
micromachines

Article

µ-PIV Measurements of Flows Generated by
Photolithography-Fabricated Achiral Microswimmers

Liyuan Tan 1,†, Jamel Ali 2,3,†, U Kei Cheang 1,*, Xiangcheng Shi 1 , Dalhyung Kim 4 and
Min Jun Kim 5

1 Department of Mechanical and Energy Engineering, Southern University of Science and Technology,
Shenzhen 518055, China; 11749160@mail.sustc.edu.cn (L.T.); x.shi@u.nus.edu (X.S.)

2 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering,
Tallahassee, FL 32310, USA; jali@eng.famu.fsu.edu

3 National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
4 Department of Mechanical Engineering, Kennesaw State University, Marietta, GA 30060, USA;

dkim97@kennesaw.edu
5 Department of Mechanical Engineering, Southern Methodist University, Dallas, TX 75275, USA;

mjkim@lyle.smu.edu
* Correspondence: cheanguk@sustech.edu.cn; Tel.: +86-755-88015352
† These authors contributed equally to this work.

Received: 15 November 2019; Accepted: 4 December 2019; Published: 10 December 2019 ����������
�������

Abstract: Robotic micro/nanoswimmers can potentially be used as tools for medical applications,
such as drug delivery and noninvasive surgery. Recently, achiral microswimmers have gained
significant attention because of their simple structures, which enables high-throughput fabrication and
size scalability. Here, microparticle image velocimetry (µ-PIV) was used to study the hydrodynamics
of achiral microswimmers near a boundary. The structures of these microswimmers resemble the
letter L and were fabricated using photolithography and thin-film deposition. Through µ-PIV
measurements, the velocity flow fields of the microswimmers rotating at different frequencies
were observed. The results herein yield an understanding of the hydrodynamics of the L-shaped
microswimmers, which will be useful in applications such as fluidic manipulation.

Keywords: microrobotics; magnetic control; low Reynolds number

1. Introduction

Micro/nanoswimmers have been intensely investigated for the past decade because of their
potential applications in drug delivery [1,2], biological sensing [3,4], and tissue manipulation [5,6].
At the microscale, these devices swim at low Reynolds numbers, where viscous forces dominate over
inertia; thus, the fluid flow becomes time reversible. According to the scallop theorem [7], nonreciprocal
motion is required to achieve a net forward thrust at low Reynolds numbers. To generate nonreciprocal
swimming strokes in viscosity-dominated environments, many existing micro/nanoswimmers utilize
helical structures or flexible bodies.

Rigid helical micro/nanoswimmers mimic the swimming motion of bacteria such as Escherichia coli
and can be obtained using a number of top-down and bottom-up techniques, including self-scrolling [8],
3D direct laser writing [9], and nucleic acid manipulation [10]. Microswimmers with flexible bodies
are analogous to the flagella of sperm, which can generate propulsion by propagating nonreciprocal
traveling waves down the flexible flagellum [11]. So far, most of the flexible microswimmers have
been constructed with rigid segments that are connected by soft junctions. However, the complex
or costly fabrication process of these two kinds of microswimmers limits their further application,
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despite their swimming properties [12]. Chemically driven propulsion with hydrogen peroxide
(H2O2) has the fastest swimming speed among microswimmers thus far, but this requires specific
chemical environments for actuation [13,14]. Other systems such as acoustic- [15], light- [16], and
electrostatic-activated [17] microswimmers have also attracted significant attention; here, we focused
on magnetically driven propellers.

Apart from helical or flexible body microswimmers, studies have demonstrated that rigid achiral
microswimmers can also swim at low Reynolds numbers under rotating magnetic fields, such as
particle-based microswimmers [18], which was the first reported achiral microswimmer, in part to
re-examine the minimal geometrical requirements for designing microswimmers. In a follow-up study,
Cheang and Kim [19] thoroughly discussed the feasibility of fabricating achiral microswimmers that,
because of their 2D simplistic geometries, could be fabricated at low cost using high-throughput
lithography techniques. This was later corroborated in experiments with planar microswimmers [20].
Furthermore, the swimming properties of the achiral microswimmers were extensively investigated,
with the conclusion that achiral planar shapes are nearly optimal propellers [21]. Similar achiral
structures with asymmetric arms have also been used to obtain imbalanced forces and induced torques
in other systems [22,23].

Aside from the above-mentioned microswimmers that are designed for swimming in bulk fluid,
magnetically actuated rolling microrobots are actively being studied because of their simplicity.
For example, a dumbbell-like microrobot can be used for cargo transportation using the microvortices
it generates [24]. Similarly, the microvortices generated by the rotational microparticles have been used
for trapping objects such as live bacteria [25]. These two examples of cargo transportation using rolling
robots, which took advantage of microvortices for localized fluid trapping, illustrate the importance
and potential applications of studying the low Reynolds number hydrodynamics of microswimmers.
However, unlike microswimmers, these devices are limited to locomotion on a surface [15,26].

Unlike their chiral counterparts (e.g. rigid helices), achiral microswimmers have not been thoroughly
investigated, specifically their hydrodynamic properties are largely unknown. Understanding the
hydrodynamics of a microswimmer can lead to better control and practical applications. Even though
numerical simulations were conducted to study the hydrodynamics of achiral microswimmers in bulk
fluid [27,28] and near boundaries [29], so far there have been no experimental reports on the flows
produced by these swimmers.

The microparticle image velocimetry (µ-PIV) technique can be used to measure the velocity flow
field of a microswimmer by measuring the moving patterns of laser-excited tracer particles within a
fluid in sequential frames. For the past few years, µ-PIV had been used to study the flows of a number of
different microswimmers. For example, µ-PIV was used to further the understanding of the swimming
behavior of microorganisms [30–32], as well as a microorganism-based microswimmer [33], while
stereoscopic µ-PIV measurements were used to confirm the asymmetric dynamic motion of artificial
cilia that can generate 3D asymmetric dipole vortices [34]. For helical microswimmers, [35,36] studied
the thrust force and efficiency of helical microswimmers using µ-PIV with both micro- and macroscale
models. Recently, Mart´ınez-Aranda et al. studied the flow dynamics around several microswimmers
prototypes, such as spherical, elliptical, and cylindrical shapes, in non-Newtonian fluids using µ-PIV
in order to simulate the hydrodynamics of microswimmers inside a human vessel [37]. Moreover,
a µ-PIV study was conducted to investigate the fluid flow generated by microspheres, which are widely
used for micromixing and pumping, mask-free colloidal patterning, and as microrobots in the form of
rolling robots [13,38]. Even though the µ-PIV technique has been used for investigating chiral and
flexible microswimmers, there is still a lack of literature on achiral microswimmers.

Here we report on the µ-PIV characterization of achiral L-shaped microswimmers fabricated using
photolithography and thin-film deposition, which allowed us to visualize the flow field and obtain
quantitative data for validation. The results presented herein will provide a better understanding of the
hydrodynamics of achiral shapes, which will aid in the future application of achiral microswimmers
for microfluidic tasks.
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2. Materials and Methods

2.1. Microswimmer Fabrication

L-shaped microswimmers were fabricated using a traditional photolithographic lift-off process
as shown in Figure 1a–d. First, a clean silicon wafer was coated with a layer of dextran (5% (w/v);
60 kDa), followed by deposition of a layer of negative-tone photoresist (SU-8, Micro-Chem, MA,
USA) via spin-coating. Next, a dark field transparency in contact with the photoresist was used
to transfer patterns through UV exposure, followed by post-baking and development in propylene
glycol monomethyl ether acetate (PGMEA). To impart ferromagnetic properties to the microstructures,
a 200 nm thin film of nickel was deposited onto the substrate using thermal evaporation. Nickel pellets
(99.995%, Kurt J. Lesker, PA, USA) were evaporated at a rate of 0.5 Å/s with a chamber pressure of 10−6

Torr. The fabricated L-shape microswimmers had an arm width, length, and thickness of 40, 120, and
2 µm, respectively. The magnetic moments of the fabricated microswimmers were aligned with the
easy axis [20]. Finally, the nickel coated L-shaped structures were then released from the water-soluble
sacrificial dextran layer in deionized water.
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Figure 1. (a)–(d) Fabrication process of L-shaped microswimmers; (e) velocity versus rotating frequency
of microswimmers.

2.2. Magnetic Actuation and µ-PIV

The swimming mechanism of the achiral microswimmer was studied by Sachs et al. [39] and
Cheang et al. [18], and a brief analysis was provided in supplementary materials. In order to observe
microswimmers in motion, we mounted an electromagnetic coil system onto a fluorescence microscope
in which the PIV experiment was performed. As shown in Figure 2, the coil system was powered
by three power supplies (Kepco BOP20-5M) and controlled by a National Instrument (NI) Data
Acquisition (DAQ) device (PCI-6259) and a LabVIEW interface. Flow velocity measurements were
obtained using previously reported methods [33,38]. The PIV experiments were conducted in water
at room temperature (~1 cP). Fluorescent seeding particles (200 nm) were introduced into samples
and excited using a continuous wave laser, as shown in Figure 2. Particle image sequences were
acquired at 500 frames per second and subsequently analyzed. Recorded images were imported
into the commercial software package (DaVis 8.0), which was used for flow field reconstruction.
Instantaneous flow fields were obtained using interrogation windows measuring 32 × 32 pixels, which
had an overlap of 50%. Smoothing (3 × 3) was applied to the post-processing of the obtained flow fields
data. The microswimmers used for µ-PIV measurement were the same as those used for swimming
velocity testing.
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3. Results and Discussion

3.1. Swimming Profile

After fabrication, the swimming performance of the L-shaped microswimmers was evaluated
under different frequencies of a rotational magnetic field. Four microswimmers of similar size were
used, and each microswimmer was tested under different frequencies. As can be seen in Figure 1e,
the velocity increases with the field frequency, which corroborates the results obtained by Tottori and
Nelson [20]. The peak velocity of the L-shaped microswimmers was 149 µm/s on average when the
frequency was increased to 12 Hz. The velocity was obtained using a tracking algorithm programmed
in MATLAB. The standard variation in Figure 1e was 28.3 µm/s. The variation observed may be
attributed to the magnetic moment variance that could have been introduced during pre-magnetization;
this can lead to slightly different swimming motions among the four swimmers. Since the experiments
were conducted with swimmers close to the boundary, a strong drifting velocity (motion perpendicular
to the desired direction of swimming) was observed. A graphical illustration of drift velocity is shown
in Figure 3d, in which drift velocity is along the y-direction.

The motion of a microswimmer translating near the bottom surface exhibited both translational
and drift swimming motion, as illustrated in Figure 3a–d, due to hydrodynamic interactions with the
wall (glass slide). When the microswimmer was actuated far from the boundary (i.e., swimming at a
distance from the boundary where hydrodynamic interactions with the boundary do not influence
swimming behavior), it swam forward without drifting laterally. However, the microswimmer slowly
sank to the bottom over time. When the microswimmer sank down to the boundary, strong drifting
motion was observed. To verify whether the translational motion of a microswimmer swimming in
bulk fluid (far from boundary) was the same as that of a microswimmer near a boundary, we measured
the velocity of a microswimmer that was swimming in bulk fluid and near the boundary, respectively.
The achiral microswimmers used here had an arm width and length of 40 and 120 µm, respectively,
and with a thickness of 2 µm. Figure 3e (Video S1) shows the microswimmer in bulk fluid without
applying magnetic torque. The time span of the trajectory in Figure 3f (Video S1), which shows
translational motion, was 15 s with an average swimming velocity of 32.24 µm/s and a standard
deviation of 5.40 µm/s. The maximum and minimum velocities during this time period were 41.14
and 24.55 µm/s, respectively. In Figure 3g (Video S1), the same microswimmer was swimming close
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to the surface; a strong drifting motion was observed during that 6 s. The resultant trajectories of
the swimmers were decomposed into x and y coordinate velocities; movement in the x-direction here
corresponds to translational velocity, while movement in y corresponds to a drift velocity induced
by near-wall interactions. A mean translational swimming velocity was calculated to be 30.62 µm/s
with a standard deviation of 0.82 µm/s, while 31.57 and 29.74 µm/s were the maximum and minimum
velocities, respectively. The average, maximum, and minimum translational swimming velocities for
both cases were in close agreement.

1 
 

 

Figure 3 Figure 3. Swimming behavior in bulk fluid and near an underlying boundary. (a)–(d) Illustration of
translational and drift velocity of microswimmers translating at a distance far away from the boundary
and near the boundary; (a) sideview and velocity decomposition of a microswimmer swimming at a
distance away from the boundary; (b) top view of a microswimmer swimming away from the boundary;
(c) sideview of a microswimmer swimming near the boundary; (d) top view of a microswimmer
swimming near the boundary and velocity decomposition. (e)–(g) Swimming control experiment of
an L-shaped microswimmer; (e) L-shaped microswimmer floating in bulk fluid; (f) swimming of an
L-shaped microswimmer in bulk fluid, at a distance far away from the boundary; (g) swimming of an
L-shaped microswimmer near the boundary.

3.2. Near-Swimmer Flow Displacement

µ-PIV measurements were conducted with three microswimmers swimming near the boundary,
and the velocity flow fields in accordance with the translational direction were extracted. It can be
seen in Figure 4a that the maximum flow displacement generated by each rotation was similar at
different frequencies with an average of 3.83 µm. This is expected, because the displacement for one
rotation should always be the same regardless of rotating frequency, thus quantitatively verifying the
consistency across PIV data for different swimmers and frequencies. However, there was a discrepancy
that the maximum displacement generated at the frequency of 12 Hz was smaller and mostly beneath
the mean value when compared to the maximum displacement of lower frequencies, as shown in
Figure 4a. The number of frames per rotation for 4, 8, and 12 Hz were 125, 63, and 42, respectively.
Since the number of frames for every rotation decreased with frequencies, the details for each rotation
decreased as well. As a result, a small discrepancy in the data occurred, leading to a smaller maximum
displacement for 12 Hz. The discrepancy was consistent across experiments and did not have a
significant impact on the results.
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Figure 4. (a) Maximum flow displacement generated by each number of rotations; (b) cumulative flow
displacements with different rotational frequencies. The black line is linear fit based on four average
data points from 0 to 12 Hz; the red line is linear fit based on three average data points from 0 to 8 Hz.

The cumulative displacements at 12 and 8 Hz were three and two times that of the value at 4 Hz,
respectively, which suggests a linear dependence of the flow displacement with respect to rotating
frequency, as shown from the black linear fitting line with a R2 value of 0.963 from Figure 4b. This was
because the cumulative maximum displacements for 8 and 12 Hz accumulated, respectively, two and
three times as fast as that for 4 Hz because of the doubled and tripled angular velocity, respectively.
A discrepancy occurred at 12 Hz because of the reason mentioned in the previous paragraph for
Figure 4a. The cumulative displacements at 12 Hz was 43 µm, which was smaller than the expected
displacements of 51 µm, according to the linear relationship. Without the discrepancy, a more linear
fit, likely similar to the red linear fitting line with a R2 value of 0.996, which fit the data points from
0 to 8 Hz in Figure 4b, can be expected. The red linear fitting line extends to 12 Hz, which can be
interpreted as the expected average value for 12 Hz without the discrepancy. It should also be noted
that the cumulative flow displacement corresponded to the flow displacement in one second, which
represents velocity.

3.3. Flow Field Analysis

As shown in Figure 5a–c, the flow patterns were very similar at different rotation frequencies as
expected. The color map represents the strength of flow velocity with max flow velocity increasing
linearly, corresponding to the results in Figure 4b. Four distinct flow regions of similar magnitude
were observed around the microswimmer; with opposite regions having flow displacements of the
same sign and forming a dumbbell shape, as shown in the inset of Figure 5a with red dash circles.
The velocity vector map and streamlines of a rotating L-shaped microswimmer at 4 Hz is presented in
Figure 5d–f. As shown in Figure 5e,f, two microvortices, labeled by translucent yellow elliptic regions,
can be observed. With those microvortices, it might be possible to use these rotating microswimmers to
conduct noncontact manipulation, such as particle trapping and transport, as demonstrated previously
by Zhou et al. (2017). Limited by the nature of µ-PIV, only 2D side views of the microvortices were
observed; it is speculated that the 2D flow patterns in the yellow region represent cone-shaped vortices
in 3D. The intensive streamlines in Figure 5e at the yellow regions suggest a relatively stronger flow
field of the microvortices than in the background. The flow field with sparse streamlines in Figure 5f
clearly showed the streamlines going back and forth and illustrates the planar movement of trapped
particles. Moreover, as shown in Figure 5e,f, the flow field of the rotating microswimmer covered an
area of 400 × 200 µm2, while the microswimmer had a body length of 170 µm; therefore, this can be
used to determine hydrodynamic interactions between microswimmers for relevant applications, such
as swarm control. Flow field patterns of different microswimmers are provided in Supplementary
Materials (Figures S1–S6).
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Figure 5. Flow fields, normalized by swimmer length, generated by achiral microswimmers at different
rotating frequencies. Velocity along the y-direction was extracted. Displacement flow field at (a) 4,
(b) 8, and (c) 12 Hz. The dumbbell-shaped region in (a)–(c), shown in inset of (a), show the local flow
produced around the swimmer. (d) Velocity vector map generated by an achiral microswimmer rotating
at 4 Hz; (e) intensive streamlines around the rotating microswimmer; (f) sparse streamlines around the
rotating microswimmer. The yellow elliptic regions in (e), (f) labeled the microvortices generated by
the microswimmer. The red arrows in (a)–(c), (e), and (f) identify the position of the microswimmer.

Flow velocity data obtained from datum lines along directions parallel and perpendicular
to the desired swimming direction were plotted (Figure 6). As shown in Figure 6a–c, the flow
velocity magnitude along the desired swimming direction was associated with two sets of similar
dumbbell-shaped regions; however, the velocity magnitudes of one of these regions was approximately
twice that of the other. The region of lower peak velocity is variant because of the different swimming
motions between microswimmers, due to the same reason that led to velocity deviation in Figure 1e,
while the higher peak was similar, as shown in Figure 6a, Figures S5a and S6a. Flow velocity decay
profiles of different microswimmers of various frequencies are displayed in Figures S3 to S6. As one
can see, all microswimmers exhibited a similar velocity decay profile. Moreover, the peaks occurred
close to the middle of the microswimmer; that is, the peak velocity exponentially decayed in the
radial direction from the center of the swimmer. Flow velocity along the perpendicular direction was



Micromachines 2019, 10, 865 8 of 11

observed to be larger than that along the direction of swimming because of the strong drift motion,
as depicted in Figure 6d–f. This also explains the apparent flow along the x-direction shown in the
inset of Figure 5d. Furthermore, a stagnation point in Figure 6e can be found close to the center of
the flow field pattern along the direction of swimming, while two sets of stagnation points exist for
the perpendicular direction as lower flow velocity appeared at larger distances (40 µm), as shown in
Figure 6f.
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Figure 6. Flow field decay along x and y directions. (a)–(c) Flow velocity along the desired swimming
direction; (d)–(f) flow velocity along the direction perpendicular to desired swimming direction; (a), (d)
angled view of velocity profile; (b), (e) front view of velocity profile; (c), (f) left view of velocity profile.
The inset in each plot is a schematic of the swimmer where the red dash line represents the datum line
that was used to obtain velocities.

4. Conclusions

In this paper, the hydrodynamics of swimming L-shaped microswimmers were investigated using
µ-PIV. L-shaped microswimmers were fabricated using photolithography combined with physical
vapor deposition, which imparted magnetic properties onto the L-shaped structures. Velocity profiles
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were investigated at different frequencies and showed a swimming velocity of two body lengths per
second (140 µm/s) at 12 Hz. Before conducting the µ-PIV experiment, the isolation of the translational
velocity component from the drifting velocity was validated. For the µ-PIV results, the maximum
displacement of the flow field generated by the microswimmers at different frequencies for each
rotation were in close agreement. As expected, the cumulative displacement for each second increased
with the rotational frequency increasing and showed a linear relationship. Two microvortices were
found around the rotating microswimmer, covering an area of 400× 200 µm2. Finally, the velocity decay
profiles along both the desired swimming direction and the direction perpendicular to swimming
were analyzed. This information will be useful in future investigations aimed at elucidating the
hydrodynamic interaction between swimmers. Further, based on these findings, it is conceivable to
utilize the characteristics of the microswimmers flow field to perform hydrodynamic manipulation,
such as noncontact manipulation and transport of micro-objects through hydrodynamic trapping.
Moreover, visualization of the flow field will enable the successful implementation of applications that
requires swimmer-to-swimmer interactions, such as swarm control.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/10/12/865/s1.
Video S1: Swimming near and away from a planar surface, Figure S1: Magnetic field profile generated by
approximate Helmholtz coil, Figure S2: Flow field generated by two swimmers under different actuating
frequencies, Figure S3: Flow field velocity decay profile of the swimmer in Figure 6 under 8 Hz actuation, Figure
S4: Flow field velocity decay profile of the swimmer in Figure 6 under 12 Hz actuation, Figure S5: Flow field
velocity decay profile of swimmer 2 under 8 Hz actuation, Figure S6: Flow field velocity decay profile of swimmer
3 under 8 Hz actuation.

Author Contributions: L.T. was the lead writer and performed image and data analysis. J.A. and U.K.C. built the
experimental apparatus, designed the experiments, carried out the fabrication and experiments, and performed
image and data analysis. X.S. and D.K. helped perform image and data analysis. L.T. analyzed the PIV data and
wrote the paper after discussing the results with J.A., U.K.C., X.S., D.K., and M.J.K., who also commented on and
revised the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (NSFC; 51850410516),
Department of Education of Guangdong Province (2017KTSCX167), Science and Technology Innovation Committee
Foundation of Shenzhen (JCYJ20180302174151692), Shenzhen municipal government (Peacock Plan, 20181119590C)
awarded to U Kei Cheang, and support from the NSF FAMU CREST Center award (1735968).

Acknowledgments: The authors would like to thank Materials Characterization and Preparation Center at
Southern University of Science and Technology for their micro-nano manufacturing equipment.

Conflicts of Interest: The authors declare no conflicts of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Dogangil, G.; Ergeneman, O.; Abbott, J.J.; Pane, S.; Hall, H.; Muntwyler, S.; Nelson, B.J. Toward targeted
retinal drug delivery with wireless magnetic microrobots. In Proceedings of the 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 1921–1926.

2. Fusco, S.; Chatzipirpiridis, G.; Sivaraman, K.M.; Ergeneman, O.; Nelson, B.J.; Pané, S. Chitosan
Electrodeposition for Microrobotic Drug Delivery. Adv. Healthcare Mater. 2013, 2, 1037–1044. [CrossRef]
[PubMed]

3. Torelli, E.; Manzano, M.; Srivastava, S.K.; Marks, R.S. DNA origami nanorobot fiber optic genosensor to
TMV. Biosens. Bioelectron. 2018, 99, 209–215. [CrossRef] [PubMed]

4. Balasubramanian, S.; Kagan, D.; Jack Hu, C.-M.; Campuzano, S.; Lobo-Castañon, M.J.; Lim, N.; Kang, D.Y.;
Zimmerman, M.; Zhang, L.; Wang, J. Micromachine-Enabled Capture and Isolation of Cancer Cells in
Complex Media. Angew. Chem. Int. Ed. 2011, 50, 4161–4164. [CrossRef] [PubMed]

5. Zhang, H.; Hutmacher, D.W.; Chollet, F.; Poo, A.N.; Burdet, E. Microrobotics and MEMS-Based Fabrication
Techniques for Scaffold-Based Tissue Engineering. Macromol. Biosci. 2005, 5, 477–489. [CrossRef]

6. Kim, S.; Qiu, F.; Kim, S.; Ghanbari, A.; Moon, C.; Zhang, L.; Nelson, B.J.; Choi, H. Fabrication and
Characterization of Magnetic Microrobots for Three-Dimensional Cell Culture and Targeted Transportation.
Adv. Mater. 2013, 25, 5863–5868. [CrossRef]

http://www.mdpi.com/2072-666X/10/12/865/s1
http://dx.doi.org/10.1002/adhm.201200409
http://www.ncbi.nlm.nih.gov/pubmed/23355508
http://dx.doi.org/10.1016/j.bios.2017.07.051
http://www.ncbi.nlm.nih.gov/pubmed/28759871
http://dx.doi.org/10.1002/anie.201100115
http://www.ncbi.nlm.nih.gov/pubmed/21472835
http://dx.doi.org/10.1002/mabi.200400202
http://dx.doi.org/10.1002/adma.201301484


Micromachines 2019, 10, 865 10 of 11

7. Purcell, E.M. Life at low Reynolds number. Am. J. Phys. 1977, 45, 3–11. [CrossRef]
8. Zhang, L.; Abbott, J.J.; Dong, L.; Kratochvil, B.E.; Bell, D.; Nelson, B.J. Artificial bacterial flagella: Fabrication

and magnetic control. Appl. Phys. Lett. 2009, 94, 064107. [CrossRef]
9. Tottori, S.; Zhang, L.; Peyer, K.E.; Nelson, B.J. Assembly, Disassembly, and Anomalous Propulsion of

Microscopic Helices. Nano Lett. 2013, 13, 4263–4268. [CrossRef]
10. Maier, A.M.; Weig, C.; Oswald, P.; Frey, E.; Fischer, P.; Liedl, T. Magnetic Propulsion of Microswimmers with

DNA-Based Flagellar Bundles. Nano Lett. 2016, 16, 906–910. [CrossRef]
11. Dreyfus, R.; Baudry, J.; Roper, M.L.; Fermigier, M.; Stone, H.A.; Bibette, J. Microscopic artificial swimmers.

Nature 2005, 437, 862–865. [CrossRef]
12. Ali, J.; Cheang, U.K.; Darvish, A.; Kim, H.; Kim, M.J. Biotemplated flagellar nanoswimmers. APL Mater.

2017, 5, 116106. [CrossRef]
13. Li, T.; Chang, X.; Wu, Z.; Li, J.; Shao, G.; Deng, X.; Qiu, J.; Guo, B.; Zhang, G.; He, Q.; et al. Autonomous

Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments. ACS
Nano 2017, 11, 9268–9275. [CrossRef] [PubMed]

14. Dong, R.; Zhang, Q.; Gao, W.; Pei, A.; Ren, B. Highly Efficient Light-Driven TiO2–Au Janus Micromotors.
ACS Nano 2016, 10, 839–844. [CrossRef] [PubMed]

15. Esteban-Fernández de Ávila, B.; Angell, C.; Soto, F.; Lopez-Ramirez, M.A.; Báez, D.F.; Xie, S.; Wang, J.;
Chen, Y. Acoustically Propelled Nanomotors for Intracellular siRNA Delivery. ACS Nano 2016, 10, 4997–5005.
[CrossRef] [PubMed]

16. Palacci, J.; Sacanna, S.; Steinberg, A.P.; Pine, D.J.; Chaikin, P.M. Living Crystals of Light-Activated Colloidal
Surfers. Science 2013, 339, 936–940. [CrossRef] [PubMed]

17. Lee, Y.-F.; Huang, Y.-F.; Tsai, S.-C.; Lai, H.-Y.; Lee, E. Electrophoretic and Electroosmotic Motion of a Charged
Spherical Particle within a Cylindrical Pore Filled with Debye–Bueche–Brinkman Polymeric Solution.
Langmuir 2016, 32, 13106–13115. [CrossRef]

18. Cheang, U.K.; Meshkati, F.; Kim, D.; Kim, M.J.; Fu, H.C. Minimal geometric requirements for micropropulsion
via magnetic rotation. Phys. Rev. E 2014, 90, 033007. [CrossRef]

19. Cheang, U.K.; Kim, M.J. Fabrication and control of simple low Reynolds number microswimmers. Appl.
Phys. Lett. 2016, 109, 034101. [CrossRef]

20. Tottori, S.; Nelson, B.J. Controlled Propulsion of Two-Dimensional Microswimmers in a Precessing Magnetic
Field. Small 2018, 14, 1800722. [CrossRef]

21. Mirzae, Y.; Dubrovski, O.; Kenneth, O.; Morozov, K.I.; Leshansky, A.M. Geometric constraints and
optimization in externally driven propulsion. Sci. Rob. 2018, 3, eaas8713. [CrossRef]

22. Kümmel, F.; ten Hagen, B.; Wittkowski, R.; Buttinoni, I.; Eichhorn, R.; Volpe, G.; Löwen, H.; Bechinger, C.
Circular motion of asymmetric self-propelling particles. Phys. Rev. Lett. 2013, 110, 198302. [CrossRef]
[PubMed]

23. ten Hagen, B.; Kümmel, F.; Wittkowski, R.; Takagi, D.; Löwen, H.; Bechinger, C. Gravitaxis of asymmetric
self-propelled colloidal particles. Nat. Commun. 2014, 5, 4829. [CrossRef] [PubMed]

24. Zhou, Q.; Petit, T.; Choi, H.; Nelson, B.J.; Zhang, L. Dumbbell Fluidic Tweezers for Dynamical Trapping and
Selective Transport of Microobjects. Adv. Funct. Mater. 2017, 27, 1604571. [CrossRef]

25. Petit, T.; Zhang, L.; Peyer, K.E.; Kratochvil, B.E.; Nelson, B.J. Selective Trapping and Manipulation of
Microscale Objects Using Mobile Microvortices. Nano Lett. 2012, 12, 156–160. [CrossRef]

26. Ali, J.; Cheang, U.K.; Liu, Y.; Kim, H.; Rogowski, L.; Sheckman, S.; Patel, P.; Sun, W.; Kim, M.J. Fabrication
and magnetic control of alginate-based rolling microrobots. AIP Adv. 2016, 6, 125205. [CrossRef]

27. Meshkati, F.; Fu, H.C. Modeling rigid magnetically rotated microswimmers: Rotation axes, bistability, and
controllability. Phys. Rev. E 2014, 90, 063006. [CrossRef]

28. Morozov, K.I.; Mirzae, Y.; Kenneth, O.; Leshansky, A.M. Dynamics of arbitrary shaped propellers driven by a
rotating magnetic field. Phys. Rev. Fluids 2017, 2, 044202. [CrossRef]

29. Wang, Q.; Yang, L.; Yu, J.; Zhang, L. Characterizing dynamic behaviors of three-particle paramagnetic
microswimmer near a solid surface. Robot. Biomim. 2017, 4, 20. [CrossRef]

30. Kim, J.; Jang, Y.; Byun, D.; Kim, M.; Nam, S.-W.; Park, S. Quantitative measurement of dynamic flow induced
by Tetrahymena pyriformis (T. pyriformis) using micro-particle image velocimetry. J. Vis. 2011, 14, 361–370.
[CrossRef]

http://dx.doi.org/10.1119/1.10903
http://dx.doi.org/10.1063/1.3079655
http://dx.doi.org/10.1021/nl402031t
http://dx.doi.org/10.1021/acs.nanolett.5b03716
http://dx.doi.org/10.1038/nature04090
http://dx.doi.org/10.1063/1.5001777
http://dx.doi.org/10.1021/acsnano.7b04525
http://www.ncbi.nlm.nih.gov/pubmed/28803481
http://dx.doi.org/10.1021/acsnano.5b05940
http://www.ncbi.nlm.nih.gov/pubmed/26592971
http://dx.doi.org/10.1021/acsnano.6b01415
http://www.ncbi.nlm.nih.gov/pubmed/27022755
http://dx.doi.org/10.1126/science.1230020
http://www.ncbi.nlm.nih.gov/pubmed/23371555
http://dx.doi.org/10.1021/acs.langmuir.6b02795
http://dx.doi.org/10.1103/PhysRevE.90.033007
http://dx.doi.org/10.1063/1.4954946
http://dx.doi.org/10.1002/smll.201800722
http://dx.doi.org/10.1126/scirobotics.aas8713
http://dx.doi.org/10.1103/PhysRevLett.110.198302
http://www.ncbi.nlm.nih.gov/pubmed/23705745
http://dx.doi.org/10.1038/ncomms5829
http://www.ncbi.nlm.nih.gov/pubmed/25234416
http://dx.doi.org/10.1002/adfm.201604571
http://dx.doi.org/10.1021/nl2032487
http://dx.doi.org/10.1063/1.4971277
http://dx.doi.org/10.1103/PhysRevE.90.063006
http://dx.doi.org/10.1103/PhysRevFluids.2.044202
http://dx.doi.org/10.1186/s40638-017-0076-0
http://dx.doi.org/10.1007/s12650-011-0102-1


Micromachines 2019, 10, 865 11 of 11

31. Drescher, K.; Dunkel, J.; Cisneros, L.H.; Ganguly, S.; Goldstein, R.E. Fluid dynamics and noise in bacterial
cell–cell and cell–surface scattering. PNAS 2011, 108, 10940–10945. [CrossRef]

32. Drescher, K.; Goldstein, R.E.; Michel, N.; Polin, M.; Tuval, I. Direct Measurement of the Flow Field around
Swimming Microorganisms. Phys. Rev. Lett. 2010, 105, 168101. [CrossRef] [PubMed]

33. Kim, H.; Cheang, U.K.; Kim, D.; Ali, J.; Kim, M.J. Hydrodynamics of a self-actuated bacterial carpet using
microscale particle image velocimetry. Biomicrofluidics 2015, 9, 024121. [CrossRef] [PubMed]

34. Chen, C.-Y.; Pekkan, K. High-speed three-dimensional characterization of fluid flows induced by micro-objects
in deep microchannels. Biochip J. 2013, 7, 95–103. [CrossRef]

35. Zhong, S.; Moored, K.W.; Pinedo, V.; Garcia-Gonzalez, J.; Smits, A.J. The flow field and axial thrust generated
by a rotating rigid helix at low Reynolds numbers. Exp. Therm Fluid Sci. 2013, 46, 1–7. [CrossRef]

36. Jeon, H.; Kim, Y.-C.; Yim, D.; Yoo, J.Y.; Jin, S. Flow Visualization and Performance Measurements of a Flagellar
Propeller. J. Bionic Eng. 2012, 9, 322–329. [CrossRef]

37. Martínez-Aranda, S.; Galindo-Rosales, F.J.; Campo-Deaño, L. Complex flow dynamics around 3D microbot
prototypes. Soft Matter 2016, 12, 2334–2347. [CrossRef] [PubMed]

38. Ali, J.; Kim, H.; Cheang, U.K.; Kim, M.J. Micro-PIV measurements of flows induced by rotating microparticles
near a boundary. Microfluid. Nanofluid. 2016, 20, 131. [CrossRef]

39. Sachs, J.; Morozov, K.I.; Kenneth, O.; Qiu, T.; Segreto, N.; Fischer, P.; Leshansky, A.M. Role of symmetry in
driven propulsion at low Reynolds number. Phys. Rev. E 2018, 98, 063105. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1073/pnas.1019079108
http://dx.doi.org/10.1103/PhysRevLett.105.168101
http://www.ncbi.nlm.nih.gov/pubmed/21231017
http://dx.doi.org/10.1063/1.4918978
http://www.ncbi.nlm.nih.gov/pubmed/26015833
http://dx.doi.org/10.1007/s13206-013-7203-y
http://dx.doi.org/10.1016/j.expthermflusci.2012.10.019
http://dx.doi.org/10.1016/S1672-6529(11)60119-4
http://dx.doi.org/10.1039/C5SM02422F
http://www.ncbi.nlm.nih.gov/pubmed/26790959
http://dx.doi.org/10.1007/s10404-016-1794-2
http://dx.doi.org/10.1103/PhysRevE.98.063105
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Microswimmer Fabrication 
	Magnetic Actuation and -PIV 

	Results and Discussion 
	Swimming Profile 
	Near-Swimmer Flow Displacement 
	Flow Field Analysis 

	Conclusions 
	References

