
the experimental results of Ali et al. [33] showed that the DOC and TR of micro-EDMed holes increase
with the increase of the hole aspect ratio at almost the same rate. Therefore, similar correlation
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trends as the ones identified here can be expected when drilling micro holes of different aspect
ratios. Overall, the process fingerprint approach is universal. Although this research has focused
on a specific combination of tool and workpiece material, the approach can be applied in different
process conditions.
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Figure 11. Evolution of fr during drilling. The data points represent the in-line monitored values of fr,
while the dashed lines correspond to the average values. The evolution of fr and the hole inlets relative
to two experimental runs are shown. Levels of the factors in Experiment 2: A = −1, B = +1, C = −1,
D = +1. Levels of the factors in Experiment 30: A = −1, B = −1, C = +1, D = −1.
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4. Conclusions

This research evaluated the applicability of the process fingerprint approach for reducing
post-process metrology and shortening process optimization in micro-EDM drilling. In contrast
with traditional approaches that focuses on establishing direct correlations between the processing
parameters and the hole quality characteristics, this approach is based on in-line monitoring of a few
selected physical quantities. The correlation of four different physical quantities to some of the main
performance and hole quality characteristics (i.e., the material removal rate, tool wear rate, diameter
overcut, and taper ratio) has been investigated within a wide process window.

The experimental results have shown that the average feed rate of the tool electrode displays a
good correlation to the considered characteristics. Thus, it can be used as an indicator of the process
fingerprint of micro-EDM drilling. This means that a real-time decision-making system could be
implemented for optimizing the processing parameters or meeting a geometrical tolerance by keeping
the average feed rate within a desired range during the drilling process.

The results of this research enable new solutions for automatic optimization of the processing
parameters and in-line quality control using machine learning. Future work should focus on
determining suitable control algorithms for these purposes and extending the approach to other
relevant hole quality characteristics, such as the surface roughness and recast layer thickness.
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