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Abstract: Organ-on-a-chip models with incorporated vasculature are becoming more popular to
study platelet biology. A large variety of image analysis techniques are currently used to determine
platelet coverage, ranging from manually setting thresholds to scoring platelet aggregates. In this
communication, an automated methodology is introduced, which corrects misalignment of a microfluidic
channel, automatically defines regions of interest and utilizes a triangle threshold to determine
platelet coverages and platelet aggregate size distributions. A comparison between the automated
methodology and manual identification of platelet aggregates shows a high accuracy of the triangle
methodology. Furthermore, the image analysis methodology can determine platelet coverages
and platelet size distributions in microfluidic channels lined with either untreated or activated
endothelium used for whole blood perfusion, proving the robustness of the method.

Keywords: triangle threshold; platelet aggregate; platelet coverage; platelet size distribution; automatic
threshold; image analysis; thrombosis; thrombosis-on-a-chip; microfluidics; organ-on-a-chip

1. Introduction

Cardiovascular diseases are the leading cause of death worldwide [1]. A lot of research has already
been conducted to better understand, prevent and treat cardiovascular diseases. Animal models are
frequently used as disease models [2], but often do not fully recapitulate human physiology [3,4].
Organ-on-a-chip models with integrated vascular compartments are promising in vitro alternatives
that allow for control over used geometries and applied flow profiles. These models can be lined
with human endothelial cells, only require small amounts of human whole blood for perfusion and,
most importantly, allow for complex, dynamic aspects of cardiovascular diseases to be studied in an
all-human setting [5-14].

Image analysis is an integral part of studying the behavior of cells in tissue culture in vitro,
and multiple software packages exist to determine the confluency of a cell monolayer (with Image]) [15],
track cell migration (with CellProfiler) [16], or monitor smooth muscle cells or cardiomyocyte contraction
(with MUSCLEMOTION) [17]. Similarly, when incorporating blood-derived platelets and leukocytes
into organs-on-chips, robust methods are needed for quantifying key descriptive indicators or
characteristics, e.g., rolling, adhesion, clotting time, platelet coverage and aggregate size distribution.
Furthermore, a reliable image analysis technique suitable for organs-on-chips is required before these
models can be used in personalized medicine applications or implemented in the drug development
pipeline [18].
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To quantify platelet adhesion in microfluidic channels or flow chambers, various strategies have
been applied. When using fluorescently labeled platelets, the mean intensity of representative areas of
a channel or chamber can be used as a measure of platelet coverage and aggregate growth [5,6,19].
However, this strategy only gives an averaged signal and does not allow for discrimination of single
platelets or individual aggregates. In order to obtain data on individual platelets or aggregates,
alternative strategies have been developed to manually select individual platelets in flow chambers [20]
or to assign a morphological score to regions of interest (ROls), differentiating between a few single
adhered platelets to large platelet aggregates [21]. The downside of such methods is that they rely
on manual selection and scoring, thereby limiting the throughput and leaving room for human error
or bias. In order to automatically obtain information on platelet coverage [8,11,21-24] and growth
dynamics [22,23,25], a threshold will have to be applied to fluorescence microscopy data to differentiate
platelet aggregates from background signals [8,11,21,24]. The level of the threshold can be set manually
by a researcher to obtain the best signal-to-background ratio [21,25], but this again introduces issues
related to the throughput and bias. The threshold can also be automatically determined using various
automatic threshold techniques, e.g., mean, Otsu and triangle. These techniques determine a threshold
by measuring the mean intensity (mean), minimizing intra-class variance in a bimodal histogram
(with the Otsu method) [26] or by locating the base of a histogram peak (with the triangle method) [27].
Given the nature of the fluorescence microscopy data, with sparse areas of positive signal on a
mostly negative background, resulting in a skewed unimodal histogram, the triangle method [27]
stands out. Variations of this method have been applied successfully for platelet coverage analysis in
collagen-coated flow chambers [22,23]. However, the method has not been applied to study platelet
aggregation patterns in microfluidic channels lined by endothelial cells, which are an integral part
of organs-on-chips.

When applying automated platelet analysis in microfluidic channels, edge effects have to be taken
into account [28]. Low shear rates close to the channel edges might exacerbate fibrin deposition [8] and
including these regions can therefore result in non-representative platelet coverage values. Moreover,
endothelial cells in microfluidic channels can be either in a non-activated state which almost fully
prevents platelet adhesion and aggregation, or in an activated state with dense platelet aggregates
stabilized by fibrin [6,8,11]. It is unknown if the previously reported methods for automated analysis
can be applied to reliably quantify platelet aggregation patterns in microfluidic channels lined by
endothelial cells in activated and non-activated states.

In this communication, we introduce an image analysis methodology to quantify platelet aggregate
coverage and size distribution in microfluidic devices lined with activated and non-activated endothelial
cells and perfused with human whole blood at arterial shear rates. We demonstrate that image analysis
of unprocessed data can be automated by correcting channel misalignment, creating ROlIs, extracting
areas covered by platelet aggregates and determining their size distribution. Here, we show, for the
first time, that this triangle methodology is suitable for the characterization of both non-activated and
activated endothelium cultured in microfluidic channels. Furthermore, the triangle methodology is
compared to manual identification of single platelets and platelet aggregates and shows high degree of
sensitivity, specificity and accuracy.

2. Materials and Methods

2.1. Microfluidic Device Fabrication

Polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning, Midland, MI, USA) channels were made
using standard soft lithography techniques. First a mould was fabricated by patterning a negative
photoresist (SU-8, Microchem, Round Rock, TX, USA) on a silicon wafer using photolithography. Then,
a PDMS base and a curing agent were mixed at a 10:1 ratio (w/w) degassed, poured and baked at
60 °C for 4 h. The patterned PDMS slab was peeled off and trimmed, and its inlets and outlets, both
1 mm in diameter, were punched (Integra Miltex Biopsy Punch). The PDMS was bonded to a glass slide
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(Thermo Fisher Scientific, Waltham, MA, USA) using a plasma treatment (50 W, 50 kHz, 0.5 Torr for 40 s,
CUTE MPR, Femto Science), which resulted in a sterile microfluidic channel of 51 pm % 300 pm X 14 mm
(height x width x length, Figure 1B).

2.2. Endothelial Cell Seeding and Introduction of Inflammatory Cytokines

Directly after the plasma treatment, a 0.1 mg/mL collagen-I (Corning rat tail collagen-I, high
concentration) solution was incubated at 37 °C for 30 min. Human umbilical vein endothelial cells
(HUVECs, Lonza C2519A) were trypsinized (Gibco), centrifuged at 390 Xg for 5 min and seeded twice at
a seeding density of 15 X 10° cells/mL in endothelial cell growth medium (ECGM, Cell Applications, San
Diego, CA, USA) to cover both the bottom and top of the microfluidic channel [8]. Cells were allowed
to reach confluency before introducing the ECGM with (activated condition) or without (non-activated
condition) 10-50 ng/mL tumor necrosis factor-o (TNF-«, Sigma Aldrich, St. Louis, MO, USA) and
being incubated overnight. Images visualizing endothelial cell morphology were made by fixating
the HUVEC monolayer with a 4% (v/v) formaldehyde (Thermo Fisher Scientific) solution followed
by a permeabilization with 0.3% (v/v) Triton-X-100 (Sigma Aldrich, St. Louis, MO, USA). The nuclei
and actin filaments were stained by using NucBlue and ActinGreen (Thermo Fisher Scientific) and
following the manufacturer’s protocol, and imaged using DAPI and GFP filter cubes.

2.3. Whole Blood Perfusion

Using a syringe pump (Harvard PHD 2000 Syringe Pump), custom connectors and tubing (Tygon)
ECGM perfusion was established at an arterial shear rate of 1000 s~!. Human whole blood was
provided by the Experimental Centre for Technical Medicine from the Technical Medical Centre,
University of Twente, and used within 4 h after being drawn (3.2% sodium citrate, Vacuette, Greiner
Bio-One). This research did not fall in the scope of the Dutch Medical Research Involving Human
Subjects Act. In agreement with the Declaration of Helsinki, informed consent was obtained from all
volunteers. Furthermore, the blood collection procedure was approved by the local medical research
ethics committee (METC Twente). The platelets in the whole blood were stained using CD41-PE
(1% (v/v), Thermo Fisher Scientific) or DiOCg (1 pug/mL, Thermo Fisher Scientific). After incubating the
label, the citrated human whole blood was reconstituted by adding a re-calcification buffer (Gibco
HEPES, 63.2 mM CaCl, from Sigma Aldrich, St. Louis, MO, USA and 31.6 mM MgCl, from Ambion).
The re-calcified citrated whole blood with stained platelets was perfused at 1000 s~! for 25 min.
The volumetric flow rate was determined using Equation (1):

y = 6Q/wh?, )

where 7 is the shear rate (s™'), Q is the volumetric flow (m3/s), w is the channel width (m), and % is the
channel height (m).

After the whole blood perfusion, the channel was washed with ECGM followed by a 4% (v/v)
formaldehyde (Thermo Fisher Scientific, Waltham, MA, USA) wash to fixate the cells. Fluorescence
microscopy images and phase contrast images were acquired using the EVOS FL imaging system
(Thermo Fisher Scientific, Waltham, MA, USA). A 10X magnification was used for allimages. To measure
platelet coverage in the microfluidic devices, an RFP filter cube was used when platelets were stained
using CD41-PE and a GFP filter cube was used for samples stained with DiOCg.

2.4. Determination of an ROI and Triangle Thresholding

Unprocessed sets of fluorescence microscopy images were imported in MATLAB (MathWorks),
corrected for channel misalignment and two ROIs were created per figure. ROI #1 is the area spanned
by the microfluidic channel and ROI #2 is the area that is located at least 50 um from channel walls
and figure borders. Using the triangle method, a threshold value was found in ROI #1 and applied
in ROI #2, resulting in a black and white image where the white areas represent platelets or platelet
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aggregates. Platelet coverage was measured by calculating the ratio of white pixels versus black pixels.
Platelet aggregate size distributions were determined by characterizing the white areas in the binary
figures. Two scripts for determining platelet coverages and platelet aggregate size distributions have
been released on the MATLAB central file exchange and can be found in the Supplementary Materials.

2.5. Manual Identification of Platelet Aggregates and Statistics

ROI #2 was manually processed by identifying individual platelets and platelet aggregates in
MATLAB. The black and white images resulting from the manual identification of platelets and platelet
aggregates were compared to the black and white images from the triangle methodology. A direct
comparison resulted in true positives, false positives, true negatives and false negatives used to
calculate sensitivity, specificity and accuracy. After calculating platelet coverages, using the same
method as mentioned in Section 2.4, the platelet coverages found with the triangle methodology
were plotted and compared to the platelet coverages found with the manual identification method.
Furthermore, the R-squared value was determined by calculating squared residuals compared to y = x
using MATLAB.

2.6. Computational Fluid Dynamics

COMSOL Multiphysics 5.4 was used to conduct computational fluid dynamics modeling of the
wall shear rate in the microfluidic device. A 2 mm long section of the microfluidic channel was modeled
using the laminar flow module for incompressible flow. A no-slip boundary condition was imposed
on all walls and a volumetric flow rate of 7.8 uL/min was applied on the inlet, while the atmospheric
pressure was maintained on the outlet. Shear rate profiles were mapped on the three-dimensional (3D)
model and the cutline data were exported to MATLAB for visualization.

3. Results

3.1. Microfluidic Device and Introduction of Data

Microfluidic chips were used for human whole blood perfusion experiments in endothelialized
channels. A fluorescence microscopy image of a confluent monolayer of HUVECs is shown in Figure 1A
(nuclei in blue and F-actin in green). The HUVEC monolayer was left untreated or exposed to TNF-«
overnight to instigate inflammation. After 25 min of whole blood perfusion, the channels were rinsed
and fixated. Figure 1 shows the used microfluidic chip and typical phase contrast and fluorescence
microscopy images.

Both phase contrast data and fluorescence data can be used to measure platelet aggregation.
For the phase contrast data, either the platelets or platelet aggregates have to be selected manually [20]
or detected automatically using edge detection. Manually selecting adhered platelets (Figure 1C,E) and
platelet aggregates is slow and prone to human error. The edge detection method should pick up not
only single platelets but also platelet aggregates, which might have similar sizes and shapes compared
to other particles like red blood cells, white blood cells, apoptotic cells and apoptotic bodies [29].
The use of fluorescence data (Figure 1D,F) is more robust and circumvents any accidental non-specific
detection. A threshold can also be automatically determined by various automatic threshold techniques.
In Image] (NIH Image) [15], 16 automated thresholds were qualitatively compared using a set of
representative fluorescence microscopy images. The Otsu and triangle methods were the best at
distinguishing platelets from the background. The Otsu method finds the threshold that minimizes the
intra-class variance and works best with bimodal histograms [26]. However, minimal platelet adhesion
is expected on non-activated endothelium, resulting in a unimodal histogram which makes the Otsu
technique less suitable. The triangle method is a geometrical threshold method aimed at setting a
threshold at the base of a histogram peak and works best for a skewed unimodal histogram [27].
The fluorescence microscopy images of adhered platelets have a unimodal histogram, and therefore,
the triangle method is suitable for determining the threshold.
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Figure 1. Microfluidic chip and microscopy images. (A) Fluorescence microscopy image of a
confluent monolayer of human umbilical vein endothelial cells (HUVECs) in a microfluidic chip
(nuclei are in blue; F-actin is in green). (B) Render of the microfluidic chip used. Channels have
dimensions of 51 um x 300 um x 14 mm (height X width X length). (C,E) Phase contrast images of the
microfluidic channel lined with endothelial cells after fixation and 25 min of whole blood perfusion.
(D,F) Fluorescence microscopy image of platelets stained with CD41-PE and fixated after 25 min of
whole blood perfusion. Insets in (E,F) show small platelet aggregates (large arrows) and single adhered
platelets (small arrows). Scale bars, 100 pm.

3.2. Automated Threshold Using the Triangle Method

Fluorescence microscopy images were imported into MATLAB (version R2016b). To correct for
misalignment of the microfluidic channel on the microscopy stage, the top edge of the channel was
found by manually indicating the intersection of the top wall of the channel and the left and right
borders of the figure (the top dashed line in Figure 2A). Using the coordinates of these intersections
and the arctangent, the angle between the channel walls and the true horizontal line was calculated
and corrected using the “imrotate” function in MATLAB. Alternatively, the channel edge was found
automatically by vertically scanning the image to find the first local maximum intensity followed
by an angle sweep to determine the misalignment angle. Using the angle-corrected figure and the
coordinates of the top channel wall extremities, two ROIs were cropped: ROI #1 spans the entire area
inside the channel walls, and ROI #2 spans the area inside the channel at least 50 um from the channel
walls and image borders, as indicated in Figure 2B. Because rectangular channels were used, the flow
rate close to the channel was affected by edge effects, resulting in lower wall shear rates. The area
spanned by ROI#2 shows a flat wall shear rate profile and displays shear rates of >95% of the maximum
value (Figure A1, Appendix A). Therefore, the area located up to 50 um from the channel wall was
omitted in platelet coverage calculations.
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Figure 2. Conversion of a grey-scale fluorescence microscopy image to a black and white image. (A) Raw
data showing platelet aggregates in greyscale. The angle « indicates possible channel misalignment.
(B) Angle-corrected and -cropped image. Dashed lines indicate the regions of interest. ROI #1 spans
the entire microfluidic channel, and ROI #2 is the area of the microfluidic channel minus an outer rim
of 50 um. (C) Resulting black and white image after the triangle threshold was applied. (D) Schematic
representation of script operations and the resulting outputs. (E) Platelet aggregate size distribution.
Scale bar, 100 pm.

The two ROIs were used to determine the platelet coverage and aggregate size distribution using
the triangle threshold method. For the triangle threshold method to find a threshold that distinguishes
adhered platelets from background, there need to be platelet aggregates. In the absence of foreground
signals, the calculated threshold will shift and include a large proportion of the background signal,
resulting in an exaggerated platelet coverage value. When analyzing microfluidic channels with
healthy endothelium, little to no platelet adhesion was expected in ROI #2, while platelet aggregation
can be expected in a 50 um outer rim of ROI #1, due to edge effects. By using ROI #1 to determine
the threshold and thus including aggregates formed in the proximity of the channel walls, as well as
applying this threshold in ROI #2, this problem was circumvented.

The histogram of ROI #1 was used to determine the threshold by finding the maximum count and
the artificial zero count (Figure 3A). This artificial zero was set by finding the first bin, in which the
count was lower than 0.01% of the maximum count of the histogram. A linear line, the hypotenuse,
was drawn from the artificial zero to the maximum count (Figure 3B). For each bin, the shortest distance
between the hypotenuse and the histogram was calculated, which by definition was the length of a
line orthogonal to the hypotenuse. The bin with the maximum distance between the histogram and
the hypotenuse was set as the threshold (Figure 3C). Finally, the found threshold was imposed on ROI
#2 (Figure 3D), resulting in a binary image where platelets and platelet aggregates are shown in white
(Figure 2C).

Platelet coverage was determined by dividing the number of non-zero (white areas) values by
the number of zero values X 100. The binary images were used to investigate the aggregate size
distribution by using the “regionprops” function in MATLAB.
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Figure 3. Determination of the threshold in the fluorescence intensity histograms of platelet aggregation
data with the triangle method. (A) Histogram of raw data with “bins” of fluorescence intensity on
the x-axis and frequency on the y-axis. The maximum and the artificially set zero points are indicated.
(B) The processed histogram in which the first bin coincides with the maximum count bin and the
last bin coincides with the zero histogram bin. The orange line is the hypotenuse, connecting the
maximum count bin in the histogram (“Max(h)”) and the zero histogram bin. The shortest distance
between the histogram and the hypotenuse was measured for each bin, which by definition was the
length of the line orthogonal to the hypotenuse. (C) The resulting distances between the hypotenuse
and histogram for each bin of the histogram. The bin with the maximum distance was chosen as the
threshold. (D) Histogram with the triangle threshold applied.

3.3. Comparison of Binary Output Using the Triangle Method with the Manual Method

The proof of concept in Figure 2 shows that the triangle threshold is suitable for distinguishing
platelets from the background. To determine the performance of this method in finding platelet
aggregates, 10 fluorescence microscopy images were processed with the triangle threshold script
and were compared to manually processed images. Higher-intensity versions of the fluorescence
microscopy images were processed by manually drawing freeform lines around platelet aggregates,
creating a mask representing the location and size of platelet aggregates.

The two black and white images (Figure 4B,C), produced with the triangle threshold and the manually
drawn mask, show similarly shaped aggregates and also the measured platelet aggregate coverage is
quite similar: 3.36% for the triangle threshold and 2.96% for the manual method. Both platelet aggregate
size distributions were compared and displayed similar distributions (Figure A2, Appendix A).
To determine how the triangle methodology compared to the manual identification, masks from both
techniques were superimposed and a sensitivity of 84.84%, a specificity of 98.69% and an accuracy of
91.27% were determined. The triangle methodology recognized true positive values (sensitivity) and
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was even better at identifying true negatives (specificity). Furthermore, the triangle methodology was
capable of detecting both true positives and true negatives, resulting in a high accuracy. The accuracy
of each individual image is given in Figure 4D, showing high accuracies for untreated and activated
endothelium. A comparison of the platelet coverages determined using the triangle methodology and
manual identification is shown in Figure 4E, where the coordinates of manually determined coverages
are plotted versus triangle-determined coverages (R? = 0.9915). Figure 4D,E show data generated with
microfluidic channels lined with untreated and activated endothelium. The triangle method is capable
of handling widely varying data ranging from almost no platelet coverage for untreated channels to
occluded channels lined with activated endothelium. This versatility shows the potential of using a
triangle threshold methodology for the analysis of platelet aggregates.

Fluorescence Data
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Figure 4. Comparison of fluorescence data of platelet aggregates processed using the automated
method and manual identification. (A) Raw data showing platelet aggregates in greyscale. Dashed lines
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show the channel walls and ROI #2. ROI #1 spans the entire microfluidic channel, and ROI #2 is the area
of the microfluidic channel minus the area with a 50 pm outer rim. (B) Binary image produced using the
triangle method. (C) Binary image produced using the manual method. (D) Accuracy versus platelet
coverage determined using the triangle methodology. Black dashed line represents mean accuracy.
Both the activated (orange squares) and non-activated (yellow circles) endothelium are displayed.
(E) Platelet coverage using the triangle method versus using the manual method. Black dashed function
represents the line where the platelet coverage determined using the manual method correlates perfectly
with the triangle method (y = x). Both the activated (orange squares) and non-activated (yellow circles)
endothelium are displayed in the graph, showing a lower platelet coverage for the untreated endothelium
in comparison to that for the inflamed endothelium. Scale bar, 100 um.

To further illustrate the robustness of our method, we also analyzed fluorescence data that were
obtained from experiments, in which the platelets were labeled with DiOCg instead of CD41-PE. DiOCq4
targeted mitochondria and, when added to a blood sample, stained endothelial cells over the course
of the blood perfusion experiment. This resulted in an increase in background signal over time, but
we demonstrated that patterns of DiOCq labeled platelets can also be successfully analyzed using the
triangle method (Figure A3, Appendix A).

4. Discussion

We have demonstrated that the triangle threshold method is a suitable way to analyze patterns
of platelets in microfluidic channels lined with endothelial cells. The method correlates well with
manual processing, detects platelet aggregates in a wide size range and is robust enough to deal
with data with extremely low platelet coverage and high platelet coverage on healthy and activated
endothelium, respectively.

The expected platelet adhesion patterns on endothelial cells range from single adhered platelets to
3D blood clots. The script only measures areas covered by platelets and thus the volumetric 3D platelet
aggregates are collapsed onto an area. Using confocal microscopy might be of interest to determine
whether this simplification is valid and might elucidate a link between platelet aggregate size and
volume, adding to the descriptive power of the current methodology.

Others have calculated the platelet coverage only including thresholded areas larger than a single
platelet [23]. Only microscopy images that are in the focus of the endothelial monolayer should be
used, but because of the heterogeneous nature of the aggregates (small aggregates and bigger 3D
aggregates), a large 3D aggregate might be partially out of focus, resulting in a slightly granular
thresholded area. The out of focus area also represents an area covered by platelets and should be used
in coverage measurements.

Studying platelet aggregation in flow chambers has been performed for decades and has led
to important insights into platelet biology. Microfluidic channels coated with extracellular matrix
proteins have helped understand bleeding and vascular injury [22,23]. Recently, organs-on-chips and
their integrated blood vessels-on-chips are becoming increasingly popular to study platelet biology.
These vessel-on-chip devices incorporate endothelial cells which opens up opportunity to study
the interaction between endothelium and whole blood [5-14]. However, increased complexity goes
hand in hand with challenges in analyzing data. The introduced methodology could be used by
others to automatically determine platelet coverage and platelet aggregate size distributions in their
organ-on-a-chip devices, even for data analysis of experiments with widely varying platelet coverages.

5. Conclusions

In this communication, an automated analysis of platelet coverage and platelet size distribution was
introduced for applications in organs-on-a-chips and vasculature-on-a-chip devices. The methodology
corrects for channel misalignment, automatically defines ROIs and sets a threshold using the triangle
method. The described method was compared to a manual identification method, where a user
manually indicates adhered platelets and aggregates. Furthermore, a high sensitivity, a high specificity
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and a high accuracy were measured. The image analysis method presented here is capable of
determining platelet coverages and platelet size distributions in microfluidic devices perfused with
human whole blood lined with either activated or untreated endothelial cells, proving the robustness
of the methodology.

Supplementary Materials: The automatic triangle threshold script and platelet size distribution script have been
shared on the MATLAB central file exchange: Hugo Albers (2019). Automated Analysis of Platelet Aggregation in
Microfluidics (https://www.mathworks.com/matlabcentral/fileexchange/73348-automated-analysis-of-platelet-
aggregation-in-microfluidics), MATLAB Central File Exchange. Retrieved November 13, 2019.
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Figure A2. Comparison of platelet aggregate size distributions determined using the triangle threshold
script or manual identification. The distribution determined with the triangle threshold is in blue
while the distribution determined with the manual identification is in orange. Both aggregate size
distributions are very similar, with the exception of a few bins representing larger aggregates.

A

Figure A3. End-point measurements of microfluidic chips perfused with human whole blood stained
with DiOCg. (A,B) Raw data showing platelet aggregates stained with DiOCg in greyscale. Dashed
lines show the channel walls. (C,D) Binary images produced using the triangle method. With the
triangle method, platelet coverages were found to be 6.526% (C) and 4.651% (D). With the manual
identification of platelets and platelet aggregates, platelet coverages were found to be 6.654% (C) and
4.597% (D). Scale bar, 100 um.

References

1.  WHO. Fact Sheet—Cardiovascular Diseases. Available online: https://www.who.int/news-room/fact-sheets/
detail/cardiovascular-diseases-(cvds) (accessed on 15 July 2019).

2. Zaragoza, C.; Gomez-Guerrero, C.; Martin-Ventura, ].L.; Blanco-Colio, L.; Lavin, B.; Mallavia, B.; Tarin, C.;
Mas, S.; Ortiz, A.; Egido, J. Animal models of cardiovascular diseases. |. Biomed. Biotechnol. 2011, 2011,
497841. [CrossRef]

3.  Jirouskova, M.; Shet, A.S.; Johnson, G.J. A guide to murine platelet structure, function, assays, and genetic
alterations. |. Thromb. Haemost. 2007, 5, 661-669. [CrossRef] [PubMed]


https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
http://dx.doi.org/10.1155/2011/497841
http://dx.doi.org/10.1111/j.1538-7836.2007.02407.x
http://www.ncbi.nlm.nih.gov/pubmed/17403200

Micromachines 2019, 10, 781 12 of 13

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Suo, J.; Ferrara, D.E.; Sorescu, D.; Guldberg, R.E.; Taylor, W.R.; Giddens, D.P. Hemodynamic shear stresses in
mouse aortas: Implications for atherogenesis. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 346-351. [CrossRef]
Costa, PF.; Albers, H.J.; Linssen, J.E.A.; Middelkamp, H.H.T.; van der Hout, L.; Passier, R.; van den Berg, A.;
Malda, J.; van der Meer, A.D. Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular
model based on computed tomography angiography data. Lab Chip 2017, 17, 2785-2792. [CrossRef]
Westein, E.; van der Meer, A.D.; Kuijpers, M.].E.; Frimat, J.-P.; van den Berg, A.; Heemskerk, JW.M.
Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand
factor-dependent manner. Proc. Natl. Acad. Sci. USA 2013, 110, 1357-1362. [CrossRef]

Zhang, Y.S.; Davoudi, F; Walch, P.; Manbachi, A.; Luo, X.; Dell’Erba, V.; Miri, A K.; Albadawi, H.; Arneri, A.;
Li, X,; et al. Bioprinted thrombosis-on-a-chip. Lab Chip 2016, 16, 4097-4105. [CrossRef]

Jain, A.; van der Meer, A.D.; Papa, A.-L.; Barrile, R.; Lai, A.; Schlechter, B.L.; Otieno, M.A.; Louden, C.S,;
Hamilton, G.A.; Michelson, A.D.; et al. Assessment of whole blood thrombosis in a microfluidic device lined
by fixed human endothelium. Biomed. Microdevices 2016, 18, 73. [CrossRef]

Jain, A.; Barrile, R.; van der Meer, A.D.; Mammoto, A.; Mammoto, T.; De Ceunynck, K.; Aisiku, O.; Otieno, M.A;
Louden, C.S.; Hamilton, G.A.; et al. Primary Human Lung Alveolus-on-a-chip Model of Intravascular
Thrombosis for Assessment of Therapeutics. Clin. Pharmacol. Ther. 2018, 103, 332-340. [CrossRef]

Zheng, Y.; Chen, J.; Craven, M.; Choi, N.W.; Totorica, S.; Diaz-Santana, A.; Kermani, P.; Hempstead, B.;
Fischbach-Teschl, C.; Lopez, J.A.; et al. In vitro microvessels for the study of angiogenesis and thrombosis.
Proc. Natl. Acad. Sci. USA 2012, 109, 9342-9347. [CrossRef]

Barrile, R.; van der Meer, A.D.; Park, H.; Fraser, ].P; Simic, D.; Teng, E.; Conegliano, D.; Nguyen, J.; Jain, A.;
Zhou, M.; et al. Organ-on-Chip Recapitulates Thrombosis Induced by an anti-CD154 Monoclonal Antibody:
Translational Potential of Advanced Microengineered Systems. Clin. Pharmacol. Ther. 2018, 104, 1240-1248.
[CrossRef]

Mathur, T.; Singh, K.A.; R. Pandian, N.K,; Tsai, S.-H.; Hein, TW.; Gaharwar, A.K.; Flanagan, ].M.;
Jain, A. Organ-on-chips made of blood: Endothelial progenitor cells from blood reconstitute vascular
thromboinflammation in vessel-chips. Lab Chip 2019, 19, 2500-2511. [CrossRef]

Menon, N.V.; Tay, HM.; Wee, S.N.; Li, KH.H.; Hou, HW. Micro-engineered perfusable 3D vasculatures for
cardiovascular diseases. Lab Chip 2017, 17, 2960-2968. [CrossRef]

Mannino, R.G.; Myers, D.R.; Ahn, B.; Wang, Y.; Rollins, M.; Gole, H.; Lin, A.S.; Guldberg, R.E.; Giddens, D.P;
Timmins, L.H.; etal. “Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating
endothelial-blood cell interactions”. Sci. Rep. 2015, 5, 12401. [CrossRef]

Schneider, C.A.; Rasband, W.S.; Eliceiri, K. W. NIH Image to Image]: 25 years of image analysis. Nat. Methods
2012, 9, 671-675. [CrossRef]

Carpenter, A.E.; Jones, T.R.; Lamprecht, M.R.; Clarke, C.; Kang, I.; Friman, O.; Guertin, D.A.; Chang, J.;
Lindquist, R.A.; Moffat, J.; et al. CellProfiler: Image analysis software for identifying and quantifying cell
phenotypes. Genome Biol. 2006, 7, R100. [CrossRef]

Sala, L.; van Meer, B.J.; Tertoolen, L.G.J.; Bakkers, J.; Bellin, M.; Davis, R.P.; Denning, C.; Dieben, M.A.E;
Eschenhagen, T.; Giacomelli, E.; et al. MUSCLEMOTION. Circ. Res. 2018, 122, e5—e16. [CrossRef]

Probst, C.; Schneider, S.; Loskill, P. High-throughput organ-on-a-chip systems: Current status and remaining
challenges. Curr. Opin. Biomed. Eng. 2018, 6, 33—41. [CrossRef]

Six, K.R.; Devloo, R.; Van Aelst, B.; Vandekerckhove, P,; Feys, H.B.; Compernolle, V. A Microfluidic Flow
Chamber Model for Platelet Transfusion and Hemostasis Measures Platelet Deposition and Fibrin Formation
in Real-time. J. Vis. Exp. 2017, e55351. [CrossRef] [PubMed]

Dupuy, A ; Ju, L.; Passam, E. Straight Channel Microfluidic Chips for the Study of Platelet Adhesion under
Flow. Bio. Protoc. 2019, 9. [CrossRef]

de Witt, S.M.; Swieringa, E; Cavill, R.; Lamers, M.ML.E.; van Kruchten, R.; Mastenbroek, T.; Baaten, C.;
Coort, S.; Pugh, N.; Schulz, A; et al. Identification of platelet function defects by multi-parameter assessment
of thrombus formation. Nat. Commun. 2014, 5, 4257. [CrossRef]

Hansen, R.R.; Tipnis, A.A.; White-Adams, T.C.; Di Paola, ].A.; Neeves, K.B. Characterization of collagen thin
films for von Willebrand factor binding and platelet adhesion. Langmuir 2011, 27, 13648-13658. [CrossRef]
[PubMed]


http://dx.doi.org/10.1161/01.ATV.0000253492.45717.46
http://dx.doi.org/10.1039/C7LC00202E
http://dx.doi.org/10.1073/pnas.1209905110
http://dx.doi.org/10.1039/C6LC00380J
http://dx.doi.org/10.1007/s10544-016-0095-6
http://dx.doi.org/10.1002/cpt.742
http://dx.doi.org/10.1073/pnas.1201240109
http://dx.doi.org/10.1002/cpt.1054
http://dx.doi.org/10.1039/C9LC00469F
http://dx.doi.org/10.1039/C7LC00607A
http://dx.doi.org/10.1038/srep12401
http://dx.doi.org/10.1038/nmeth.2089
http://dx.doi.org/10.1186/gb-2006-7-10-r100
http://dx.doi.org/10.1161/CIRCRESAHA.117.312067
http://dx.doi.org/10.1016/j.cobme.2018.02.004
http://dx.doi.org/10.3791/55351
http://www.ncbi.nlm.nih.gov/pubmed/28287584
http://dx.doi.org/10.21769/BioProtoc.3195
http://dx.doi.org/10.1038/ncomms5257
http://dx.doi.org/10.1021/la2023727
http://www.ncbi.nlm.nih.gov/pubmed/21967679

Micromachines 2019, 10, 781 13 of 13

23.

24.

25.

26.

27.

28.

29.

Neeves, K.B.; Onasoga, A.A.; Hansen, R.R;; Lilly, ].].; Venckunaite, D.; Sumner, M.B.; Irish, A.T.; Brodsky, G.;
Manco-Johnson, M.J.; Di Paola, J.A. Sources of Variability in Platelet Accumulation on Type 1 Fibrillar
Collagen in Microfluidic Flow Assays. PLoS ONE 2013, 8, e54680. [CrossRef]

Matsui, H.; Sugimoto, M.; Mizuno, T.; Tsuji, S.; Miyata, S.; Matsuda, M.; Yoshioka, A. Distinct and concerted
functions of von Willebrand factor and fibrinogen in mural thrombus growth under high shear flow. Blood
2002, 100, 3604-3610. [CrossRef] [PubMed]

Colace, T;; Falls, E.; Zheng, X.L.; Diamond, S.L. Analysis of morphology of platelet aggregates formed on
collagen under laminar blood flow. Ann. Biomed. Eng. 2011, 39, 922-929. [CrossRef]

Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man. Cybern. 1979,
C, 62-66. [CrossRef]

Zack, G.W.; Rogers, E.; Latt, S.A. Automatic Measurement of Sister Chromatid Exchange Frequency.
J. Histochem. Cytochem. 1977, 25, 741-753. [CrossRef]

van der Helm, M.W.; van der Meer, A.D.; Eijkel, ].C.T.; van den Berg, A.; Segerink, L.I. Microfluidic
organ-on-chip technology for blood-brain barrier research. Tissue Barriers 2016, 4, €1142493. [CrossRef]
Hromada, C.; Miihleder, S.; Grillari, J.; Redl, H.; Holnthoner, W. Endothelial Extracellular Vesicles—Promises
and Challenges. Front. Physiol. 2017, 8, 275. [CrossRef]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1371/journal.pone.0054680
http://dx.doi.org/10.1182/blood-2002-02-0508
http://www.ncbi.nlm.nih.gov/pubmed/12393609
http://dx.doi.org/10.1007/s10439-010-0182-4
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1177/25.7.70454
http://dx.doi.org/10.1080/21688370.2016.1142493
http://dx.doi.org/10.3389/fphys.2017.00275
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Microfluidic Device Fabrication 
	Endothelial Cell Seeding and Introduction of Inflammatory Cytokines 
	Whole Blood Perfusion 
	Determination of an ROI and Triangle Thresholding 
	Manual Identification of Platelet Aggregates and Statistics 
	Computational Fluid Dynamics 

	Results 
	Microfluidic Device and Introduction of Data 
	Automated Threshold Using the Triangle Method 
	Comparison of Binary Output Using the Triangle Method with the Manual Method 

	Discussion 
	Conclusions 
	
	References

