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Abstract: We present a new type of fiber Mach–Zehnder interferometer based on a fiber taper and a
pair of inner air bubbles for highly sensitive ethanol concentration measurement. The experimental
results show there is a nonlinear relationship between the wavelength shift of the dip located near
1485 nm and the ethanol concentration but in the concentration range from 0.3 to 0.7 it can be seen as
a linear response with a sensitivity of 28 nm/vol.

Keywords: optical fiber sensor; Mach-Zehnder interferometer; ethanol concentration measurement;
femtosecond laser micromachining

1. Introduction

Fiber Mach–Zehnder interferometer (MZI) is a type of useful sensing configuration, which has
been widely studied in recent years. There are many ways for fiber MZI fabrication, which can be
mainly divided into three categories. The first one is the sandwiched configuration, such as setting-off

a short section of photonic crystal fiber (PCF) between two single mode fibers (SMFs) [1]; splicing
two displaced SMFs after collapsing and splicing one section of PCF [2]; splicing two sections of
multi-mode fibers (MMFs) in SMF [3] or replacing one section of MMF with a long period fiber grating
(LPG) [4], to our knowledge, if these fiber MZIs are used to detect the refractive index of solution
which is changed from 1.33~1.36, the highest sensitivity of sensors is ~450 nm/RIU. The second one
employs some special fibers to generate optical path difference with the light propagating through
the fiber [5–11]. The third one introduces some micro-structures in fiber to build fiber MZI by use of
some micromachining method [12], when these fiber MZIs are used to detect the refractive index of
solution, the sensitivity of sensors can reach up to ~104 nm/RIU but this kind of devices are difficult to
reuse. This paper will introduce a sensor which can achieve a balance between high sensitivity and
structural integrity.

Ethanol plays an important role in our daily life, medical treatment, and scientific experiments.
Therefore, the measurement of ethanol concentration is an active research topic. Many fiber optic
sensors have been successfully used to measure ethanol concentration. For example, the ethanol
concentration has been measured by coating gold film on polished fiber to excite surface plasmon
resonance (SPR) [13], but this method is complex and costly. Some researchers used micro/nano-fiber
Bragg-grating to measure the ethanol concentration [14], but the mechanical strength of this fiber is very
weak. Alternatively, some researchers coated a layer of phenolic varnish film on a cone-shaped fiber
surface. The fiber’s refractive index will change when in contact with ethanol, leading to an intensity
change of the emitted light; thus, ethanol concentration can be characterized by light intensity [15].
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However, this method is susceptible to environmental interference. In this paper, a fiber taper-based
MZI was proposed for ethanol concentration measurement. The sensor has a compact and stable
structure, and can be fabricated easily. By characterizing ethanol concentration via the wavelength
change, this design improves the device’s reliability. The sensor consists of two inner air cavities and a
section of taper. After being exposed at the end face of the fiber, femtosecond laser pulses introduce
defects on the end face. During splicing, as the air is rapidly heated and expanded, a cavity forms in the
fiber when the discharging ends and the air cools [16–21]. During fiber splicing, if the forces applied
to the two fibers are opposite, the diameter of fibers near the fusing point will be smaller, forming
a smooth tapered area. Based on these two technologies, an MZI sensor can be fabricated. As the
effective refractive index corresponding to the mode in the fiber changes when the tapered section is
immersed in liquids with different refractive indexes, the interference spectrum of the MZI will drift.
The relationship between the concentration and the corresponding wavelength of the dip located near
1485 nm can be fitted by cubic curve. At the same time, it can be seen as a linear relationship when the
concentration of alcohol solution is in the range of 0.3–0.7. Furthermore, the sensitivity reaches as high
as 28 nm/vol, which is corresponding to 592.8 nm/RIU.

2. Methods

The fabrication of the device consists of three steps, the detailed process is as follows:
Firstly, femtosecond laser pulses are applied to the center of end face of SMF, the laser power is

set to 1 mW for the exposure.
Secondly, the shutter is opened for 1s, then the beam will destroy the fiber end face. As a result,

the area where the laser exposure will be ablated and looks like a black dot, as shown in Figure 1a.
Actually, after this step, another ablated point exists under the end face because of the self-focusing
effect. The laser pulse is visualized as subdivided into many thin intensity or power slices in time
during the propagation. If its peak power is much higher than the critical power for self-focusing,
the central slice at the peak of the pulse will self-focus at a distance zf from the beginning of the
propagation in the medium given by [22,23]:

z f =
0.376kr2

[
(√

p
pc
− 0.825

)2
− 0.0219]

1/2
(1)

k and r are the wave number and the radius of the beam profile at the 1/e level of intensity,
respectively. The wavelength of laser beam is ~800 nm, k can be calculated by 2π/λwhich is 7.854 µm−1.
Due to the beam focused by 100× object lens, r is ~2 µm. p is the peak power of the slice which is
~1000 nJ, and pc is the threshold power which is ~100 nJ. If the range of p/pc is 1.01~10, finally, z f will
located at 5.2~300 µm. Therefore, there is a refractive index modulation point on the end face of the
fiber, and the other one at a certain distance below the end face.
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Thirdly, the fabricated fiber is put into a fusion splicer, as shown in Figure 1b, under the tapering
splicing mode, the parameters contain discharge power, discharge time, tapering length, and tapering
speed which are set to standard, 2000 ms, 200 µm, and 45-bit, respectively.

Finally, during the splicing, there will be an inner air bubble at each side of the taper. Actually,
both refractive index modulation points are located on the fiber placed on the left side of Figure 1b but
during the tapering the relative position between the electrodes and the splicing point shifts laterally so
that the two air bubbles are located on both sides of the taper. Figure 2a shows the schematic diagram
of this device, and Figure 2b is an optical microscope image of one sample. In this sample, the axial
length of the tapered area is ~200 µm, the minimum radial diameter is ~55 µm, and the diameters of
the two bubbles are ~41 µm and ~45 µm, respectively. Two samples with different geometric size have
been fabricated with the parameters shown in Table 1.
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Figure 2. (a) Schematic diagram of fiber taper based Mach–Zehnder interferometer (MZI); (b) optical
microscope image of one sample.

Table 1. Geometric dimension of two samples.

Device Parameters Sample 1 Sample 2

Taper length (µm) 200 350
Diameter of Bubble 1 (µm) 69 41
Diameter of Bubble 2 (µm) 29 45

Total bubble diameters (µm) 98 86

3. Results and Discussion

Figure 3a shows the transmission spectra of these two samples. The principle for light transmission
in the fiber is illustrated in Figure 3b. When the incident light is transmitted to the first bubble, part of
the light passes through the bubble and continues to axially transmitted along the fiber core, and the
other part of the light is transmitted in the cladding for a short distance, passing through the tapered
section, and is returned to the core after passing by the second bubble. In this way, two light beams
with a certain optical path difference are formed, causing interference.

Micromachines 2019, 10, x FOR PEER REVIEW 3 of 7 

 

Finally, during the splicing, there will be an inner air bubble at each side of the taper. Actually, 
both refractive index modulation points are located on the fiber placed on the left side of Figure 1b 
but during the tapering the relative position between the electrodes and the splicing point shifts 
laterally so that the two air bubbles are located on both sides of the taper. Figure 2a shows the 
schematic diagram of this device, and Figure 2b is an optical microscope image of one sample. In this 
sample, the axial length of the tapered area is ~200 μm, the minimum radial diameter is ~55 μm, and 
the diameters of the two bubbles are ~41 μm and ~45 μm, respectively. Two samples with different 
geometric size have been fabricated with the parameters shown in Table 1. 

 
(a) 

 
(b) 

Figure 2. (a) Schematic diagram of fiber taper based Mach–Zehnder interferometer (MZI); (b) optical 
microscope image of one sample. 

Table 1. Geometric dimension of two samples. 

Device Parameters Sample 1 Sample 2 
Taper length (μm) 200 350 

Diameter of Bubble 1 (μm) 69 41 
Diameter of Bubble 2 (μm) 29 45 

Total bubble diameters (μm) 98 86 

3. Results and Discussion 

Figure 3a shows the transmission spectra of these two samples. The principle for light 
transmission in the fiber is illustrated in Figure 3b. When the incident light is transmitted to the first 
bubble, part of the light passes through the bubble and continues to axially transmitted along the 
fiber core, and the other part of the light is transmitted in the cladding for a short distance, passing 
through the tapered section, and is returned to the core after passing by the second bubble. In this 
way, two light beams with a certain optical path difference are formed, causing interference. 

 

 

(a) (b) 

Figure 3. (a) Transmission spectra of two samples with different dimensions; (b) the principle of light 
transmission in the fiber. 

Evidently, the device meets the characteristics of MZI and the free spectral range (FSR) can be 
calculated by the following formula[8,10,17]: 

Figure 3. (a) Transmission spectra of two samples with different dimensions; (b) the principle of light
transmission in the fiber.



Micromachines 2019, 10, 741 4 of 7

Evidently, the device meets the characteristics of MZI and the free spectral range (FSR) can be
calculated by the following formula [8,10,17]:

FSR =
λ2

∆nb∆Lb − ∆nt∆Lt
=

λ2

∆OPD
(2)

where λ is the interference wavelength, ∆nb and ∆nt are the effective refractive index difference between
fiber core and air and taper area, respectively; ∆Lb and ∆Lt denote the geometrical length passing
through the air cavity and the length of taper area, respectively. Furthermore, ∆n∆L can be replaced
by ∆OPD (optical path difference). ∆OPD is mainly determined by the size of the air cavity and the
refractive index of the taper and the size of air cavity is the predominant contributor. The FSR is
shown in Figure 3a. The median of two wavelengths corresponding to two dips is taken to be the
central wavelength, the refractive index of the air is 1 and the refractive index of the cladding is 1.44.
All these values were substituted into Equation (2) to calculate the average geometrical lengths of the
two samples, which are 91 µm and 78 µm, respectively. They are approximately equal to the total
diameters of the two bubbles in each sample.

In the test the environmental temperature is kept unchanged and the fiber MZI is fixed between
two fiber holders to ensure the strain applied on the fiber is a constant. When the tapered section is
immersed in liquids with different refractive index, the liquid modifies the effective refractive index
of the high-order mode transmitted in the cladding. As a result, the optical path of Light Beam 2
transmitted in the cladding is increases, while that of Light Beam 1, transmitted along the fiber core,
remains basically the same, the difference between optical paths of the two light beams increases,
which thereby leads to spectral drift and the reduction of FSR, reflected by a red shift in the spectrum.

Ethanol aqueous solutions with different volume fractions have different concentrations,
and consequently, different refractive indices. Thus, when the samples are immersed in aqueous
ethanol solutions with different volume fractions, the change in the volume fraction of the solution
can be reflected by the change of one specific dip in the MZI spectrum. In the test, distilled water
with different volumes and an equal volume of industrial ethanol were mixed into aqueous ethanol
solutions with different volume fractions, and then Sample 2 was soaked in these formulated solutions.
Figure 4 shows the change of the drift of a dip located near 1485 nm in Sample 2 in aqueous ethanol
solutions with different volume fractions.
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Figure 4. Evolution of transmission spectra of Sample 2 in ethanol aqueous solutions with different
concentrations.

As shown in Figure 4, with the increase of the volume fraction of ethanol, the dip drifts towards
a longer wavelength, but the variation of the wavelength corresponding to the dip decreases as the
volume fraction increases. Therefore, the change in wavelength does not have a linear relationship
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with the volume fraction of the aqueous ethanol solution, for the refractive index of the solution does
not vary linearly with the volume fraction [13–15].

Figure 5 shows the relationship between the volume fraction of the ethanol aqueous solution and
the wavelength corresponding to the dip located near 1485 nm. The black squares in Figure 5 represent
the data points measured in the test. According to the curve fitting results, the error value is low when
cubic curve fitting is used.
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Figure 5. Relationship between the volume fraction of ethanol aqueous solution and the wavelength of
the dip near 1485 nm.

The green curve in the figure is the cubic curve obtained based on the experimental data, and the
formula of the curve is:

Wav = 34.8VF3 + 46.2VF2 + 7.6VF + 1489.5 (3)

where Wav denotes the wavelength corresponding to the dip being monitored (in nanometers), and VF
is the volume fraction of the ethanol aqueous solution. It is found that the dip wavelength shift is
linearly with the concentration variation, when the concentration is in the range of 0.3–0.7, as shown in
Figure 5. The purple dot dash line can be expressed as:

Wav = 28.0VF + 1486.3 (4)

From Equation (4), it is known that the sensitivity of the sensor can be reached up to 2.8 nm/vol.
The relationship between the ethanol concentration and its refractive index has been measured and
summarized in Table 2.

Table 2. The measured refractive index of ethanol solution with different concentrations.

Concentration RI1 RI2 RI3 RI4 Average RI

30% 1.3462 1.3457 1.3456 1.3455 1.3458
40% 1.3515 1.3518 1.3514 1.3513 1.3515
50% 1.3558 1.3559 1.3560 1.3555 1.3558
60% 1.3608 1.3611 1.3611 1.3610 1.3610
70% 1.3646 1.3645 1.3645 1.3644 1.3645

Combined with the experimental data, the relationship between the dip wavelength and the
refractive index of ethanol solution is illustrated in Figure 6, where the black cross is experimental data
and the blue line is the linear fitting result. The refractive index sensitivity is calculated as 592.8 nm/RIU,
which is higher than those of most fiber taper-based MZIs.
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