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Abstract: The onset of electroconvective instability in an aqueous binary electrolyte under external
oscillatory electric fields at a single constant frequency is investigated in a 2D parallel flat electrode
setup. Direct numerical simulations (DNS) of the Poisson–Nernst–Planck equations coupled with the
Navier–Stokes equations at a low Reynolds number are carried out. Previous studies show that direct
current (DC) electric field can create electroconvection near ion-selecting membranes in microfluidic
devices. In this study, we show that electroconvection can be generated near flat inert electrodes when
the applied electric field is oscillatory in time. A range of applied voltage, the oscillation frequency and
the ratio of ionic diffusivities is examined to characterize the regime in which electroconvection takes
place. Similar to electroconvection under DC voltages, AC electroconvection occurs at sufficiently high
applied voltages in units of thermal volts and is characterized by transverse instabilities, physically
manifested by an array of counter-rotating vortices near the electrode surfaces. The oscillating external
electric field periodically generate and destroy such unsteady vortical structures. As the oscillation
frequency is reduced to O(10−1) of the intrinsic resistor–capacitor (RC) frequency of electrolyte,
electroconvective instability is considerably amplified. This is accompanied by severe depletion of
ionic species outside the thin electric double layer and by vigorous convective transport involving a
wide range of scales including those comparable to the distance L between the parallel electrodes.
The underlying mechanisms are distinctly nonlinear and multi-dimensional. However, at higher
frequencies of order of the RC frequency, the electrolyte response becomes linear, and the present
DNS prediction closely resembles those explained by 1D asymptotic studies. Electroconvective
instability supports increased electric current across the system. Increasing anion diffusivity results
in stronger amplification of electroconvection over all oscillation frequencies examined in this study.
Such asymmetry in ionic diffusivity, however, does not yield consistent changes in statistics and
energy spectrum at all wall-normal locations and frequencies, implying more complex dynamics and
different scaling for electrolytes with unequal diffusivities. Electric current is substantially amplified
beyond the ohmic current at high oscillation frequencies. Also, it is found that anion diffusivity
higher than cation has stronger impact on smaller-scale motions (. 0.1L).

Keywords: Electroconvection; AC electrokinetics; inert electrodes

1. Introduction

Aqueous electrolytes in contact with charge-selective surfaces are found in various biological
systems and electrochemical applications. Such surfaces include ion-selective membrane, electrode
and nanochannel, which have a net surface charge density. As a result, counterions (ions having
charges opposite to the net surface polarity) are attracted toward the surface, while coions are repelled.
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Such redistribution of ions leads to the formation of electric double layers (EDL), which involve a
charged fluid region near the interface screening the solid phase.

In most of these applications, externally applied electric fields are used to drive ions in electrolytes
to achieve objectives such as chemical separation, purification or reaction. When an electric field drives
counterions towards a charge-selective surface, the interaction of the electric field with adjacent charged
fluid generates body forces that can result in a hydrodynamic instability called electroconvection [1,2].
One characteristic feature of electroconvective instability is increased mixing and scalar transport,
facilitated by the arrays of large-scale counter-rotating vortex pairs. Recent studies have provided
important evidence that enhanced hydrodynamic mixing is well correlated with overlimiting current
measured at high applied voltages [3–5].

Prevalent to the onset of electroconvection are two other physical phenomena: concentration
polarization and formation of an extended space charge region. The former is observed first, and is
a consequence of two constraints. One constraint is blockage of coion flux to or from the interface
due to selectivity of the solid boundary. The other constraint is system’s tendency towards bulk
electroneutrality, thus maintaining equal local concentration of coions and counterions. These two
constraints can be satisfied simultaneously only in the presence of concentration gradients such
that diffusion fluxes can be comparable to electromigration fluxes [6]. This phenomenon, called
concentration polarization, results in reduced concentration of both co- and counterions near the
selective surface causing a transport-limited current, which cannot be exceeded with increased
voltage, as long as bulk electroneutrality holds. When the applied voltage is further increased,
bulk electroneutrality breaks down and a region dominated by counterions, called the extended space
charge (ESC) region, is formed in the bulk adjacent to the EDL [6]. Unlike the diffuse charge region of
the EDL, ions in the ESC are not Boltzmann distributed. Dynamics of ESC plays a significant role in
electroconvection [1,2,7]

Following the theoretical work of Zaltzman and Rubinstein [2], electroconvective instability has
been confirmed experimentally in settings involving charge-selective membranes [4,5]. In similar
systems, the full nonlinear response has been theoretically investigated via direct numerical
simulations (DNS) [8–11]. Typically, arrays of coherent vortical structures are observed to emerge near
charge-selective surfaces. Beyond a threshold voltage, electroconvection is shown to lead to chaotic
flows with structures involving a range of scales with broadbanded spectra [8,12], and ultimately
with self-similar structures analogous to turbulent flows (despite their zero Reynolds number) [13].
Investigation of such regimes requires DNS of the fully-coupled Poisson–Nernst–Planck and Stokes
equations [10,14] and often involves expensive calculations requiring parallel computing. Summaries
of recent advances in the understanding of electroconvective instability in various applications are
given by Chang et al. [15] and Nikonenko et al. [16–18].

All of the theoretical investigations of electroconvection consider systems under direct current
(DC) electric fields and most often with ion-selective membranes as the ion-exchange interface.
Reacting electrodes under DC fields are expected to result in similar electroconvective flows since their
base state involves similar key physics; i.e., voltage-driven charge-selective transport of counterions
towards the interface, while coions are blocked. Likewise, this combination leads to concentration
polarization and formation of ESC layer hospitable to instability [19]. A class of inert electrode systems,
however, offers a significantly different physics. While they drive transport in the bulk, their interface
blocks both co- and counterions. Hydrodynamic instabilities near such inert electrode surfaces are
mostly unexplored and not understood.

Davidson et al. [20] showed that a floating inert electrode in an electrolyte exposed to an external
DC electric field, can induce electroconvection. In this case, counterions that migrate toward the
surface are normally fluxed into the EDLs and subsequently migrated out by moving tangentially
along the curved EDL. This makes the EDL effectively act as a charge-selective membrane discussed in
previous studies. They reported similar electroconvective structures as those involved in membranes,
but subject to a background electro-osmotic flow induced by the electrode itself. However, a simpler
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question, and a more practically relevant one, is what happens when inert electrodes themselves are
the source of the driving voltage? When the driving voltage is DC, the answer is simple: no instability
can be sustained in the long term, since the DC current of an inert electrode is zero, and thus there is
no mechanism of injecting energy into the system. The question remains whether inert electrodes can
sustain electroconvection when they are subject to alternating current (AC) electric fields.

Wide range of applications involve inert electrodes subject to AC voltage. Examples include
dielectric barrier plasma discharges [21], electro-osmotic pumps [22,23], electrochemical impedance
spectroscopy [24] and electrostatic comb drive actuators [25]. An external oscillatory time scale,
imposed on top of intrinsic ones such as the charge-relaxation time and the resistor–capacitor (RC)
charging time scale [26], complicates the mechanisms of hydrodynamic coupling with ion transport
and the overall system level responses. Theories and extensive discussions of AC electro-osmosis
in weakly and strongly nonlinear regimes can be found in the literature [24,27–29]. In particular,
Olesen et al. [28] showed that the overall cell impedance and the critical voltage above which EDL
demonstrates strongly nonlinear behavior are strong functions of the external AC frequency. Yet, the
characterization of such systems in the context of electroconvective instability and mixing enhancement
in higher spatial dimensions remains unexplored.

In this study we demonstrate existence and several regimes of electroconvection in AC voltage
setups and near flat inert electrodes. A 2D aqueous binary electrolyte bounded by two flat inert
electrodes is considered, and an external AC electric field at a single oscillation frequency is applied in
the wall-normal direction. We show that at sufficiently high voltages (in units of thermal volts, defined
in Section 2), the 1D solution becomes unstable in the direction tangential to the electrode surface, and
electroconvective instability is triggered. This article investigates this new phenomenon over a wide
range of external voltage magnitude, oscillation frequencies and ion diffusivity ratios, and assesses
their impacts on the development of electroconvection.

This article is organized as follows: The computational setup is given in Section 2, followed by a
description of a fully-conservative numerical scheme used to solve governing equations in Section 3.
A detailed characterization of electroconvective instability is presented in Section 4 with emphasis
on the effects of the amplitude and frequency of applied oscillatory voltage, followed by the effects
of ionic diffusivity on electroconvection. Conclusions and suggested future works are discussed in
Section 5.

2. Problem Setup

We consider two parallel flat electrodes in a 2D domain subject to an AC voltage difference as
shown in Figure 1. The fluid in between consists of a binary electrolyte with cations and anions of
the same valency. The top and bottom walls of the fluid channel correspond to ideally-polarizable
blocking electrodes with zero Faradaic current. Throughout this paper, x1 and x2 denote the horizontal
and wall-normal directions, respectively. Within the channel, concentration of cations (c+) and anions
(c−) having the same valency, ±z, is solved for. Superscripts + and − are used to denote quantities
of cations and anions, respectively. Thermal equilibrium at room temperature is assumed, and ionic
diffusivity for each species D± is uniform in space and constant in time. However, diffusivity is allowed
to vary from one species to another. Transport equation for ionic species using the Nernst–Planck
fluxes can be written as

∂c±

∂t
+ u ·∇c± = ∇ · (D±∇c±)±∇ ·

(
D±

1
VT

c±∇φ

)
, (1)
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where u = {u1, u2} is flow velocity, VT = kBT/(ze) is the thermal volt with kB, T and e being the
Boltzmann constant (1.38× 10−23 J/K), absolute temperature and the elementary charge (1.6× 10−19 C),
respectively, and φ is the electric potential. This is coupled with the Gauss’s law

∇2φ = − ze(c+ − c−)
ε

, (2)

where ε is the electrical permittivity.

x1

x
2

2πL

L

Vmax cos(ω0t)

EDL

EDL

Electrode

Electrode

Figure 1. Computational domain. Also shown are schematics of large-scale vorticies and electric
double layers (EDLs) (not to scale) near electrodes at x2 = 0 and L (grounded). The domain is periodic
in the x1 direction.

Hydrodynamic transport is evaluated by directly solving the 2D Navier–Stokes equations in
the incompressible, low-Reynolds limit. Thus, the nonlinear convection term is neglected. Instead,
an electrohydrodynamic coupling term is included in the momentum equations.

∇ · u = 0, (3)

ρ
∂u
∂t

= −∇p + µ∇2u− ze(c+ − c−)∇φ, (4)

where ρ is mass density, p is pressure and µ is dynamic viscosity. Due to the thermal equilibrium
assumption, all thermodynamic quantities are uniform and constant.

Equations (1)–(4) are nondimensionalized by relevant reference quantities such as the channel
height L (see Figure 1) for length, cation diffusivity D+ for molecular diffusivity, cation diffusion
time scale L2/D+ for time, diffusion velocity of cation D+/L for velocity, initial average salt
concentration c0 for ion concentration, the osmotic pressure µD+/L2 for pressure and VT for electric
potential. As a result, six dimensionless parameters, as summarized in Table 1, characterize the
electrohydrodynamics of the given system, namely, the electrohydrodynamic coupling constant
κ = εV2

T /(µD+), nondimensional Debye screening length ε = λD/L, Schmidt number Sc = µ/(ρD+),
nondimensional maximum voltage ∆V = Vmax/VT, nondimensional oscillation frequency ω0 and the
ratio of diffusivities D−/D+. The Debye screening length is defined by

λD =

√
εkBT

2(ze)2c0
, (5)

where c0 is the mean concentration of both species averaged in the entire domain and is independent
of time. In the analysis, it is useful to introduce normalized salt concentration c = 1

2 (c
+ + c−)/c0 and

charge density ρe = 1
2 (c

+ − c−)/c0, which will be extensively used in Section 4.
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Table 1. Dimensionless parameters and their descriptions.

Dimensionless Parameters Descriptions

κ = εV2
T /(µD+) electrohydrodynamic coupling constant

ε = λD/L nondimensional Debye screening length
Sc = µ/(ρD+) Schmidt number
∆V = Vmax/VT nondimensional maximum voltage

ω0 nondimensional oscillation frequency
ratio of ionic diffusivities D−/D+

Considering typical aqueous systems, κ = 0.5 and Sc = 1000 are used. The nondimensional
Debye screening length is assumed to be ε = 10−3 following Druzgalski et al. [8] and Davidson
et al. [30]. While this ε is toward the larger limit of practical regimes, it is sufficiently small to reveal
the essential physics without requiring significant computational cost. Our preliminary studies have
shown that ∆V = 180 is sufficient to develop electroconvective instability in the current setup, although
smaller voltages also show similar, but less significant, instability. Following the 1D analysis of Olesen
et al. [28], ∆V = 180 corresponds to the strongly nonlinear regime where, depending on oscillation
frequency, EDL loses quasiequilibrium nature due to severe salt depletion and admits the formation of
ESC layer in their matched asymptotic analysis. Note that Olesen et al. [28] analyzed a half cell and
thus their voltages are twice smaller than ours for an equivalent system (in other words, ∆V in the
present study is equal to 2V of Olesen et al. [28]).

While ε, κ and Sc are kept fixed, the AC frequency and diffusivity ratio are systematically varied
to investigate the onset of electroconvective instability. The oscillation frequency is scaled by the RC
frequency of the equivalent circuit model, ωRC = 2/(RC), where R and C are bulk resistivity based on
mean concentration and linear capacitance of the nominal Debye layer, respectively. For example, if
cation and anion diffusivities are the same (D−/D+ = 1), the dimensionless RC frequency is given
by 2/ε. Based on this, it is convenient to introduce a reduced frequency ω̃ = ω/ωRC, where ω̃ = 1
corresponds to the nondimensional characteristic RC frequency. Thus, the reduced frequency for the
external AC field is written as ω̃0.

For cases in which we study the effects of diffusivity ratio, D−/D+, cation diffusivity is used as
a reference, and anion diffusivity is varied. For a fixed voltage ∆V = 180, three different diffusivity
ratios are considered, namely D−/D+ = 1, 5 and 10. Several effective diffusivities, Deff, can be defined
using ionic diffusivities. If the diffusivity ratio is not equal to unity, electroneutrality in the bulk of
a binary electrolyte requires that the salt diffuses at Dh = 2D+D−

D++D− , which is a harmonic mean of two
diffusivities. However, for the two parallel flat electrode setup, the characteristic RC frequency is
associated with the arithmetic mean Dm = 1

2 (D+ + D−). Using the effective diffusivity, an effective
diffusion velocity udiff = Deff/L can be defined. Similarly, an effective diffusion time scale can be
defined as τdiff = L2/Deff = L/udiff.

The simulation domain is periodic in the x1 direction with length 2πL, as shown in Figure 1.
In similar electroconvective flows under DC voltages, Druzgalski et al. [8] showed that autocorrelation
of velocity fluctuations remains close to zero for separations greater than 2L in the periodic direction
and thus the artifacts of using the periodic condition is insignificant. As pointed out by Druzgalski and
Mani [12], the current aspect ratio 2π appears sufficiently high, given much stronger external voltages
and chaotic hydrodynamic responses of the current electrolyte setup. On the electrode surfaces at
x2/L = 0 and 1, the no-slip condition is used for fluid velocity, and ion fluxes normal to the surfaces
vanish due to zero electrochemical reaction. For electric potential, the top wall is grounded, and the
bottom wall has an externally imposed sinusoidal voltage Vmax cos(ω0t) at a single constant (angular)
frequency ω0. The angle θ is used to describe the phase of the AC voltage oscillation; for example,
θ = 0 corresponds to the bottom electrode having the maximum positive voltage Vmax, while θ = π

corresponds to φ(x2/L = 0) = −Vmax.
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At t = 0, ionic concentrations are unity for both ionic species, and fluid velocities are set to be
zero everywhere. Initial random disturbances are imposed on c± with the maximum perturbation
being 5× 10−12c0. Preliminary studies have shown that the perturbation magnitude does not have a
meaningful influence on the development of electroconvective instability after the first few oscillation
periods for which initial transient effects are still non-negligible.

At sufficiently large voltages, the classical Poisson–Boltzmann model (also used in this study)
predicts very high concentration of counterions near charged interfaces, even in dilute-solution limits.
The Boltzmann statistics assumes pointwise ionic species and allows counterions to be congregated at
unphysically high concentration. In reality, volume constraints of finite-size ions and other mechanisms
inhibit such high concentration of ions. This crowding of ions can to some degree be alleviated by
including a compact Stern layer near the interfaces, which provides additional surface capacitance
so that the excess potential across the Debye layer can be reduced at moderate applied voltages. An
alternative (and presumably more realistic) approach is to employ the modified Poisson–Nernst–Planck
(MPNP) model [31,32] so that ion crowding within very thin layers can be effectively limited by steric
effects. Extensive comparisons and discussions in AC electrode setups are given by Olesen et al. [28].
Consideration of these realistic effects requires to include additional modeling parameters such as
surface capacitance for a Stern layer and maximum volume fraction for steric constraints, adding two
more dimensions to the present parameter space. Given that there is no strong consensus on the values
of those additional parameters, their effects should be assessed comprehensively for a range of values.
In this investigation, we avoid such a comprehensive study, and ignore both steric and Stern layer
effects, to allow a focus on controllable parameters such as the applied frequency and voltage.

In experimental setups involving aqueous electrolytes, applying sufficiently high AC voltages at
sufficiently low frequencies can lead to electrolysis of water near the surface and generation of bubbles,
which would bring additional complexities such as two-phase mass transfer and contact-line dynamics.
These complexities need to be addressed in a more advanced version of the present study. In this
study, our goal is to develop an understanding of electrokinetic effects by isolating them from other
complexities. Therefore, our work is relevant to systems with highly stable surfaces and chemistries
where the onset of bubble generation is postponed beyond the considered frequency–voltage regimes.

3. Numerical Methods

The governing equations, Equations (1)–(4), are solved (in their nondimensionalized forms) using
the numerical scheme proposed by Karatay et al. [14] with the modification of Davidson [33] to enforce
discrete conservation at all iteration levels. The simulation domain is decomposed into a number of
Cartesian control volumes, and variables are staggered so that velocities and ion fluxes are defined
at face centers, while the other quantities are located at cell centers. The governing equations are
integrated over control volumes and discretized with second-order accuracy in space. For numerical
stability, simple averaging is used to compute face-centered quantities, instead of accounting for
nonuniform grid spacing.

The presence of very thin EDLs near electrode surfaces renders the system of discretized equations
numerically stiff, requiring a prohibitively small computational time-step size. This difficulty is
alleviated by using a semi-implicit treatment of fluxes in the wall-normal direction. In the periodic
transverse direction, fluxes are computed explicitly in time, but Fourier transforms are used to time
advance the momentum equations and obtain solutions of the Poisson equations to take advantage
of transverse decoupling and reducing the bandwidth of matrices associated with implicit time
advancement. The second-order backward Euler method is used for temporal discretization. At
each time step, nonlinear terms are linearized, and the system of linearized governing equations is
iteratively solved until convergence of the full-nonlinear implicit system is achieved.

The computational grid in the periodic x1 direction is uniform in spacing. In the wall-normal x2

direction, a hyperbolic tangent profile is used to create nonuniformly spaced grid points clustered
near the electrodes. Grid spacings in the x2 direction are symmetric with respect to x2/L = 0.5
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(the channel centerline). In the x1 and x2 directions, respectively, 1024 and 200 control volumes are
used. Uniform grid spacing ∆x1 corresponds to 6λD. In the x2 direction, approximately 13 cells are
used to resolve the EDL, and the minimum and maximum grid spacings are ∆x2,min/λD = 0.05 and
∆x2,max/L = 0.018, respectively.

Computational time-step size is kept constant as ∆t/τdiff = 10−7. This corresponds to 104 time
steps per oscillation period at the highest oscillation frequency considered in this study, ω̃0 = π.
The number of iterations per time step ranges from 2 to 10, primarily depending on applied voltage
and diffusivity ratio. An L∞-error tolerance is prescribed to be 10−3 for convergence. Simulations are
time advanced for 10 oscillation periods, after which statistics are collected for another 10 periods.

The simulation code has been verified by using the manufactured solution method [33]. Also,
a series of comparisons are made against 1D asymptotic solutions of a binary symmetric mixture
in contact with a cation-selective membrane under applied DC voltages. Ion concentration, charge
density and voltage–current curve show good agreement with the corresponding analytic solutions
and previous studies.

4. Results

4.1. Electroconvective Instability of Binary Symmetric Electrolytes (D−/D+ = 1)

4.1.1. Evolution of Electrohydrodynamic Structures Under External AC Voltages

Electroconvective instability induced by external DC electric fields demonstrates distinct
qualitative features represented by an array of counter-rotating vortices near ion-selective
membranes [8,10,20]. Similar observation can be made for the present setup where external AC voltage
is applied. Figure 2a shows the instantaneous contours of salt concentration c at the phase when the
lower electrode has the minimum voltage−Vmax. The AC frequency is ω̃0 = 0.063, which is well below
the RC frequency of the present electrokinetic system and a frequency where optimal hydrodynamic
responses are reported in Section 4.1.4. The near-electrode regions of severe ion depletion (bright color)
have thickness comparable to 20% of the channel height. The bulk solution is strongly nonuniform in
its salt distribution, and its salt concentration is far from unity. Also, characteristic length scales of
structures range up to scales comparable to the channel height L.

With all the conditions described in Section 2 the same, the maximum voltage is lowered to
∆V = 40. Figure 2b shows the instantaneous contours of c at the same phase as the one in Figure 2a.
Ion distribution is essentially 1D varying in the x2 direction, and there is no sign of electroconvection
nor transverse instability. Salt concentration stays nearly unity in the bulk solution. This shows that
electroconvective instability begins to develop above a certain voltage, similar to the cases where DC
electric fields are applied to electrolytes in contact with ion-selective membranes [8].

More detailed qualitative features of electroconvective instability can be observed by plotting
salt concentration at each phase of AC voltage oscillation. In Figure 3, snapshots corresponding to a
half oscillation period are shown (corresponding to phase angles between π/2 and 3π/2). Thus, the
electrode at x2 = 0 stays negatively charged (the upper electrode is grounded). The applied voltage
at the lower electrode takes its minimum −Vmax between Figure 3b,c. Symmetry in geometry and
diffusivity ensures that the results are similar during the other half oscillation period. Similar plots
are obtained for charge density and vorticity Ω = ∂u2

∂x1
− ∂u1

∂x2
(scaled by udiff/L) at the same phases in

Figures 4 and 5, respectively.
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Figure 2. Instantaneous contours of salt concentration c at θ = π for (a) ∆V = 180 and (b) ∆V = 40.
The oscillation frequency is ω̃0 = 0.063 for both cases. The vertical arrows denote the direction of the
applied electric field. The diffusivity ratio is D−/D+ = 1.
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Figure 3. Time series of salt concentration c for half an oscillation period at (a) θ = 0.64π, (b) 0.88π,
(c) 1.12π and (d) 1.4π. The vertical arrows denote the direction and relative magnitude (not to scale) of
the applied electric field. The diffusivity ratio is D−/D+ = 1.
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Figure 4. Time series of charge density ρe for half an oscillation period at (a) θ = 0.64π, (b) 0.88π,
(c) 1.12π and (d) 1.4π. The vertical arrows denote the direction and relative magnitude (not to scale) of
the applied electric field. The diffusivity ratio is D−/D+ = 1.

As instantaneous voltage difference across the channel increases (between Figure 3a,b, and
Figure 4a,b), double layers on both electrodes are charged, and more coions are expelled from electrodes,
while more counterions are attracted towards the electrodes. At the maximum voltage difference
(between Figure 3b,c, and Figure 4b,c), near-electrode structures undergo drastic qualitative changes.
In Figures 3c and 4c, similarities to Druzgalski and Mani [12] are observed, namely strong ion depletion
correlated with high charge density. Such severe ion depletion leads to the formation of ESC and
transversely organized structures. As the voltage drop returns close to zero in Figures 3d and 4d, the
organized structures are relaxed primarily via diffusion.

A notable difference with Druzgalski and Mani [12] is observed at the phase when the double layer
is charging (in Figure 3b or 4b). As the voltage drop becomes stronger, a layer of highly concentrated
ions, but with coionic charge, is formed near each electrode. This layer is then advectively stretched
(see Figure 5b) via thin normal fingers spaced in the x1 direction with characteristic length scales of
O(L). In other words, during this phase each electrode simultaneously acts as a “membrane” and a
“reservoir” for the opposite electrode, analogous to the observations made in Druzgalski and Mani [12].
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Figure 5. Time series of vorticity Ω for half an oscillation period at (a) θ = 0.64π, (b) 0.88π, (c) 1.12π

and (d) 1.4π. The vertical arrows denote the direction and relative magnitude (not to scale) of the
applied electric field. The diffusivity ratio is D−/D+ = 1.

Discussions so far concern phenomenological descriptions of electroconvection caused by
external AC electric fields. Though qualitative, they demonstrate the importance of critical voltage
at which electroconvection emerges and rich transient dynamics depending on oscillation phase
when electroconvection is pronounced. Videos S1–S3 showing the time-resolved dynamics of AC
electroconvective instability for a single oscillation period can be found in Supplementary Materials.
In the next section, quantitative descriptions of electroconvective instability are provided.

4.1.2. Statistics

The instantaneous fluctuating horizontal velocity (with respect to the mean in the horizontal
direction) is shown in Figure 6a for several oscillations frequencies. Strong intermittent fluctuations
are observed at ω̃0 = 0.063 where electroconvection is reported. Wall-normal velocity fluctuations are
two to three times higher than horizontal velocity fluctuations, as can be seen in Figure 6b.
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Figure 6. Instantaneous fluctuations of (a) horizontal and (b) wall-normal velocities. Measurement is
made at the channel centerline, and RMS fluctuations are computed with respect to the mean in the
horizontal direction.

The root-mean-square (RMS) profiles of horizontal velocity fluctuations with respect to time and
the horizontal direction are shown as a function of wall-normal distance in Figure 7a. Strong peaks are
observed very near the electrode surface except for ω̃0 = 1.571 where the system is essentially 1D. At
ω̃0 = 0.063, u′1 does not decay to a negligible value at the centerline anymore, consistent to Figure 6a.
Figure 7b shows the profiles of RMS wall-normal velocity. The strong electroconvective instability at
ω̃0 = 0.063 creates substantially higher and nearly constant level of wall-normal velocity fluctuations
across 90% of the channel width. Unlike the higher frequency cases, u′2 does not decay toward the
channel centerline and rather takes its maximum value there, which confirms that there is a global
hydrodynamic coupling across the channel.
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Figure 7. RMS velocity fluctuations versus wall normal coordinate for (a) horizontal and
(b) wall-normal velocities.

The time-averaged profiles of salt concentration are shown in Figure 8a for the three different
oscillation frequencies, respectively. Statistics are also averaged in the periodic x1 direction. Also
shown in Figure 8a as symbols are the average salt profiles for the corresponding 1D simulations using
the same numerical method. At ω̃0 = 0.063, the minimum average salt drops to 0.3 at x2/L ≈ 0.1.
The bulk salt concentration is lower than 0.5, consistent to the qualitative observations made in
Figure 3. Comparison with the corresponding 1D solution shows that the inner structure near
the electrode (x2/L . 0.03) remains 1D on average. However, electroconvective instability causes
significantly higher degree of ion depletion all across the channel, and the outer-layer ionic distribution
is not well predicted by the 1D model. At higher frequencies, variations of average salt are nearly
indistinguishable from those of the corresponding 1D solutions. The RMS profiles of salt fluctuation in
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Figure 8b provides clear distinction between strong and mild electroconvective instability. Near the
electrode surface (x2/L . 0.05), fluctuation levels are relatively high for all frequencies, regardless
of whether there is electroconvection. However, strong electroconvective instability at ω̃0 = 0.063
maintains salt fluctuations higher than 40% of its bulk concentration across the channel, while those at
higher frequencies decay to zero at the centerline. The corresponding 1D solution at ω̃0 = 0.063
shows a similar decay of fluctuations toward the centerline. The results in Figure 8 show that
electroconvective instability induced by external AC electric field is a strictly multi-dimensional
phenomenon (in particular, outside the double layer) and cannot be accurately described using a 1D
Poisson–Nernst–Planck model. However, the inner-layer structures (x2/L . 0.03) are still close to
those of the 1D analysis.
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Figure 8. The wall-normal profiles of (a) time-averaged salt concentration and (b) salt fluctuation RMS.
Symbols indicate the solutions from the corresponding 1D simulations.

In Figure 9a,b, instantaneous salt concentration averaged in the periodic x1 direction is shown at
x2/L = 0.01 and 0.1, respectively. Only two oscillation periods are shown for clarity. At ω̃0 = 0.063
where electroconvection is pronounced, severe salt depletion is observed in the ESC region lasting more
than 50% of each oscillation period (see Figure 9a). Away from the electrode at x2/L = 0.1 (Figure 9b),
salt concentrations for higher AC frequencies more or less relax to the value of the bulk electrolyte
c0 = 1, while the minimum concentration for ω̃0 = 0.063 is only 20% of the bulk concentration.

We revisit the earlier observation made in Figure 8a regarding agreement between 1D and 2D mean
salt concentrations near the electrode surface. In Figure 9c,d we show that this agreement persists even
at instantaneous levels. At x2/L = 0.01, both 1D and 2D predictions are indistinguishable, consistent
with what was observed in Figure 8a. However, ion concentrations at x2/L = 0.1 are consistently
lower for 2D simulation, as shown in Figure 9d. At higher AC frequencies (with no electroconvection),
comparisons at both x2 locations give nearly identical results between 1D and 2D simulations (not
shown here).
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Figure 9. Time history of instantaneous salt concentration averaged in the horizontal direction at (a)
x2/L = 0.01 and (b) x2/L = 0.1. In (c,d), only the results for ω̃0 = 0.063 are shown for comparison
with the corresponding 1D simulation. Two oscillations periods are plotted.

4.1.3. Spectral Analysis

Figure 10a shows the spatial power spectral density (PSD) of wall-normal velocity for three
different frequencies. The nominally 1D case at ω̃0 = 1.571 has negligibly small spectral energy,
presumably the residue of the initial random perturbations. At lower frequencies, electroconvective
instability develops a broadband distribution of spectral energy similar to energy spectra reported
by Druzgalski and Mani [12] for applied DC electric fields. In Figure 10b, the variation of spectral
energy at several wall-normal positions is shown for ω̃0 = 0.063. Slightly outside the nominal
EDL (x2/L = 0.003), spectral energy takes its maximum value at `1 = 2π/κ1 ≈ L/8. At x2/L =

0.03 approximately outside the ESC layer [28], a significant amplification of energy is found at all
wavenumbers. Also, the spectral peak is shifted toward larger scales to `1 ≈ L/4. At the channel
centerline x2/L = 0.5, the peak is further shifted to `1 ≈ 1.5L. Thus, the most energetic fluid motion
in the horizontal direction at the centerline is 50% larger than the channel width L. Druzgalski
and Mani [12] also reported peaks approximately at 1.5L in their kinetic energy spectra away from
the ion-selective membrane when electroconvection takes place under strong external DC voltages.
Another consistent observation is that energetic structures become progressively smaller closer to the
interface, as found in traditional turbulent flows [13].
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Figure 10. Spatial power spectral density of wall-normal velocity at (a) x2/L = 0.1 for three oscillation
frequencies and (b) several positions from the electrode surface for ω̃0 = 0.063.

Similar analysis can be done for ionic concentration for ω̃0 = 0.063. In Figure 11, the PSD of cation
concentration is plotted at several wall-normal locations, including the first-cell location denoted by
x2/L = 0. A spectral energy decay at κ−3/2

1 is observed at an intermediate wavenumber range, a rate
also observed by Druzgalski and Mani [12] for external DC voltages. The spectral energy of ionic
fluctuations stay more or less the same at `1 & 0.2L, while at wavenumbers larger than κ1L/(2π) ≈ 5,
energy contained at small scales shows variations by several order of magnitudes. Very near the
electrode, a distinct power-law decay of spectral energy at κ−6.6

1 is observed for almost two decades
of wavenumber.
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Figure 11. Spatial power spectral density of cation concentration for ω̃0 = 0.063.

Temporal PSD is computed at a number of wall-normal locations and averaged in the periodic x1

direction. Figure 12 shows temporal PSD of the horizontal velocity u1 at several wall-normal locations.
Strong electroconvective instability at ω̃0 = 0.063 (Figure 12a) results in drastically different temporal
dynamics compared with mild electroconvective instability at ω̃0 = 0.314 (Figure 12b). In Figure 12a,
outside the double layer (x2/L ≥ 0.003), temporal fluctuations are strong, and fluctuation energy is
almost equally distributed over frequencies more than two decades up to ω̃ = 2. This is also the case
at the channel centerline. Mild peaks are observed at ω̃ = 0.126, corresponding to a harmonics of the
fundamental AC frequency due to the periodic attraction and repellence of ionic species occurring
twice per oscillation period [28]. Slightly outside the ESC layer (x2/L = 0.03), temporal fluctuation
energy takes the maximum values over all frequencies. When electroconvective instability is not
significantly amplified and confined very near the electrode (Figure 12b), individual frequency peaks
associated with the AC oscillation frequency appear as well as their higher harmonics. Compared with
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Figure 12a, it is clear that nonlinearity necessary to induce global electroconvective instability does not
sufficiently develop at this higher oscillation frequency ω̃0 = 0.314.

10
2

10
1

10
0

10
3

10
2

10
1

10
0

10
1

10
2

10
3

10
4

ω̃

E
u
1
u
1
(ω

)

x2/L = 0.003
x2/L = 0.03
x2/L = 0.5

(a)

10
1

10
0

10
3

10
2

10
1

10
0

10
1

10
2

10
3

10
4

ω̃

E
u
1
u
1
(ω

)

x2/L = 0.003
x2/L = 0.03
x2/L = 0.5

(b)

Figure 12. Temporal power spectral density of horizontal velocity at several wall-normal locations.
The vertical dotted lines indicate the external AC frequencies (a) ω̃0 = 0.063 and (b) 0.314, respectively.

In Figure 13, the temporal PSDs of salt concentration are compared with those of the corresponding
1D simulations. Near electrodes (Figure 13a,b), the frequencies corresponding to twice the external
AC frequencies ω0 = 0.063 and 0.314 take a maximum, respectively. Their first and higher harmonics,
namely 2nω̃0 where n = 1, 2, · · · , become predominant relative to the other frequencies. For ω̃0 = 0.063
which involves a strong electroconvective instability (Figure 13a), temporal PSD is substantially
amplified across all frequency ranges. At a higher AC frequency ω̃0 = 0.314 where electroconvective
instability is not significant (Figure 13b), difference between the 1D and 2D simulations is much smaller.
Such drastic amplification in PSD over all frequency ranges is indicative of increased chaotic behavior in
the system. At the channel centerline (Figure 13c,d), two different AC frequencies result in substantially
different temporal PSD. With strong electroconvective instability (Figure 13c), electrolytes exhibit strong
temporal fluctuations at the centerline as well. However, at a higher frequency ω̃0 = 0.314 (Figure 13d),
the bulk electrolyte returns to essentially 1D solution without any discernible frequency peaks.
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Figure 13. Comparison of temporal power spectral density of salt concentration at x2/L = 0.01 for
(a) ω̃0 = 0.063 and (b) ω̃0 = 0.314, and at x2/L = 0.5 for (c) ω̃0 = 0.063 and (d) ω̃0 = 0.314.

4.1.4. Electric Current and System-Level Responses

Surface current density at the electrode surface is compared with that of the corresponding 1D
simulations in Figure 14. Assuming a perfect conductor, current per unit area J is calculated by first
computing surface charge per unit area q′′ = −ε∇φ·n, where n is the surface normal vector pointing
toward the electrolyte. Then, q′′ is numerically differentiated in time to obtain J. At ω̃0 = 1.571
where the response of the electrolyte is essentially 1D and electrohydrodynamic coupling is negligible,
current is nearly sinusoidal and closely follows that of the corresponding 1D simulation. However,
the presence of electroconvective instability at ω̃0 = 0.063 increases the maximum J by a factor of two
compared with the corresponding 1D setup, as can be seen in Figure 14a. The wall-normal component
of current density computed at the channel centerline is nearly identical to those computed at the
electrode surface.
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Figure 14. Surface current per unit area for (a) ω̃0 = 0.063, (b) 0.314 and (c) 1.571. Four oscillations
periods are plotted.

Following Olesen et al. [28], the overall cell impedance (or the generalized impedance) versus the
AC oscillation frequency ω̃0 is calculated to characterize the system-level response. For comparison
with Olesen et al. [28], a series of 1D simulations are conducted at ε = 5× 10−4 and at applied AC
voltages of ∆V = 50 and 240. It should be noted that Olesen et al. [28] uses the half-channel height as a
reference length and their maximum voltage drop 2V is equal to ∆V in the present study. Additionally,
in Olesen et al. [28] a finite size Stern layer thickness (δ = 0.3 in their notation) is used. However, in
our reproduction of the 1D simulations, to be consistent with our 2D simulations, we do not include a
Stern layer. Nevertheless, this has minimally changed the plots, as will be seen in Figure 15.

Figure 15 compares the magnitude and phase angle of the overall cell impedance at applied
voltages of ∆V = 50 and 240, respectively. At ∆V = 50, both 1D and 2D solutions show good agreement
in magnitude and phase over all frequencies. However, at ∆V = 240, some mild discrepancies are
observed at intermediate frequencies.

Figure 15b shows the overall cell impedance computed for our nominal setup (ε = 10−3 and
∆V = 180). Both 1D and 2D simulation results are plotted. As discussed by Olesen et al. [28], the
system response is nearly ohmic at frequencies higher than the RC frequency (or equivalently, ω̃0 ≥ 1),
and the 1D and 2D results are indistinguishable. However, as the oscillation frequency is reduced,
the system responses deviate from simple capacitor-like behaviors observed in the 1D setup. Instead,
the system is characterized by reduced impedance amplitude (at most, by a factor 1.5) and reduced
phase difference between the applied voltage and current. Again, this is attributed to electroconvective
instability enhancing the convective transport and mixing of ionic species across the channel, and thus
reducing the effective resistance of the electrolytes.
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Olesen et al. [28] introduces the characteristic frequency at which contributions from resistive
and capacitative components of the overall cell impedance switch. Specifically, this corresponds to
a frequency at the phase angle of the impedance ∠Z = −45◦ denoted by a horizontal dashed line
in Figure 15. A notable difference between the 1D and 2D simulations is that as ω̃0 is reduced and
electroconvective instability is pronounced, the characteristic frequency is significantly reduced which
is consistent with increased effective current in the same figure.
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Figure 15. (a) The Bode plot of the overall cell impedance Z for the strictly 1D setup. To match the
conditions of Olesen et al. [28], the EDL thickness is adjusted to be ε = 5× 10−4 and the applied
maximum AC voltages are ∆V = 50 and 240. (b) The overall cell impedance for the nominal 2D setup.
The horizontal dashed line corresponds to ∠Z = −45◦.

The degree of electroconvective motions induced by the applied external AC voltage can be
summarized by plotting the maximum values of velocity magnitudes as shown in Figure 16a. At
ω̃0 ≥ 0.628, maximum velocities are negligibly small, indicating that the electrolytes behave essentially
like a 1D system. As seen previously, hydrodynamic responses are strong at ω̃0 = 0.063. As ω̃0

becomes smaller than 0.063, induced maximum velocity magnitudes become smaller. This is expected
since in the limit of zero frequency (DC limit) there must be no instability due to lack of mechanism
for injecting energy into the electrolytes bounded by inert blocking electrodes. What is surprising is
that the maximum electroconvection occurs at frequencies much smaller than the RC frequency on
the order of ω̃0 = O(10−2). Different measures based on velocity can be devised to characterize the
responses, although no further efforts are made in this study.

Similar trends are obtained by evaluating normalized current density fluctuations in the x1

direction, as shown in Figure 16b. The surface current density J is subtracted by its instantaneous mean
in the x1 direction, and its instantaneous RMS fluctuations are computed and time averaged. Thus, it
characterizes the level of current fluctuations in the horizontal direction.The maximum current density
RMS (≈5% of the maximum current density) occurs at ω̃0 = 0.063, the same as the peak frequency in
Figure 16a. However, the peak in Figure 16b is defined better and presumably more robust since the
maximum velocities used in Figure 16a are prone to intermittency in velocity fields as applied voltages
increase further.
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Figure 16. (a) Normalized maximum velocities and (b) normalized current density fluctuations in
the transverse direction. In (b), Jmax is obtained by taking the maximum of surface current density
averaged in the x1 direction.

Figure 17 summarizes the electrohydrodynamical responses of electrolytes under oscillatory
voltages. Additional 2D simulations are carried out at voltages smaller than ∆V = 180, namely
∆V = 40, 75, 110 and 145. All conditions remain the same except for time-step size for computational
efficiency when electroconvective instability is weak or not present. For ∆V = 40, the time-step size is
increased to ∆t/τdiff = 5× 10−7, and for ∆V = 75 and 110, it is 2× 10−7. The time-step size is 10−7

for ∆V = 145. The additional simulations are time advanced and analyzed for the same number of
oscillation periods as those with ∆V = 180. In Figure 17, dark symbols correspond to those with the
maximum instantaneous velocity being greater than the unit diffusion velocity udiff denoting the onset
of electroconvective instability. No efforts are made to precisely define the boundary between two
frequencies at which electroconvection takes place, which belongs to future works.

Several observations can be made in Figure 17. As qualitatively shown in Section 4.1.1,
electroconvective instability occurs above a critical voltage at a given oscillation frequency. At applied
voltages lower than the critical voltage, no sign of electrohydrodynamic coupling is observed, and the
maximum velocity is less than 10−6udiff. Also, at a given voltage, a critical frequency exists below which
electroconvective instability is amplified. As the frequency is further decreased, one expects the system
to return to stable 1D states. However, while we capture non-monotonicity of the behavior, this second
transition is not studied in this report, mainly due to requirement of prohibitively long simulations
in the low frequency limit. Similar frequency–voltage diagrams are given by Olesen et al. [28] and
Stout and Khair [24] to delineate the transition from linear to nonlinear responses of electrolytes under
external oscillatory voltages. However, Figure 17 shows the onset of electroconvective instability, a
consequence of strongly nonlinear responses of electrolytes. Thus, the critical voltages discussed by
Olesen et al. [28] and Stout and Khair [24] are well below the critical voltages shown in Figure 17.
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Figure 17. A frequency–voltage diagram for AC electroconvection of a binary symmetric electrolyte
(D−/D+ = 1). Each symbol corresponds to a different pair of oscillation frequency and voltage.
A symbol is dark when the maximum induced velocity exceeds the unit diffusion velocity udiff. The
vertical dashed line corresponds to the RC frequency.

4.2. Effects of Ion Diffusivity on Electroconvective Instability

As outlined in Section 2, three different values of diffusivity ratio (D−/D+ = 1, 5 and 10) are
examined for their effects on electroconvection while the maximum voltage is fixed at ∆V = 180.
The oscillation frequency ω0 is varied in the same range as in Section 4.1. However, the reduced
frequency ω̃0 does not necessarily remain the same since ωRC is a function of ionic diffusivity.

Figure 18 shows the maximum wall-normal velocity (in the unit of the cation diffusion velocity) as
a function of ω0. The horizontal velocity (not shown here) shows the same trend. For D−/D+ > 1, the
maximum velocities are several times greater than those of D−/D+ = 1 over all frequencies. The peak
frequency is ω0/(2π) = 100 for both D−/D+ = 5 and 10, higher than ω0/(2π) = 20 (or ω̃0 = 0.063)
for D−/D+ = 1.

In Figure 18b, the normalized surface current fluctuations in the horizontal direction are plotted
as a function of ω0. For D−/D+ > 1, the fluctuation levels are consistently higher than or
comparable to the maximum fluctuation for D−/D+ = 1 over all frequencies examined in this
study. This indicates the presence of strong transverse inhomogeneities in surface current fluctuations,
linked to electroconvective instability. On the other hand, the equal-diffusivity electrolyte demonstrates
the onset of electroconvection at 100 . ω0/(2π) . 200, as discussed in Section 4.1.4. The current
fluctuations for all cases take the maximum values at the same oscillation frequency, ω0/(2π) = 20.
Agreement in peak frequencies scaled with cation diffusivity is attributed to cations playing a role of
rate-limiting species near the electrode surface where the current is computed.
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Figure 18. (a) Normalized maximum wall-normal velocities and (b) normalized surface current density
fluctuations in the horizontal direction.

Figure 19 shows the instantaneous contours of salt concentration for two representative
frequencies, ω0/(2π) = 20 and 100. The diffusivity ratio is D−/D+ = 10. For both frequencies,
distinct asymmetry develops with respect to the channel centerline at x2/L = 0.5. In Figure 19a,
ion-enriched and ion-depleted zones are clearly separated and well distinguished compared with
Figure 19b, presumably due to a sufficiently long relaxation time for diffusion. Characteristic large-scale
features of size comparable to the channel height are generated via successive agglomeration of smaller
structures (see also Figure 20).
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Figure 19. Instantaneous contours of salt concentration c at θ = π for (a) ω0/(2π) = 20 and (b) 100.
The diffusivity ratio is D−/D+ = 10, and the maximum applied voltage is ∆V = 180. The vertical
arrows denote the direction of the applied electric field.

For ω0/(2π) = 20, salt concentration, charge density and vorticity during a half oscillation
period (between phase angles π/2 and 3π/2) are shown in Figures 20–22, respectively. The diffusivity
ratio is D−/D+ = 10. As in Figure 3, the bottom electrode remains negatively charged having the
minimum voltage −Vmax between Figure 20b and Figure 20c. As the voltage difference across the
channel increases (from Figure 20a to Figure 20b), anions (having diffusivity 10 times higher than
cations) rapidly diffuse and migrate toward the upper electrode, depleting ions at the bottom half of
the channel. Due to the much higher anion diffusivity, such process is completed faster than in the
equal-diffusivity electrolyte (compare Figure 4b and Figure 21b, for example). Ion-depleted zones
further diffuse and form cellular structures (Figure 20c) and almost fill the entire channel (Figure 20d).
Figure 22b,c confirm that those structures correspond to the array of counter-rotating vortices, a distinct
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sign of electroconvective instability. As can be seen in Figure 20c, gaps between adjacent cellular
structures contain increasingly high concentration of salt, primarily consisting of counterions (see
Figure 21c). Through those gaps, counterions are transported by vortical motions (see Figures 21c
and 22c) toward the electrode (at x2/L = 0 during this time period). The final diffusion processes
shown in Figure 20d are preceded by intense breakdown of the gap regions (see Figures 20c and 21c,
for example, near x1/L ≈ 2.8).
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Figure 20. Time series of salt concentration c for half an oscillation period at (a) θ = 0.64π, (b) 0.88π,
(c) 1.12π and (d) 1.4π. The vertical arrows denote the direction and relative magnitude (not to scale) of
the applied electric field. The diffusivity ratio is D−/D+ = 10.

The overall cell impedance is plotted in Figure 23 for all D−/D+. As ω0 is reduced, all three curves
for |Z| collapse. At such low oscillation frequencies, both cations and anions are given sufficiently
long relaxation times. Thus, |Z| is insensitive to diffusivity ratio at ω0/(2π) . 50. The phase angle of
the impedance ∠Z asymptotically approaches −45◦, where the characteristic frequency across which
the resistor-like behavior of Z switches to the capacitor-like one is defined. For all D−/D+, Z never
behaves like a perfect capacitor, an observation that can be explained using the amplified electric
current by electroconvection. As the oscillation frequency increases, the equal-diffusivity electrolyte
ohmically transfers electric current (|Z| → 1 and ∠Z → 0◦). However, at the same frequency limit,
significant discrepancies in |Z| are observed for D−/D+ > 1. The impedance magnitude decreases up
to 3.4 times for D−/D+ = 10, implying the corresponding decrease in resistivity of electrolyte and
increase in electric current.
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Figure 21. Time series of charge density ρe for half an oscillation period at (a) θ = 0.64π, (b) 0.88π, (c)
1.12π and (d) 1.4π. The vertical arrows denote the direction and relative magnitude (not to scale) of
the applied electric field. The diffusivity ratio is D−/D+ = 10.
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Figure 22. Time series of vorticity Ω for half an oscillation period at (a) θ = 0.64π, (b) 0.88π, (c) 1.12π

and (d) 1.4π. The vertical arrows denote the direction and relative magnitude (not to scale) of the
applied electric field. The diffusivity ratio is D−/D+ = 10.
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Figure 23. The Bode plot of the overall cell impedance Z. The horizontal dashed line corresponds to
∠Z = −45◦.

The surface current density for all D−/D+ is computed and shown for 4 oscillation periods in
Figure 24. For ω0/(2π) = 20 (Figure 24a), the increased diffusivity ratio causes a phase-lead of the
current peaks (see ∠Z in Figure 23), presumably a direct impact of anion diffusing much faster than
cation. The maximum surface current also increases by up to 50%. However, the total current density
remains nearly the same, consistent to the same impedance amplitude for all D−/D+ at ω0/(2π) = 20,
as shown in Figure 23. In Figure 24b, the results for ω0/(2π) = 1000 are shown for 4 oscillation
periods as well. The amount of phase-lead is substantially reduced, consistent to Figure 23. There is
significant amplification in the maximum surface current by 2.7 times (D−/D+ = 5) and 4.2 times
(D−/D+ = 10). This is also consistent to the observation made at ω0/(2π) = 1000 in Figure 23.
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Figure 24. Surface current per unit area for (a) ω0/(2π) = 20 and (b) 1000.

In Figure 25a, the RMS profiles of horizontal velocity fluctuations with respect to time and the
horizontal direction are shown as a function of wall-normal distance. Over all frequencies examined
in this study, predominant RMS peaks are observed very near the electrode surface. A broader,
secondary peak is found away from the primary peak for all three frequencies. At the highest
frequency ω0/(2π) = 1000, the centerline fluctuation is 20u+

diff, higher than the centerline value for
ω0/(2π) = 100 (or ω̃0 = 0.314) in Figure 7 where electroconvection is reported for equal-diffusivity
electrolytes (see Figure 16 or Figure 17). Overall, the RMS profiles do not show consistent changes as
frequency is varied. In the bulk fluid, frequency increase is correlated with reduced RMS fluctuation.
However, the primary peaks do not follow the same trend, and the intermediate frequency ω0 leads
to the highest fluctuation peak. For wall-normal velocities shown in Figure 25b, the intermediate
frequency ω0/(2π) = 100 also has the largest peak near the electrode surface. Except for ω0/(2π) =

1000, the centerline level of wall-normal velocity fluctuations is consistently high. Figure 25 shows that,
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for D−/D+ = 10, electroconvection is triggered for all frequencies but rather confined to near-wall
regions at the highest frequency, ω0/(2π) = 1000.
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Figure 25. Rms velocity fluctuations versus wall normal coordinate for (a) horizontal and (b)
wall-normal velocities. The diffusivity ratio is D−/D+ = 10.

Time-averaged salt concentration is shown in Figure 26a for D−/D+ = 10. Similar to velocity
statistics in Figure 25, frequency increase does not result in consistent changes of salt at every
wall-normal location. At ω0/(2π) = 20 and 100, mean salt distribution shows monotonic decrease
toward the bulk fluid. Compared with Figure 8 for the equal-diffusivity electrolyte, excessive bulk
salt depletion (below 40%) is observed. However, the bulk salt is mildly depleted for ω0/(2π) = 1000.
Instead, near the electrode (at x2/L ≈ 0.08), strong salt depletion is observed. The profiles of RMS
salt fluctuations (with respect to time and the horizontal direction) are shown in Figure 26b. As ω0

increases, salt fluctuations rapidly drops. For ω0/(2π) = 1000, the fluctuation levels in the bulk fluid
becomes negligibly small for x2/L & 0.1, confirming that electroconvective instability at this oscillation
frequency is mostly confined to near-electrode regions.
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Figure 26. The wall-normal profiles of (a) time-averaged salt concentration and (b) salt fluctuation
RMS. The diffusivity ratio is D−/D+ = 10.

For D−/D+ = 10, the spatial PSD of wall-normal velocity are shown in Figure 27 at x2/L = 0.03
(approximately the ESC region) and 0.5 (the channel centerline), respectively. Near the electrode
surface, broadbanded spectra over all wavenumbers are observed for all oscillation frequencies, as
can be seen in Figure 27a. Large- and small-scale motions respond to frequency increase in the
opposite way (note that for D−/D+ = 1 all scales respond in a consistent manner as frequency
changes; see Figure 10a). Close to the electrode, lower external frequencies are more effective in
enhancing large-scale fluctuations, while high frequencies generally amplify small-scale motions. At
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ω0/(2π) = 1000, mild discrete peaks are found at κ1L/(2π) = 10, 20, and 30, respectively, consistent to
the relatively weaker electroconvective instability observed at that frequency. As shown in Figure 27b,
the responses of electrolytes at the centerline are quite different and do not show monotonic behavior
with respect to the oscillation frequency. At lower frequencies, power spectra are still broadbanded at
the centerline, whereas fluctuation energy rapidly decays for ω0/(2π) = 1000, consistent to Figure 25b.
The PSD of horizontal velocity show nearly the same trend, and thus they are not shown here.
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Figure 27. Spatial power spectral density of wall-normal velocity at (a) x2/L = 0.03 and (b) 0.5. The
diffusivity ratio is D−/D+ = 10.

Figure 28 summarizes the effects of diffusivity ratio on spatial PSD of wall-normal velocity. In
general, increasing the diffusivity ratio always promotes velocity fluctuation levels over all length
scales. At a low AC frequency (Figure 28a,b), D−/D+ has marginal impacts on Eu2u2 near the electrode
and at the centerline. As the oscillation frequency is increased (Figure 28c,d), distinct effects of
D−/D+ appear primarily at small scales, κ1L/(2π) & 10, irrespective of wall-normal positions. At
intermediate frequencies (not shown), near-electrode responses to varying D−/D+ are similar to those
of low frequencies (Figure 28a), presumably due to smaller length scales there, whereas the centerline
responses are pronounced similar to Figure 28d at κ1L/(2π) & 1.

Analyses so far suggest that the role of unequal diffusivity includes significant promotion of
electroconvective instability, increase in the maximum current over all frequency range examined in
this study and amplified total current at the ohmic regime. The effects of unequal diffusivity are more
pronounced at high oscillation frequencies and at smaller scales (. 0.1L). At low AC frequencies,
asymmetry in ionic diffusivity increases spatial PSD over all scales; however, further increasing the
diffusivity ratio does not have much impact.
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Figure 28. Spatial power spectral density of wall-normal velocity: (a) ω0/(2π) = 20 and x2/L = 0.03;
(b) ω0/(2π) = 20 and x2/L = 0.5; (c) ω0/(2π) = 1000 and x2/L = 0.03; (d) ω0/(2π) = 1000 and
x2/L = 0.5

5. Conclusions and Discussions

Electroconvective instability under alternating current (AC) electric fields is discovered for the
first time and characterized using solutions of 2D direct numerical simulation (DNS) of aqueous binary
electrolytes bounded by parallel inert blocking electrodes. In addition to voltage magnitude and
oscillation frequency, the effects of ionic diffusivity on electroconvection are examined. Similar to
electroconvection under direct current (DC) electric fields, strong coupling between ion transport and
hydrodynamics is observed under the conditions where AC electroconvection is allowed to occur.
This is manifested by the formation of the arrays of counter-rotating vortical structures periodically
created and destroyed near the flat inert electrode surfaces. Broadbanded power spectral density
(PSD) is observed in spatiotemporal spectral analysis of average salt and velocity fields, demonstrating
strong nonlinearity necessary to trigger and sustain electroconvective instability. It is found that a
critical maximum voltage is a function of oscillation frequency. Below such critical voltages, the
classical asymptotic structures of electric double layer (EDL) and extended space-charge (ESC) layer
are recovered and show good agreement between the 1D theory and the current DNS prediction. A
critical oscillation frequency at which AC electroconvection occur is also examined. Compared with
the resistor–capacitor (RC) frequency of the equivalent AC circuit corresponding to the flat-electrode
setup, the critical frequency is much lower than the characteristic RC frequency. The optimal responses
(defined using the maximum induced instantaneous velocity or the surface current density fluctuation)
occur well below the RC frequency (a few percent of the RC frequency). Salt depletion is much
more severe than what 1D theory predicts. Increase in the maximum current is accompanied with
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strong electroconvection, while at frequencies higher than the critical frequency, the Debye layer
charges incompletely and the 2D eletrolyte behaves essentially like a 1D system with little or no
perturbation in the bulk solution. Interestingly, for the considered case of λD = 10−3L, the inner-layer
structures at x2/L . 0.03 (where L is the distance between the two electrodes) are insensitive
to electroconvection and remain 1D. The system-level responses estimated using the overall cell
impedance reveals important changes in electrolyte once electroconvection takes place. The eletrolyte
below the critical frequency never behaves like a perfect capacitor and instead allows increased electric
current across the microfluidic channel. The effects of ionic diffusivity on electroconvective instability
are more complex and not monotonic as parameters such as the maximum voltage difference and
the oscillation frequency are varied. In general, asymmetry in diffusivity facilitates electroconvective
instability. At all external AC frequencies examined in this study, electroconvection is reported. Electric
current is amplified, in particular, at high frequency regimes, which is opposite to the results from
a symmetric electrolyte. Also, high anion diffusivity has stronger impacts on smaller-scale motions
(. 0.1L).

Oftentimes, realistic microfluidic devices are 3D. The presence of the third spatial direction may
cause additional complexities and challenges to the analysis of electroconvective motions. However,
Druzgalski and Mani [12] reports that statistics of 2D and 3D electrokinetic systems under the external
DC voltages do not show significant qualitative differences under highly chaotic regimes, as can be
seen in their Figures 8 and 9, by which some of the important conclusions made by the present study
can be, at least qualitatively, extended to 3D systems subject to oscillatory voltages.

Similar to turbulence simulation, DNS applied to electrokinetic flows offers very detailed space-
and time-resolved dynamics of ionic and hydrodynamic transports, useful to understand fundamental
physics and validate theoretical models. However, its direct extension to realistically high voltage and
diffusivity ratio is not straightforward due to several challenges in modeling and numerical method.
In particular, the presence of very thin EDLs near ion-selective surfaces increases computational costs
significantly when DNS is employed to resolve the EDL structure. In this study, 13 cells are used
to represent the nominal EDL thickness λD/L = 10−3. As pointed out in Section 2, this value is
sufficiently small to represent some microfluidic configurations. However, realistic nondimensional
Debye layer thickness can often become one to two orders-of-magnitude smaller than 10−3, which
requires to reduce the minimum grid spacing severely and thus results in a tremendously large
number of grid points (also prohibitively small computational time-step size) in 3D setups. One of
the findings in this study suggests that by adequately modeling the inner layer dynamics (which is
insensitive to electroconvection in the outer layers), such drastic increases in computational costs can
be accommodated. Ideas similar to wall-layer modeling of turbulent boundary layers [34] can be
adapted for electrokinetic flow simulations.

In practice, the maximum diffusivity ratio of multi-species electrolytes can become as high as 1000
(due to electrons in plasmas, for example). Thus, a single ionic species having a very large diffusivity
may severely limit the computational time-step size, determined by its diffusion time scale. The
second-order backward Euler time advancement used in this study is stable for configurations having
modest diffusivity ratios (for example, D−/D+ = 10). However, for realistically high diffusivity ratios,
more robust or even fully-implicit temporal discretization appears to be necessary to have a sufficiently
large computational time-step size. This can be critical to simulating AC electroconvection where
its optimal frequency at which electroconvective instability is most pronounced is well below the
characteristic frequency such as the RC frequency.

As discussed in Section 2, the current formulation does not include the compact Stern layer near
electrodes nor adopts the modified Poisson–Nernst–Planck (PNP) models accounting for the steric
effects. In the 1D setup, Olesen et al. [28] provides extensive studies to characterize the effects of the two
models on weakly and strongly nonlinear responses of electrolyte under oscillating external voltages.
One of their key findings is that significant potential drops occur across the Stern layer, and the steric
inclusion limits the unrealistic crowding of ionic species near electrodes. Thus, concentration gradient
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is substantially reduced, and nonlinear responses are attenuated compared with the formulation based
on the classical Poisson–Boltzmann distribution at the same applied voltage. Although the present
study does not take into account such effects, it is expected that including such models delay the onset
of electroconvection or at least weakens its magnitude, which can be verified by future studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/10/3/161/
s1, Video S1: Time series of salt concentration for a single oscillation period; Video S2: Time series of charge
density for a single oscillation period; Video S3: Time series of vorticity for a single oscillation period.
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