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Abstract

:

Since ochratoxin A (OTA) was discovered, it has been ubiquitous as a natural contaminant of moldy food and feed. The multiple toxic effects of OTA are a real threat for human beings and animal health. For example, OTA can cause porcine nephropathy but can also damage poultries. Humans exposed to OTA can develop (notably by inhalation in the development of acute renal failure within 24 h) a range of chronic disorders such as upper urothelial carcinoma. OTA plays the main role in the pathogenesis of some renal diseases including Balkan endemic nephropathy, kidney tumors occurring in certain endemic regions of the Balkan Peninsula, and chronic interstitial nephropathy occurring in Northern African countries and likely in other parts of the world. OTA leads to DNA adduct formation, which is known for its genotoxicity and carcinogenicity. The present article discusses how renal carcinogenicity and nephrotoxicity cause both oxidative stress and direct genotoxicity. Careful analyses of the data show that OTA carcinogenic effects are due to combined direct and indirect mechanisms (e.g., genotoxicity, oxidative stress, epigenetic factors). Altogether this provides strong evidence that OTA carcinogenicity can also occur in humans.
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1. Introduction


Ochratoxin A (OTA) is one of the most important and deleterious mycotoxins [1,2].



OTA was isolated and chemically characterized in 1965 [3,4]. OTA was discovered in South Africa as a toxic metabolite of Aspergillus ochraceus in a corn meal that was intentionally inoculated with this microfungus [3]. Further research has shown that OTA is nephrotoxic, hepatotoxic, embryotoxic, teratogenic, neurotoxic, immunotoxic, genotoxic, and carcinogenic in many species with species and sex-related differences [5,6,7,8,9,10]. The International Agency for Research on Cancer classified OTA as a possible human carcinogen (group 2B) in 1993 based on a great amount of evidence of its carcinogenity discovered in several animal studies [11]. The susceptibility to cancer is species- and sex-dependent [8,9,12,13,14,15]. Frequent exposure of animals or humans to OTA may cause a range of health problems. In particular, OTA could be a threat of cancer for humans. It will be shown further in this article that OTA acts as a nephrotoxin and an urothelial carcinogen as a result of both the oxidative stress and direct genotoxic mechanisms. Strikingly, chronic exposure to low OTA doses could be even more damaging than acute exposure to a high dose [16,17]. Humans are normally exposed to OTA—as they are to other mycotoxins—through several routes, dietary intake being the most prominent. Dermal contact or inhalation exposures are of a minor importance with respect to the general population [18], although, occasionally, these routes may also play a role [19,20].



In this paper, we attempt to review the data on OTA research from its discovery. The principal milestones in OTA research in 1965–1990, 1991–2000, and 2000–2015 are summarized in Figure 1, Figure 2 and Figure 3.




2. OTA Producers in Foodstuffs


Aspergillus ochraceus was the first producer of OTA ever identified. OTA was first discovered in corn meal intentionally inoculated with Aspergillus ochraceus [3]. Then, in a survey on OTA occurrence, producing strains isolated from feedstuffs, 2/19 isolates of Aspergillus niger var. niger were able to produce OTA in medium containing 2% yeast extract and 15% of sucrose broth, and in maize cultures. This was the first report on the production of OTA by Aspergillus niger [21]. Furthermore, Teren et al. (1996) tested 157 strains belonging to Aspergillus section Nigri for OTA production [22]. OTA was also detected in the culture filtrates of 5/12 Aspergillus carbonarius strains and 3/100 isolates in the A. niger aggregate (A. foetidus and A. niger). OTA-producing Aspergillus species, A. carbonarius (and the closely related A. niger which produces OTA more rarely), grow well at high temperatures and produce pigmented hyphae and spores, making these species resistant to UV light. Consequently, A. carbonarius is commonly found in grapes and similar fruits that mature in sunlight and at high temperatures [23]. The ability of Aspergillus tubingensis to produce OTA and the influence of grape variety on the occurrence of OTA-producing fungi in grapes were described for the first time in 2005 [24]. New OTA-producing species of Aspergillus section, Circumdati A. westerdijkiae and A. steynii isolated from coffee, were discovered in 2004 [25]. Moreover, Samson et al. (2004) found new OTA-producing species in Aspergillus section Nigri—Aspergillus lacticoffeatus and A. sclerotioniger—which were also isolated from coffee [26].



In 1969, Walbeek et al. isolated OTA from Penicillium viridicatum [27]. Due to considerable revisions in taxonomy, particularly within the genus Penicillium, and ensuing difficulties in correct assignation, this identity has changed over the years [28]. Several authors have drawn attention to the fact that isolates of Penicillium viridicatum as defined at that time could be now divided into three groups depending on their various properties, including growth rates, mycotoxin production, and source [28,29]. Penicillium viridicatum isolates from group I grow rapidly, and they are first bright yellow green and turn forest green with age. They are mostly isolated from moldy grain but have not been found to produce either OTA or citrinin (CIT). P. viridicatum isolates from group II grow slowly and are yellow green both at maturity and in age. They are isolated from various plant sources, and produce both OTA and citrinin. P. viridicatum isolates from group III grow moderately quickly and turn brown with age. They come from meat or meatpacking plants in Europe. These latter isolates produce OTA when freshly isolated, but have not been found to produce citrinin. The taxonomy of P. viridicatum and P. verrucosum has been reviewed to clarify the conflict relating to the three P. viridicatum groups as laid down by Ciegler et al. (1973) [29]. It has been concluded that P. viridicatum group II corresponds to P. verrucosum and not to P. viridicatum, as indicated by Pitt (1979) [30]. Among species in subgenus Penicillium, only P. verrucosum is known to produce OTA. The main food habitat for P. verrucosum appears to be cereals growing in cool temperate zones, ranging across Northern and Central Europe and Canada [23]. In 2001, Penicillium nordicum was determined and confirmed as the second OTA-producing Penicillium species along with P. verrucosum [31]. Despite their shared ability to produce OTA, Larsen et al. (2001) claimed that the two species differ in several ways [31]. P. nordicum and P. verrucosum occupy different ecological niches. OTA-producing isolates originating from plant-derived material are almost always contaminated by P. verrucosum, whereas OTA producers in meat or cheese are derived from P. nordicum. Under many laboratory conditions, P. nordicum produces more OTA than P. verrucosum isolates, and lack to produce citrinin [31,32].



Table 1 and Table 2 provide an overview of the current identity of microfungi Aspergillus and Penicillium species, which are capable of producing OTA in foodstuffs [33].




3. OTA Chemistry


3.1. Chemical Characterization of OTA


CAS name (Chemical Abstracts Services) Registry No.: 303-47-9.



Chemical Abstracts: L-Phenylalanine, N-[(5-chloro-3,4-dihydro-8-hydroxy-3-methyl-1-oxo-1-H-2-benzopyran-7-yl)carbonyl]-,(R)-.



IUPAC name: (N-[[(3R)-5-chloro-8-hydroxy-3-methyl-1-oxo-7-isochromanyl] carbonyl]-3-phenyl-l-alanine).



Other name: (−)-N-[(5-chloro-8-hydroxy-3-methyl-1-oxo-7-isochromanyl) carbonyl]-3-phenylalanine.



Summary formula: C20H18 O6ClN.



OTA consists of a para-chlorophenolic moiety containing a dihydroiso-coumarin group that is amide-linked to L–phenylalanine. See Figure 4 and Table 3 for structure of the OTA derivatives.



Molecular Weight: 403.8.



Chemical and physical properties of OTA were comprehensively described by Budavari (1989) [34] and IARC (1993) [11], its melting point was determined by van der Merwe et al. (1965) [3,4] and Kuiper-Goodman and Scott (1989) [35], and its optical rotation by Pohland et al. (1982) [36]. Spectroscopic data on OTA (as ultraviolet, infrared, mass spectral and proton nuclear magnetic resonance data) were reported by van der Merwe et al. (1965) [3,4] and Pohland et al. (1982) [36], OTA solubility (e.g., in chloroform, ethanol, methanol, xylene) by WHO (1990) [37], and its stability (partial degradation under normal cooking conditions) by Müller (1982) [38]. OTA degradation was performed by treatment with an excess of sodium hypochlorite solution [39]. Physico-chemical properties of OTA and the progress in their knowledge have been recently reviewed in great detail by Khoury and Atoui (2010) [40]. OTA is a weak acid with two pka (4 and 7) [41].



Table 3 described several derivatives occurring naturally or formed in the body after biotransformation. Some are hydroxylated, others lack phenylalanine moiety or are conjugated (e.g., with glutathione, glucuronic acid, sulfate, or pentose) [40,42,43,44,45,46,47,48,49,50].



The most recently discovered ones include a decarboxylated hydroquinone derivative, DC-OTHQ (often linked to glutathione) [43,63,64,65].



During coffee roasting (at 225 °C), 2′-DC-OTA and 2′R-OTA, two products of thermal degradation of OTA, were identified [66]. Ochratoxin α amide, which is formed at high temperatures during coffee roasting, was discovered. This represents another product of thermal degradation of OTA [67].





4. OTA Analysis


Principal methods developed for OTA determination in biological materials are summarized in Table 4.



In fact, more sensitive analytical methods or new methods for determining OTA and ochratoxins in biological materials are being developed consecutively toward the sophisticated development of instrumentation and analytical techniques but also toward the improvement of laboratory analytical methods. The most used and traditional analytical techniques include thin-layer chromatography, HPLC, and ELISA. Therefore, in the present article, the analytical techniques are divided into traditional ones, and the others.



Generally, all chemical methods for the analysis of OTA consist of several steps (extraction, clean-up, separation, detection, quantification, and confirmation of identity) [100]. Conventional sample extraction and clean-up are usually achieved by liquid extraction for OTA determination in kidneys of swine [101]. More recently, solid-phase extractions (SPE) notably for OTA determination in animal feed [102] and immunoaffinity columns (IAC) [103,104] (/homemade of IAC/; immunoaffinity cartridges commercially available) have become popular [105]. At present, different kinds of cartridges are commercially available for clean-up and pre-concentration, including IAC and molecular imprinted polymers (MIPs) cartridges, composed by anti-OTA antibodies and three-dimensional network specific for the target molecule. In this case, OTA passed through cartridges (e.g., Mycosep™ or Mycospin™) [106]. It is based on adsorption and the ion-exchange process [107]. The use of immunoaffinity chromatography in the clean-up step improves mycotoxin analysis and has a number of advantages: clean extracts, precision and accuracy, rapidity, and reduction of the use of dangerous solvents [82]. The main advantages of these columns are the specific binding of OTA onto the antibody and the near-complete removal of matrix interference [108]. Nevertheless, in the case of OTA, underestimation can be observed if extraction is done in an alkaline condition, because OTA is converted into open-ring OTA (OP-OA) and no longer recognized by antibodies [109,110,111,112].



The confirmation of OTA presence in biological materials is very important in order to guarantee quality of analytical results. Hult and Gatenbeck (1976) presented the OTA confirmation with carboxypeptidase A [70], as did Hunt et al. (1980) with boron trifuoride methanol [73] and Studer-Rohr et al. (1995) with diazomethane [113]. Quality assurance of analytical results (a laboratory accreditation, participation in proficiency testing, and the use of certified reference materials) according to the past norm EN 45001 (1989) [114] and the recent norm which is in force EN ISO/IEC 17025 (2005) [115] is very important for the purposes of OTA determination in biological materials.



Many analytical methods for the determination of OTA have been developed over time [100], and most of them involve the use of thin-layer chromatography (TLC) [68,69] and, predominantly, high-performance liquid chromatography (HPLC) with fluorescence detection (FLD) [72]. Subsequently, OTA is identified and detected by LC-MS [77], LC-MS/MS [83,84], aptamers [88,92,116], ELISA [76,117], and immunosensing methods [118]. However, the technique most commonly used is based on liquid chromatography (LC) coupled with a fluorometric detector for highly sensitive detection signal [106]. It is known that, due to natural OTA fluorescence, OTA is generally determined by chromatographic techniques [119,120].



The other methods for the OTA determination used include gas chromatography–mass spectrometry (GC-MS) [79,113], fluorometric kits (the immunoaffinity columns coupled with a fluorometer) [82,87], fluorescence polarization immunoassay (PFIA) [87], isotope dilution [121], and a radioimmunoassay (RIA) [75,122,123,124,125,126]; however, due to health hazards of radiolabeled compounds and specialized waste disposal, RIA has not been in use for a long time [127]. More recent methods for OTA determination are inductively coupled plasma mass spectrometry ICP-MS [90], and capillary electrophoresis techniques [128]: capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) [129,130], micellar electrokinetic capillary chromatography/MEKC/ [131], molecular imprint polymers (MIPs) [132,133,134], biosensors [133,135,136], and aptamers (single-stranded oligonucleotides (DNA or RNA) selected in vitro to bind with high affinity and specificity to molecular targets) [88,92]. The applications of aptamers are known and developed, e.g., in chromatography, capillary electrophoresis, mass spectrometry, and biosensors [137,138].




5. Occurrence of OTA in Food and Feed


In 1969, Shotwell et al. [139] with colleagues from the U.S. Department of Agriculture (USDA) published the very first piece of information about the amount of OTA in a maize sample at levels from 110 to 150 ng/g. In 1970, Scott et al. [140] from Health Canada published data on OTA in moldy cereals, beans, and peanuts. OTA concentrations in wheat, oats, barley, and rye (62.0% positive samples) ranged from 30 to 27.000 ng/g [140,141]. The occurrence of OTA in pig kidney was first mentioned by Hald and Krogh in 1972 [142] and by Hunt et al. in 1979 [143]. Since that time, more than 90 kinds of foodstuffs of both plant and animal origins, including milk, have been found to contribute to the OTA dietary exposure [33].



As for foodstuffs of plant origin, OTA occurs in cereal products, olives, beans, beer, wine, coffee, cocoa products, raisins, figs, licorice, pulses, pumpkin seeds, and tea. In general, the average concentration of OTA is reported to range from 0.1 to 100 ng/g. OTA concentration in black pepper, cayenne pepper, caraway, cardamom, coriander, chili powder, curcuma, and dried red pepper ranges from 1 to 100 ng/g. Feedstuffs of plant origin—those made of wheat, oats, barley, rye, maize, rice, millet, sorghum, soybean, horse bean, peas, bean, broad bean, alfalfa, sunflower or pumpkin seeds, coconut, peanut cake, and hay/silage—also contain from 1 to 100 ng/g of OTA [144,145,146].



In foodstuffs of animal origin, e.g., in pork blood products, edible offal, pork meat, chicken meat and offal, and dry-cured ham, the levels of OTA range from 0.1 to 1 ng/g. The same amounts are measured in feedstuffs of animal origin, e.g., in pork kidney and liver, pork meat, chicken liver, and viscera, and in mechanically separated chicken used as ingredients in pet food for cats and dogs [144,145,147].



Table 5, Table 6 and Table 7 summarize the recent data related to OTA in foodstuffs obtained from the EU Rapid Alert System for Food and Feed (RASFF) [146]. The RASFF dealt with OTA in 175 cases in 2000–2015.




6. OTA Toxicity


6.1. OTA Nephrotoxicity


OTA has been found to cause porcine and poultry nephropathy. OTA is implicated in the pathogenesis of some renal diseases including Balkan endemic nephropathy (BEN), kidney tumors occurring in certain endemic regions of the Balkan Peninsula [14,148], and chronic interstitial nephropathy (CIN) occurring in Tunisia [149,150] and other North African countries [151].



Kidney lesions have been observed on proximal tubules. The epithelial cells were damaged, for example, membrane integrity was lost, and the size and the density of the brush border were reduced. The chromatin was condensed, and the nuclear envelope disappeared. The histologic picture shows an enlargement of tubular membrane and an apparition of collagen fibers [152].



At the beginning, the BEN disease is characterized by a modification to epithelial cells without any change in the size of the organ. After chronic exposure, kidneys are reduced and interstitial fibrosis is the most important picture. At the end stage, impairment of renal function leads to enzymuria (e.g., gamma glutamyl transferase, alkaline phosphatase, lactate dehydrogenase) [153], polyuria accompanied with red tongue, thirst, and bitter taste [153]. Neither edema nor hypertension can be observed. Other symptoms such as headaches, lumbar pain, asthenia, and anemia (iron deficiency) were recorded. Several biochemical parameters changed including glycosuria, proteinuria (0.15–0.5 g/ 24 h), alkalinization of urine, elevated serum creatinine, and an increase in immunoglobulin M (IgM) and immunoglobulin E (IgE) [154,155].



Data on OTA nephrotoxicity are summarized in Table 8.




6.2. OTA Carcinogenicity


Data on OTA carcinogenicity are summarized in Table 9.



In 1976 and 1983, IARC first evaluated the carcinogenic risk that OTA poses toHuman. No report on cases of cancer or epidemiological studies were available at that time and, in the absence of adequate epidemiological data, no evaluation of the carcinogenicity of OTA with respect to Humans could have been made [225,226]. In 1987, the IARC reclassified OTA into Group 3 (not classifiable for its carcinogenicity to humans). Based on a great amount of evidence of OTA carcinogenicity revealed in new animal studies, it was again reclassified into Group 2B (possibly carcinogenic to humans) in 1993. At present, new information regarding genotoxicity of OTA (formation of OTA-DNA adducts), its role in oxidative stress, and the identification of epigenetic factors involved in OTA carcinogenesis—should they indeed provide strong evidence that OTA carcinogenicity is mediated by a mechanism that also occurs in humans—could lead to another reclassification of OTA. In the light of recently available data, it does not seem inappropriate to upgrade its carcinogenicity from Group 2B (possibly carcinogenic to humans) to at least Group 2A (probably carcinogenic to humans) [227] or, in our opinion, even to Group 1 (carcinogenic to humans).





7. OTA Biomarkers


Biomonitoring of OTA provides the best approach to assess the human exposure to OTA from any source and through any route [228]. The first studies reporting the presence of OTA in human blood were carried out in the Balkans in the 1970s [229]. The exposure of the human population to OTA and other ochratoxins represents a worldwide problem. Baldwin et al. (2011) reviewed biomarker researches for the most important mycotoxins and defined biomarkers [230]. Recently, a biomarker of exposure has been defined to be a biological measure which is correlated with the quantity of the xenobiotic ingested; resulting in the improved exposure classification in comparison with more traditional approaches [231]. OTA in milk (non-invasive sampling), OTA in blood serum (invasive sampling), OTA in urine (non-invasive sampling), and OTA in human kidneys (sampling post-mortem or after nephroctomia) are qualified as biomarker of exposure to OTA [232]. Soto et al. (2015) have recently used several biomarkers for evaluating the OTA exposure. The values of OTA detected in potential biomarkers of exposure for blood, breast milk, and urine ranged from 0.15 to 18.0, from 0.002 to 13.1, and from 0.013 to 0.2 ng/mL, respectively. The calculated EDI for OTA in plasma ranged from 0.15 to 26 ng/kg bw/day and has turned out to be higher than that obtained in urine (0.017 to 0.4 ng/kg bw/day). All these values have been correlated with the range of EDI for OTA calculated from food products: 0.0001–25.2 ng/kg bw/day [233].



7.1. OTA in Human Blood


In 1979, OTA determination in human whole blood and serum was developed [234]. In the past several decades, OTA has been detected in human blood samples on a worldwide scale. Scott (2005) has described OTA in blood serum as a uniquely useful biomarker of OTA exposure due to its high-affinity binding to serum albumin or to other small proteins, which should result in higher serum OTA levels and long persistence of OTA in blood serum [235]. OTA blood amounts will integrate exposure over longer periods [236]. The use of serum or plasma has been described as more suitable matrices in comparison to whole blood [105,237]. Generally, the determination of OTA in blood samples remains the basic method of how to monitor human exposure to OTA, which is ubiquitous in human blood serum/plasma and indicates continuous exposure to the toxin, originating mainly from food intake [235].



Table 10 describes some of the most notable findings of OTA in blood on a worldwide scale.



Advantages arising from monitoring OTA in the blood of healthy persons consist mainly in relatively high OTA levels found compared with OTA determinations in urine [232]. OTA blood determination will integrate exposure over longer periods, while biomarker analysis in urine apparently better reflects day–to-day variations in the exposure of adults and infants [231,236,237,238,239,240].




7.2. OTA in Urine


Urine is a major excretion route for both OTA and OTα (5-chloro-8-hydroxy-3-methyl-1-oxo-3,4-dihydroisochromene-7-carboxylic acid; formula, see Table 3) in humans [45]. OTA can be found in urine several days after OTA ingestion [8]. The elimination of OTA through human urine has been reported to be low (mean value between 20 and 80 ng/day) and independent of the dose ingested [237]. The OTA uptake has been described as dependent on the free OTA concentration, which is severely limited by the binding of OTA to serum albumin [8]. Thus, the relationship between OTA in urine and OTA intake remains a complex issue as in the case of OTA in blood.



The first study measuringing OTA in urine in Europe was conducted by Mac Donald et al. (2001) [270] in the UK. In this study, OTA was found in 46 urine samples (92%) collected over 24 h from 50 volunteers (healthy individuals from the UK). OTA concentrations ranged from <10 to 58 ng/L, and the mean value was about 21 ng/L. This study demonstrated a strong correlation between OTA concentrations in urine and its dietary intake. The second study in Europe was conducted in Bulgaria by Castegnaro et al. (1991) [303]. A total of 152 urine samples collected from patients with BEN (Balkan endemic nephropathy) or urinary tract tumors (UTT) and from the control families were analyzed, and OTA was detected in about 33% of the samples of urine (more often in endemic villages than in nonendemic ones) in the range 5–604 ng/L and in healthy people in the range 5–43 ng/L (LOQ = 5 ng/L). In Europe, another one-month follow-up study of OTA in urine samples after a 24-h collection of urine from the inhabitants with BEN in Bulgaria (from 16 healthy volunteers from two villages located in the Vratza district with a high risk area for BEN; 5 of Gorno Pestehne, 11 of Beli Izvor) was conducted by Petkova-Bocharova et al. (2003) [85]. 98% of samples were positive and contained OTA in the range 10–1910 ng/L. The OTA mean value in Gorno Pestehne was 50.8 ng/L, and in Beli Izvor it was 168.6 ng/L [85]. In a Czech study carried out in 2010, OTA was measured in a total of 236 samples of urine collected from healthy persons within a 24-h cycle (males/females, 45–60 years old, two samples per person from non-consecutive days, with at least a 14-day time difference). A total of 185 samples (78%) of these 236 samples were positive, with a limit of quantification (LOQ) of 2.0 ng/L, a mean of 7.32 ng/L, and a median of 4.47 ng/L [304,305]. These data signalize the real exposure of the given population group to OTA, with a higher percentage of positive urine samples in men (92%) than women (65%) [305].



OTA was usually determined in morning urine (not 24-h urine) in these countries (see also Table 11). However, in exposure studies, it is recommended that urine is collected over 24 h—representative of the excretion throughout a day [306].



The multibiomarker methods have been applied in several pilot studies to prove their applicability and to estimate mycotoxin exposure in the populations/individuals tested. The application of these methods resulted in advanced data on exposure patterns and revealed new findings on co-exposure to the mycotoxin combinations [307]. In addition, it must be mentioned that urinary excretion mainly reflects the recent mycotoxin intake, whereas measurements in plasma/serum are more likely to reflect the long-term exposure [307]. As a result of the advent of the latest generation of high-performance LC-MS/MS instruments, a clear trend toward the development and application of multianalyte methods in mycotoxin biomarker research can be observed [308]. Warth et al. (2012) injected samples directly into the LC-MS/MS system to facilitate the quantification of 15 analytes [308]. A method developed by Ediage et al. (2012) [91] covered seven mycotoxins and several important conjugation and breakdown products (for a total of 18 analytes). In this study, OTA, OTα, and 4-OH OTA were measured in human volunteers [91]. However, none of the target metabolites of OTA such as OTα or 4-OH OTA were confirmed in another study performed with urine samples in Cameroon [309], but the data correlate with similar findings reported for a Korean population [89]. According to Munoz et al. (2010a) [276], interindividual variability in the detoxification of OTA in human urine may account for the observed variations in urinary OTα, and the possibility cannot be excluded that a low rate of OTA detoxification is a characteristic of some human populations [309]. The highest concentration of OTA reported so far in human urine was detected in Sierra Leone with a range of 70–148,000 ng/L, but no mean was reported [310]. Table 11 summarizes the OTA detection in human morning urine around the world. Last but not least, in dietary studies carried out in Serbia, in addition to OTA, several OTA derivatives have been detected in urine (and in blood). A clear difference between men and women has been observed [17].




7.3. OTA in Human Milk


As OTA is also excreted via human milk, breastfed children including babies are exposed to OTA as well [239,330]. Nevertheless, OTA amounts in milk are reported to be much lower than concentrations of OTA in blood (down to 10 times) [331]. In Italy, OTA was detected in milk from healthy women with varying daily diets in different geographical regions [332]. The relationship between OTA contamination of human milk and its dietary intake was examined [333], and it was confirmed that OTA occurrence in human milk was likely associated with maternal dietary habits. The strongest associations were observed with foodstuffs of plant origin and, to a lesser extent, with foodstuffs of animal origin [333].



Table 12 summarizes data on OTA presence in human milk worldwide.



In some countries, e.g., Egypt, Turkey, and Sierra Leone, OTA milk concentrations were found to be more than 100-fold higher in comparison with Europe (see Table 12). It can be concluded that, despite the fact OTA concentrations in milk compared with blood are much lower, OTA contamination of human breast milk presents a potentially serious health hazard [354].




7.4. OTA in Human Kidneys


OTA presence in human tissues seems to be direct and definite proof of human exposure to OTA, although practicability of such measurements “in vivo” is obviously limited [355]. Taking OTA’s nephrotoxicity in mind, in particular, there are not many studies available that have attempted to determine OTA in human kidneys. Several studies have been carried on the content of OTA in human kidneys, e.g., in Germany [356], in the Czech Republic in 30 samples of kidney (40% positive/detectable/samples; OTA ranged from 0.1 to 0.2 ng/g; mean 0.07 ng/g; results of OTA < 0.1 ng/g (LOQ) given as 1/2 limit of quantification = 0.05 ng/g) [357], and in Poland in 19 samples of kidney (78.9% positive/detectable; OTA ranged from 0.15 to 0.39 ng/g with mean 0.26 ng/g) [268]. Several human kidneys samples (60) obtained from patients suffering from kidney (or urinary bladder) cancer from Bulgaria (8 samples) [186], Serbia (10 samples), Croatia (16 samples), and France (18) [16,17] have been analyzed up to now. Not only was OTA detected but also OTA derivatives such as OTHQ, OTHQ-GSH, 4-OH OTA, and OTB. Interestingly, DNA adducts were detected, and the nature of the DNA was in relation to the OTA derivatives. In Croatia, the DNA adducts profile of a farmer was similar to the profile of the pigs and poultry from his farm. It has been observed that the exposure has been higher in rural regions, and co-exposure to CIT and/or FB has been systematic [16,17].





8. Regulation of OTA in Food and Feed


Due to its toxic properties, OTA is subject to legal regulation both on national and international levels. The toxicity of OTA became more or less evident by the end of the 1970s. A real debate on whether OTA in food and feed shall be regulated on a national or international level does not seem to predate the 1990s. This circumstance contrasts with the case of other mycotoxins, in particular, the aflatoxins (in the USA, the first limits for aflatoxins were established as early as the 1960s; soon after their discovery [358], the European Communities followed in the 1970s) [359].



For OTA, in 1991, van Egmond estimated that in 60 countries where some legal regulations with respect to mycotoxins existed, only 11 set limits on OTA (Brazil, Czechoslovakia, Denmark, France, Greece, Hungary, Israel, The Netherlands, Romania, Sweden, and the United Kingdom) [360]. In 2003, when a worldwide survey on legal regulation of mycotoxins was conducted by the FAO in cooperation with the Dutch Foreign Service, the number of countries with legal limits on OTA in food and feed grew to 37 (compared to more than 76 countries with legal limits for aflatoxins) [359]. No such large-scale survey has been reported ever since [361]. However, it may be assumed that the number of countries where OTA presence in food and feed is subject to legal regulation is not lower now than it was in 2003 (see Figure 5). This assumption can be based on two major arguments. Firstly, since 2003, research has provided new data on OTA’s harmful effects to human and animal health. Secondly, due to the globalization of food and feed markets, discussion on how to tackle the health hazards linked to OTA (and other mycotoxins) has intensified on an international level and has had repercussions back on the national level. By way of example, China seems to have recently established limits on OTA in both food and feed [362].



Membership of States in international or regional organizations may also contribute to adoption of legal regulations on OTA. For the time being, the binding maximum limits on OTA appear to exist only in the European Union (EU) (see infra). On the global level, debate on the feasibility of establishing the maximum limits on OTA has taken place at the Codex Alimentarius Commission (CAC), the joint intergovernmental body established by the FAO and WHO responsible for implementing the Joint FAO/WHO Food Standards Programme. After the Joint Food and Agricultural Organization (FAO)/World Health Organization (WHO) Expert Committee on Food Additives (JECFA), an expert body which provides scientific advice to the CAC repeatedly dealt with OTA in 1991, 1995, 2001, and 2007, the maximum limit of 5 µg/kg with respect to wheat, barley, and rye has been recently established under the Codex General Standard for Contaminants and Toxins in Food and Feed [363]. In addition, there are four codes of practice that aim at the prevention and reduction of OTA contamination in cereals [364], wine [365], coffee [366], and [367] adopted between 2007 and 2014 [368]. Although the Codex Alimentarius standards are not per se binding, their importance stems especially from the fact the World Trade Organization (WTO) considers the measures taken by its Member States in conformity with the Codex Alimentarius standards to be science-based, appropriate, and nondiscriminatory under the WTO Agreement on the Application of Sanitary and Phytosanitary Measures signed in 1994 and thus does not treat them as breaches of world trade rules.



As far as the existing limits on OTA are concerned, those of the EU are generally assessed to be the most comprehensive and detailed [359].



As for the limits on OTA in food, these were first established on the EU level by the Commission Regulation (EC) No 472/2002 [369] of 12 March 2002 amending Regulation (EC) No 466/2001 [370] setting maximum levels for certain contaminants in foodstuffs (see Table 13). As the Regulation No 466/2001 was repeatedly amended, in 2006, it was replaced by completely a new act, Commission Regulation (EC) No 1881/2006 of 19 December 2006, setting maximum levels for certain contaminants in foodstuffs [371]. The adoption of Regulation No 1881/2006 was based on the scientific opinion of the Scientific Panel on contaminants in the Food Chain of the EFSA adopted on 4 April 2006, which updated the earlier opinion of the Scientific Committee on Food on OTA adopted on 17 September 1998 [372].



In the EU, the Regulation 1881/2006 remains in force today, although it has been amended nearly 26 times. As of February 2016, the Regulation No 1881/2006 sets the maximum limits on OTA not only in cereals (both in the unprocessed cereals and cereal products) but in a wide variety of other food commodities as well (see Table 14). These limits are legally binding on all 28 EU Member States, which are obliged to apply these rules in full.



Apart from setting binding limits on OTA in food, since 2002, the EU has also unified the methods of sampling and analysis for purposes of the official control of the levels of mycotoxins in foodstuffs performed by the authorities of the Member States (first by the Commission Directive 2002/26/EC of 13 March 2002, later replaced by the Commission Regulation (EC) No 401/2006 of 23 February 2006 which remains in force today).



As for OTA in feed, however, up to now, only a non-binding recommendation exists with respect to cereal feed, and feed for pigs and poultry on the EU level (Commission Recommendation 2006/576/EC [373] of 17 August 2006 on the presence of deoxynivalenol, zearalenone, OTA, T-2 and HT-2, and fumonisins in products intended for animal feeding). For details, see Table 15.



There are, however, approaches to legal regulation of OTA other than establishing and enforcing the binding maximum limits on OTA in food and feed commodities as in the EU. Most notably, no binding limits on OTA in food or feed exist in the USA. Even more strikingly, no advisory or regulatory action limits have been established by the US authorities. Instead, the US Food and Drug Administration (FDA), acting under the Federal Food, Drug and Cosmetic Act (FFDCA), has instead consistently relied on laying down good agricultural and manufacturing practices and on requiring the implementation of food safety plans in food industry undertakings [358]. In extension, the FDA monitors the compliance with these practices and the presence of OTA in domestic and imported foods (Food Compliance Programme No 7307.001 entitled “Mycotoxins in Domestic and Imported Foods”). An approach analogous to that of the USA has been adopted by a range of other countries such as Australia, Canada, and Japan [374].



For some authors, the US approach to regulating mycotoxins including OTA is clearly preferable because it is seen as an option that might “diffuse trade frictions, and at the same time help reduce economic losses from mycotoxin contamination and divergent standards” [375]. The truth is that the US approach seems to exert a non-negligible influence on the international level, e.g., within the CAC, which has, as mentioned above, adopted four codes of good practice with the aim of reducing the OTA occurrence in several food commodities that are commercially important.



To sum up, 50 years after the discovery of OTA, differences in how to legally regulate mycotoxins including OTA are still marked. However, even in an era when further liberalization of world trade is envisaged (e.g., a project of the Transatlantic Trade and Investment Partnership and the TTIP between the USA and the EU), due to economic and political controversies linked to the existing policies on mycotoxins, it cannot be expected that some harmonized approach to legally regulating mycotoxins including OTA will be easily established on a global level [375,376,377].




9. Conclusions


OTA is ubiquitously found all over the world in many foodstuffs and feedstuffs. OTA is recognized for its nephrotoxicity and, to date has been identified as one of the most potent renal carcinogens in rodents ever studied by the National Cancer Institute/National Toxicological Program (NCI/NTP) [181]. OTA is deleterious for the pig and poultry industries. For human beings, many authors consider it to be the main contributor in the pathogenesis of Balkan endemic nephropathy and some nephropathies in other parts of the world.



The development of effective strategies alleviating OTA-induced toxicity is very complex because the mechanism of action of OTA is still unclear. The toxic effect is the result of many effects such as the inhibition of protein synthesis, direct genotoxicity, and cell cycle arrest. Inhibition of OTA uptake and stimulation of OTA elimination of the body preventing OTA accumulation will be promising approaches [378].



Since its discovery in 1965, numerous studies have been performed with respect to OTA, which have permitted the establishment of different mechanisms for OTA nephrotoxicity and carcinogenicity (summarized in Figure 6 and Figure 7). The mechanisms leading to OTA nephrotoxicity, its hepatotoxicity and immunotoxicity, can be linked to inhibition of protein synthesis, lipoperoxidation, and modulation of MAP kinase cascade (Figure 6), whereas its carcinogenicity arises after the metabolic activation of OTA in a way similar to pentachlorophenol derivatives (Figure 7).



OTA forms covalent DNA adducts through radical and benzoquinone intermediates. The OTHQ metabolite of OTA can undergo an autoxidative process to generate the quinone electrophile OTQ that reacts with DNA. In addition, the formation of OTQ or phenoxy and aryl radicals can lead to increased ROS production that causes cytotoxicity. Radical species generate a C-bound C8-dG adduct, while benzetheno-type DNA adducts are expected from the quinone electrophile. The quinone-type adducts form faster in cells and stem from P450 activation of OTA. The C-bound C8-OTA adduct forms at a slower rate and is predicted to stem from reductive dehalogenation of OTA (via GSH and cyclooxygenase or lipoxygenase). The C5-Cl atom is critical for DNA adduction (genotoxicity) but not for cytotoxicity (OTB is cytotoxic but not genotoxic) (Figure 7).



Several quinone derivatives have been isolated from blood and urine and also in human or animal tissues exposed to OTA. The OTB-dG adduct is consistently found by 32P-postlabeling in kidney DNA from OTA-treated rats, pigs, and humans. These metabolites and this adduct could serve as biomarker for OTA exposure.



Increases in carcinogenicity and genotoxicity during co-exposure with citrinin (CIT), fumonisin (FB), or both can be explained by both factors. FB and CIT induce COX2, thus favoring the biotransformation of OTA into a genotoxic compound. Moreover, the quinone methide structure of CIT could easily explain the generation of DNA adduct. It may be capable of oxidizing OTA into the phenoxyl radical to promote C-C8 adduct formation. The new findings on OTA mutagenicity favor direct genotoxicity and rule out oxidative DNA damage as a contributor to the induction of deletion mutations or renal carcinogenesis. Therefore, further research should focus on co-exposure.



Altogether, OTA is a complete carcinogen, active since the earliest stage of life. Intake evaluation based on real analysis shows that the daily intake was three times greater than the virtual safety dose of 4 ng/kg bw/day—against carcinogenicity (intake per day 648 ng/60 kg adult) [379].



Maternal-fetal risk assessment of OTA during pregnancy was conducted using the benchmark dose approach for genotoxic carcinogens. Considering the sensitivity of a fetus, risk reduction is a high priority. It is essential to keep exposure to OTA as low as possible in women, notably during pregnancy [380].



Among the professional community, it is agreed that OTA is one of the five most agriculturally important mycotoxins; therefore, continued attention must be paid to research on ochratoxins and OTA in order to elucidate their metabolism, genotoxicity, and mechanism of action for renal carcinogenicity, with the ultimate aim of protecting public health and preventing economic losses.
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Abbreviations








	10-OHOA
	
10-hydroxy ochratoxin A





	10-OHOA-Me
	
10-hydroxy ochratoxin A methyl ester





	2′-DC-OTA
	
2′-ochratoxin A decarboxylated





	2′R-OTA
	
2′R-ochratoxin A





	4R-OHOA
	
4R-hydroxy ochratoxin A





	4R-OHOA-Me
	
4R-hydroxy ochratoxin A methyl ester





	4S-OHOA
	
4S-hydroxy ochratoxin A





	Acyl-hexose-OTA
	
conjugate ochratoxin A–acyl hexose





	Acyl-pentose OTA
	
conjugate ochratoxin A–acyl pentose





	BEN
	
Balkan endemic nephropathy





	CAC
	
Codex Alimentarius Commission





	CAS
	
Chemical Abstracts Services





	CE-LIF
	
capillary electrophoresis with laser-induced fluorescence detection





	CIN
	
chronic interstitial nephropathy





	CIT
	
citrinin





	DC-OA
	
ochratoxin A decarboxylated





	DC-OTHQ
	
OTHQ decarboxylated





	DNA aptamer
	
Artificial short single stranded oligonucleotides





	DNA
	
Deoxyribonucleic acid





	d-OA
	
d-ochratoxin A





	EU
	
European Union





	FB
	
fumonisin





	FDA
	
Food and Drug Administration





	FFDCA
	
Federal Food, Drug, and Cosmetic Act





	GC-MS
	
gas chromatography–mass spectrometry





	HPLC-FLD
	
high-performance liquid chromatography with fluorescence detection





	HPLC-UVD
	
high-performance liquid chromatography with ultraviolet detection





	IAC
	
immunoaffinity columns





	TGFβ
	
profibrotic transforming growth factors β





	ROS
	
reactive oxygen species





	IARC
	
The International Agency for Research on Cancer





	ICP-MS
	
inductively coupled plasma mass spectrometry





	IgE
	
immunoglobulin E





	IgG
	
immunoglobulin G





	IgM
	
immunoglobulin M





	IPCS
	
International Programme on Chemical Safety





	IUPAC
	
International Union of Pure and Applied Chemistry





	JECFA
	
The Joint FAO/WHO Expert Committee on Food Additives





	LC-ESI-MS/MS
	
column liquid chromatography electrospray ionization tandem mass spectrometry





	LC-MS
	
liquid chromatography–mass spectrometry





	LC-MS/MS
	
liquid chromatography-tandem mass spectrometry





	LOD
	
limit of detection





	LOQ
	
limit of quantification





	MEKC
	
micellar electrokinetic capillary chromatography





	MIPs
	
molecular imprinted polymers





	M-Oα
	
Ochratoxin α ester methyl





	OE-OA
	
ethylamide ochratoxin A





	OM-OA
	
ochratoxin A O-methyl





	OP-OTα
	
ochratoxin α open lactone





	OP-OA
	
ochratoxin A open lactone





	OP-OB
	
ochratoxin B open lactone





	OP-OTα
	
ochratoxin α open lactone





	OTα
	
ochratoxin α





	OTβ
	
ochratoxin β





	OTA
	
ochratoxin A





	OTA-Me
	
ochratoxin A methyl ester





	OTA-Tyrosine
	
tyrosine ochratoxin A





	OTB
	
ochratoxin B





	OTB-Et
	
ochratoxin B ethyl ester





	OTB-Me
	
ochratoxin B methyl ester





	OTC
	
ochratoxin C





	OTHQ
	
ochratoxin A hydroquinone





	OTQ
	
ochratoxin A quinone





	OTQ-Glutathion
	
conjugate ochratoxin A quinone–glutathion





	PCR
	
polymerase chain reaction





	PTWI
	
provisional tolerable weekly intake





	PFIA
	
fluorescence polarization immunoassay





	RASFF
	
Rapid Alert System for Food and Feed





	RIA
	
radioimmunoassay





	RNA
	
ribonucleic acid





	SPE
	
solid-phase extractions





	TDI
	
tolerable daily intake





	TLC
	
solid thin layer chromatography





	TTIP
	
The Transatlantic Trade and Investment Partnership





	TWI
	
tolerable weekly intake





	UTT
	
urinary tract tumors





	WHO
	
World Health Organization





	WTO
	
World Trade Organization





	EDI 
	
exposure daily intake
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Figure 1. The milestones in ochratoxin A (OTA) research in years 1965–1990. 
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Figure 2. The milestones in OTA research in years 1991–2000. 
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Figure 3. The milestones in OTA research in years 2000–2015. 
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Figure 4. Structural formula of OTA. 
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Figure 5. The milestones in evolution of legal regulation of OTA in years 1965–2015. 






Figure 5. The milestones in evolution of legal regulation of OTA in years 1965–2015.



[image: Toxins 08 00191 g005]







[image: Toxins 08 00191 g006 1024] 





Figure 6. Summary of biochemical effects of OTA. Explanations: OTA: Ochratoxin A; OTHQ: Hydroxyl quinone ochratoxin; OTB: Dechlorinated ochratoxin; LIPOX: Lipoperoxidation; Nox: Nitrogen oxide; ROS: Reactive oxygen species. 
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Figure 7. Metabolic activation of ochratoxin leading to DNA adducts. OTA: Ochratoxin A; OTHQ: Hydroxyl quinone ochratoxin; OTQ: Quinone ochratoxin; OTB: Dechlorinated ochratoxin; GSH: Reduced glutathione; GS: Oxidized glutathione; dG-OTA: Guanine OTA adduct. 
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Table 1. Aspergillus species as OTA producers in foodstuffs.
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Genera

	
Section

	
Species

	
Foodstuffs (Examples)

	
Year of Discovery






	
Aspergillus

	
Circumdati

	
A. ochraceus G. Wilh.

	
Soya bean, nuts, red pepper, cereals, green coffee beans

	
1965




	
A. steynii Frisvad & Samson

	
Coffee beans

	
2004




	
A. westerdijkiae Frisvad & Samson

	
Coffee beans

	
2004




	
Nigri

	
A. carbonarius (Bainier) Thom

	
Grapes, red pepper, coffee beans

	
1996




	
A. foetidus Thom & Raper

	
Grapes

	
1996




	
A. lacticoffeatus Frisvad & Samson

	
Coffee beans

	
2004




	
A. niger Tiegh.

	
Grapes, peanuts

	
1994




	
A. sclerotioniger Frisvad & Samson

	
Coffee beans

	
2004




	
A. tubingensis Mosseray

	
Grapes

	
2005











[image: Table] 





Table 2. Penicillium species as OTA producers in foodstuffs.
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Genera

	
Subgenus

	
Series

	
Species

	
Foodstuffs (Examples)

	
Year of Discovery






	
Penicillium

	
Penicillium

	
Verrucosa

	
P. verrucosum Dierckx

	
Cereals

	
1969




	
Verrucosa

	
P. nordicum Dragoni & Marino

	
Dry ham, salami

	
2001
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Table 3. Chemical structures of OTA and its derivatives.
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Metabolites

	
Abbreviations

	
MW

	
R1

	
R2

	
R3

	
R4

	
R5

	
R6

	
References






	
Ochratoxin A

	
OTA

	
403

	
Phe

	
Cl

	
H

	
H

	
H

	
OH

	
[3,4]




	
Ochratoxin B

	
OTB

	
370

	
Phe

	
H

	
H

	
H

	
H

	
OH

	
[51]




	
Ochratoxin C

	
OTC

	
431

	
Phe Ethyl ester

	
Cl

	
H

	
H

	
H

	
OH

	
[52]




	
Ochratoxin α

	
OTα

	
256

	
OH

	
Cl

	
H

	
H

	
H

	
OH

	
[53]




	
Ochratoxin β

	
OTβ

	
223

	
OH

	
H

	
H

	
H

	
H

	
OH

	
[54]




	
4R-hydroxy Ochratoxin A

	
4R-OHOA

	
419

	
Phe

	
Cl

	
H

	
OH

	
H

	
OH

	
[55]




	
4S-hydroxy Ochratoxin A

	
4S-OHOA

	
419

	
Phe

	
Cl

	
OH

	
H

	
H

	
OH

	
[55]




	
10-hydroxy Ochratoxin A

	
10-OHOA

	
419

	
Phe

	
Cl

	
H

	
H

	
OH

	
OH

	
[56]




	
Ochratoxin A open lactone

	
OP-OA

	
421

	
Phe

	
Cl

	
H

	
H

	
-

	
OH

	
[57]




	
Ochratoxin B open lactone

	
OP-OB

	
388

	
Phe

	
H

	
H

	
H

	
-

	
OH

	
[57]




	
Ochratoxin α open lactone

	
OP-OTα

	
274

	
OH

	
Cl

	
H

	
H

	
-

	
OH

	
[57]




	
Ochratoxin β open lactone

	
OP-OTβ

	
241

	
OH

	
H

	
H

	
H

	
-

	
OH

	
[57]




	
Ochratoxin A quinone

	
OTQ

	
383

	
Phe

	
O

	
H

	
H

	
H

	
O

	
[58]




	
Ochratoxin A hydroquinone

	
OTHQ

	
385

	
Phe

	
OH

	
H

	
H

	
H

	
OH

	
[58]




	
OTHQ decarboxylated

	
DC-OTHQ

	
366

	
Decarboxylated Phe

	
OH

	
H

	
H

	
H

	
OH

	
[43]




	
Conjugate Ochratoxin A quinone–glutathion

	
OTQ-Glutathion

	
689

	
Phe

	
O

	
H

	
H

	
H

	
O

	
[59]




	
Conjugate Ochratoxin A–acyl hexose

	
Acyl-hexose-OTA

	
565

	
Phe acyl hexose

	
Cl

	
H

	
H

	
H

	
OH

	
[60]




	
Conjugate Ochratoxin A–acyl pentose

	
Acyl-pentose OTA

	
535

	
Phe acyl pentose

	
Cl

	
H

	
H

	
H

	
OH

	
[60]




	
Ochratoxin A methyl ester

	
OTA-Me

	
417

	
Phe methyl ester

	
Cl

	
H

	
H

	
H

	
OH

	
[57]




	
Ochratoxin B methyl ester

	
OTB-Me

	
384

	
Phe methyl ester

	
H

	
H

	
H

	
H

	
OH

	
[57]




	
Ochratoxin B ethyl ester

	
OTB-Et

	
398

	
Phe ethyl ester

	
H

	
H

	
H

	
H

	
OH

	
[57]




	
4R-hydroxy Ochratoxin A methyl ester

	
4R-OHOA-Me

	
433

	
Phe methyl ester

	
Cl

	
H

	
OH

	
H

	
OH

	
[57]




	
10-hydroxy Ochratoxin A methyl ester

	
10-OHOA-Me

	
433

	
Phe methyl ester

	
Cl

	
H

	
H

	
OH

	
OH

	
[57]




	
Ethylamide Ochratoxin A

	
OE-OA

	
430

	
Phe ethyl amide

	
Cl

	
H

	
H

	
H

	
OH

	
[61]




	
Ochratoxin A decarboxylated

	
DC-OA

	
359

	
Phe decarboxylated

	
Cl

	
H

	
H

	
H

	
OH

	
[61]




	
Ochratoxin A O-methyl

	
OM-OA

	
417

	
Phe

	
Cl

	
H

	
H

	
H

	
OCH3

	
[61]




	
d-Ochratoxin A

	
d-OA

	
403

	
d-Phe

	
Cl

	
H

	
H

	
H

	
OH

	
[61]




	
Ochratoxin α ester methyl

	
M-Oα

	
270

	
OCH3

	
Cl

	
H

	
H

	
H

	
OH

	
[61]




	
Tyrosine Ochratoxin A

	
OTA-Tyrosine

	
419

	
Tyrosine

	
Cl

	
H

	
H

	
H

	
OH

	
[62]
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Table 4. Analytical methods for determination of OTA in food, feed, and biological materials.
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Method

	
Year

	
Biological Material

	
Limit of Detection (LOD)

	
References






	
TLC

	
1973

	
barley

	
12 ng/g

	
[68]




	
TLC

	
1973

	
other commodities

	
3–5 ng/g

	
[69]




	
spectrophotometry

	
1976

	
barley, pigs kidney, human blood (confirmation by carboxypeptidase A)

	
1–4 ng/g

	
[70]




	
HPLC-UVD

	
1979

	
cereals

	
1–5 ng/g

	
[71]




	
HPLC-FLD

	
1980

	
food and feed

	
5 ng/g

	
[72]




	
HPLC-FLD

	
1980

	
(confirmation by boron trifuoride methanol)

	

	
[73]




	
HPLC-FLD

	
1981

	
feed

	
1 ng/g

	
[74]




	
RIA

	
1975

	
-

	
20 ng/g

	
[75]




	
ELISA

	
1981

	
food, feed, biological fluids

	
25 pg/assay

	
[76]




	
LC-MS

	
1987

	
barley

	
0.5 ng/g

	
[77]




	
ion–pair HPLC

	
1991

	
human plasma

	
0.02 ng/mL

	
[78]




	
GC-MS

	
1992

	
food

	
<0.1 ng/g

	
[79]




	
HPLC-FLD

	
1992

	
corn, barley, kidney

	
0.2

	
[80]




	
ELISA

	
1993

	
human sera

	
10 pg/mL

	
[81]




	
IAC coupled with Fluorometer

	
1997

	
liquid food matrices

	
pg/mL

	
[82]




	
LC-ESI-MS/MS

	
1998

	
food (coffee)

	
20 pg/on column

	
[83]




	
LC-ESI-MS/MS

	
1999

	
pig kidney, rye flour

	
0.02 ng/g

	
[84]




	
HPLC-FLD Confirmation carboxypeptidase

	
2003

	
Blood, urine

	
0.1 ng/mL (blood); 4 ng/mL (urine)

	
[85]




	
HPLC-FLD Confirmations with carboxypeptidase + LC-MS/MS

	
2004

	
Breakfast cereal

	
0.05 ng/g

	
[86]




	
PFIA

	
2004

	
barley

	
3 ng/mL

	
[87]




	
DNA aptamer

	
2008

	
wheat

	
2 ng/g

	
[88]




	
LC-MS/MS

	
2010

	
urine

	
0.001–0.045 ng/mL

	
[89]




	
ICP-MS

	
2010

	
wine

	
0.003 ng/mL

	
[90]




	
LC-MS/MS

	
2012

	
urine

	
OTA: 0.03 ng/mL

	
[91]




	
flow electrochemical aptasensor with aptamer

	
2013

	
beer

	
0.05 ng/mL

	
[92]




	
UHPLC-FLR (LC-ESI-MS/MS)

	
2014

	
ginger

	
OTA: 0.1 ng/g; (0.005–0.2 ng/g)

	
[93]




	
LC-MS/MS

	
2015

	
dried blood spots

	
0.2 pg/on column

	
[94]




	
ELISA

	
2012

	
-

	
1.2 ng/g

	
[95]




	
Metal enhanced fluorescence

	
2014

	
Food/drinks (milk, juice)

	
0.5 µg/kg

	
[96]




	
Electroluminescence/Biosensor

	
2015

	
corn

	
0.02 pg/mL

	
[97]




	
Molecular imprinting

	
2015

	
Beer/wine

	
1.7 µg/L

	
[98]




	
PCR

	
2015

	
wine

	
19 nM

	
[99]








LC-ESI-MS/MS: Column liquid chromatography–electrospray ionization-tandem mass spectrometry; PFIA: Fluorescence polarization immunoassay; aptamers: Artificial short single stranded oligonucleotides, either DNA or RNA; PCR: Polymer chain reaction.
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Table 5. OTA and alert notifications in the EU.
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Date of Case

	
Country

	
Foodstuffs

	
OTA (ng/g)






	
16/01/2015

	
Finland

	
Pumpkin seeds from China

	
19




	
22/01/2015

	
Germany

	
Dried figs from Spain

	
124




	
03/03/2015

	
Belgium

	
Wheat from Canada

	
17




	
13/03/2015

	
Netherlands

	
Pumpkin seeds from China

	
29




	
13/03/2015

	
France

	
Dried figs from Spain

	
183




	
24/03/2015

	
France

	
Wheat from Canada

	
18




	
27/03/2015

	
Switzerland

	
Ground mace from Sri Lanka

	
42.5




	
12/05/2015

	
France

	
Buckwheat flour from France

	
40




	
04/06/2015

	
Ireland

	
Liquorice root from Turkey

	
433.5




	
10/06/2015

	
Poland

	
Raisins from Turkey

	
19.3




	
15/07/2015

	
Slovak Republic

	
Raisins from Chile

	
11.8




	
10/08/2015

	
France

	
Rye flour from France

	
12.9




	
12/08/2015

	
Finland

	
Pumpkin seeds from China

	
20000




	
13/08/2015

	
Luxembourg

	
Dried red chili peppers from Thailand

	
30.8




	
01/09/2015

	
Romania

	
Sultanas from Turkey

	
15.6




	
02/09/2015

	
Belgium

	
Rye malt from France

	
13.8




	
02/09/2015

	
Belgium

	
Rye malt from France

	
25.7




	
02/09/2015

	
Belgium

	
Rye malt from France

	
38.6




	
25/09/2015

	
Croatia

	
Black pepper from Vietnam

	
155




	
21/10/2015

	
Malta

	
Soft oaty bars from Switzerland

	
1.4




	
02/12/2015

	
Belgium

	
Dried figs from Turkey

	
14.4




	
08/12/2015

	
Latvia

	
Chili from China

	
40




	
11/12/2015

	
Cyprus

	
Dried sultana raisins from Greece

	
18.5




	
23/12/2015

	
Belgium

	
Dried figs from Turkey

	
27.8








Alert notifications are sent whenever a foodstuff presenting a serious health risk to humans is identified at the internal market and whenever the rapid action of the competent authorities is required.
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Table 6. OTA and border rejections.







Table 6. OTA and border rejections.







	
Date of Case

	
Country

	
Foodstuffs

	
OTA (ng/g)






	
22/01/2015

	
Poland

	
Raisins from Uzbekistan

	
21.1




	
26/01/2015

	
Netherlands

	
Dried figs from Turkey

	
24




	
11/02/2015

	
Germany

	
Raisins from Afghanistan

	
11.8




	
19/02/2015

	
Latvia

	
Raisins from Afghanistan

	
61




	
26/02/2015

	
Germany

	
Dried figs from Turkey

	
17.4




	
13/03/2015

	
Hungary

	
Raisins from Uzbekistan

	
24.3




	
30/06/2015

	
Croatia

	
Mixed spices from Kuwait

	
45




	
21/07/2015

	
United Kingdom

	
Red pepper powder from Ethiopia

	
92.5




	
13/08/2015

	
The Netherlands

	
Pistachios from the United States

	
74




	
31/08/2015

	
Germany

	
Berbere spice mix from Ethiopia

	
85.3




	
07/09/2015

	
The Netherlands

	
Red chili powder from India

	
69




	
28/10/2015

	
Poland

	
Red chili powder from India

	
32.6




	
16/12/2015

	
Germany

	
Red pepper spice mix from Ethiopia

	
69.9








Border rejections concern food and feed consignments that have been tested and rejected at the external borders of the EU.
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Table 7. OTA and the EU Rapid Alert System for Food and Feed (RASFF) information.
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Date of Case

	
Country

	
Foodstuffs

	
OTA (ng/g)






	
13/01/2015

	
Germany

	
Dried figs from Turkey

	
69.9




	
16/01/2015

	
Germany

	
Dried figs from Turkey

	
45




	
16/02/2015

	
Germany

	
Sun dried figs from Turkey

	
86




	
17/02/2015

	
Germany

	
Dried figs from Turkey

	
32




	
02/06/2015

	
Germany

	
Spice mix and paprika from Ethiopia

	
139




	
24/07/2015

	
Denmark

	
Organic raisins from Australia

	
28




	
23/12/2015

	
Germany

	
Dried figs from Turkey

	
10.8








Food that is only present in the notifying EU Member State is worth noting. 
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Table 8. Nephrotoxicity of OTA.
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Year

	
Nephrotoxicity Testing

	
References






	
1972

	
Balkan endemic nephropathy (BEN) has been suggested to be the result of fungal poisoning. The role of OTA in mycotoxicosis—BEN in humans and porcine nephropathy.

	
[156]




	
1972

	
In view of the similarities between BEN and OTA induced porcine nephropathy, it has been suggested that OTA may be involved in the etiology of BEN.

	
[157]




	
1978

	
OTA is potentially nephrotoxic in all species tested with the exception of adult ruminants.

	
[158]




	
1987

	
Findings of higher OTA levels in the serum of patients suffering from BEN, which is a subtype of tubulointerstitial nephritis, led to hypotheses about the association between the nephrotoxicity of OTA and the BEN and also the incidence of renal system tumors in the population of these Balkan regions.

	
[159]




	
1991

	
Nephropathy is primarily related to the mobilization of intracellular calcium.

	
[160]




	
1992

	
In terms of human pathologies, OTA is suspected to be the main etiological agent responsible for BEN and associated urinary tract tumors (UTT) in humans.

	
[161]




	
1993

	
Experimental studies on the nephrotoxicity of OTA both in vitro and in vivo have shown that OTA disturbs the intracellular metabolic processes (with subsequent apoptosis of the renal cells), renal hemodynamics, and—significantly and perhaps preponderantly—the functions of the proximal tubules (even after subchronic exposition). OTA causes the decrease of glomerular filtration and tubular resorption and affects all parts of the nephron and kidneys in toto.

	
[162,163,164,165,166,167,168]




	
1993

	
A case of acute nephrotoxicity in humans.

	
[169,170]




	
1999

	
OTA induces apoptosis in cultured human proximal tubule cells.

	
[171]




	
2002–2005

	
The kidney is the main target of OTA toxicity in all animal species tested.

	
[14,172]




	
2002–2005

	
OTA has been also implicated in the etiology of BEN, a chronic degenerative kidney disease, in kidney tumors in humans in certain regions of the Balkan Peninsula, and in chronic interstitial nephropathy (CIN) in Tunisia and other North African countries.

	
[14,148,150]




	
2005

	
Exposure to low OTA doses is responsible for nephrotoxicity; at nanomolar concentrations, OTA leads to specific changes of function and phenotype in renal cells.

	
[173]




	
2007–2010

	
Very low OTA concentrations administered for a prolonged time (up to 14 days) influence the cellular fate (cellular hypertrophy) in human proximal tubule; furthermore, they act not only in the target organ, e.g., in the kidney, but also in as yet unsuspected cells, such as fibroblasts; the same damage will likely occur in chronic exposure.

	
[174,175]




	
2013

	
Nephrotoxicity is a consequence of acute, sub-acute, and also chronic exposure to OTA.

	
[9]




	
2014

	
OTA inhibits the nuclear factor, erythroid 2-like 2 (Nrf2) oxidative stress response pathway. Nrf2 overexpression confers a survival advantage and is often associated with cancer cell survival.

	
[176]




	
2015

	
Dietary exposure to OTA represents a serious health issue including, e.g., human endemic nephropathies.

	
[50]
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Table 9. OTA carcinogenicity and genotoxicity.
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Year

	
Nephrotoxicity testing

	
References






	
1978

	
OTA induces renal and hepatic tumors in mice.

	
[177]




	
1984

	
OTA is carcinogenic for mice.

	
[178]




	
1984

	
CIT increases OTA carcinogenicity.

	
[179]




	
1987

	
OTA carcinogenicity to humans: OTA classified in Group 3 (not classifiable as to its carcinogenicity to humans).

	
[180]




	
1989

	
Male rats are more susceptible to renal tumors than female rats (NTP study).

	
[181]




	
1989

	
The genotoxicity of ochratoxin A is reviewed.

	
[35,182]




	
1991

	
OTA-DNA adducts: For the first time, OTA-DNA adducts are found in the kidney, liver, and spleen of mice.

	
[183]




	
1993

	
OTA is re-classified as a possibly carcinogenic to humans based on a great amount of evidence of carcinogenity in several animal studies of 2B in 1993.

	
[11]




	
1993

	
OTA-DNA adducts: Other studies take place in mice and rat tissues after acute and subchronic exposure, and in urinary tract tumors (UTT) of Bulgarian subjects.

	
[184,185,186]




	
1993-2009

	
OTA-DNA adducts are also detected in tissues of humans presumably exposed to OTA in several countries (Bulgaria, Serbia, Croatia, Germany, Belgium, France, Tunisia).

	
[16,17,185,187,188,189,190]




	
1998-2002

	
DNA adduction following chronic exposure (carcinogenic study) of rats to OTA first described; sex differences and dual mechanism—oxidative pathways and DNA adduction—are observed

	
[12,13,191]




	
1998

	
OTA-DNA adducts are observed in mother and progeny of mice fed OTA nine months after birth male mice develop cancer.

	
[192]




	
2000–2001

	
In vitro formation of dG-OTA adduct.

	
[193,194]




	
2001–2002

	
Other studies with radiolabeled OTA were unable to detect any DNA binding of OTA, but explanation of this discrepancy is given in depth by Pfohl-Leszkowicz and Castegnaro in 2005 [ 195]

	
[60,196]




	
2003

	
OTA-DNA adduct in pigs subchronically exposed to low doses of OTA. Relation with biotransformation.

	
[197]




	
2002–2010

	
OTA may be involved in testicular cancer.

	
[175,198,199,200,201]




	
2003–2008

	
CIT increases genotoxicity of OTA and modifies the metabolism of rats exposed to low doses for three weeks.

	
[202,203]




	
2004

	
Evidence for covalent DNA adduction by OTA following chronic exposure to OTA in rats (and subacute exposure in pigs).

	
[190]




	
2004

	
Another research group, using the highly sensitive accelerator of the mass spectrometry technique, does not detect DNA adducts after the administration of 14C-labeled OTA to rats.

	
[204]




	
2004

	
In 2004, a review of the NTP experimental rat tumor data for OTA also places OTA in the category of “chemicals inducing renal tumors through direct interaction of the parent compound or metabolite with renal DNA” based on histopathological evidence.

	
[205]




	
2004–2010

	
The long-term OTA studies confirm the incidence of tumors in rats; in male rats, these tumors are related to OTA dose

	
[205,206,207]




	
2004–2012

	
OTA is a direct genotoxic forming covalent DNA adducts in the kidney OTA can indeed react with DNA via a phenolic radical resulting in C8-deoxyguanosine adduct (synthetized and chemical identified by mass spectrum).

	
[175,190,201,207,208,209]




	
2006

	
Confirmation of OTA genotoxicity via measurement of comet in rat kidneys.

	
[210]




	
2007

	
Chronic exposure to low OTA doses can be much more damaging than acute exposure to a high dose.

	
[16]




	
2007

	
DNA diploidy in rat tumors is associated to genetic damage.

	
[211]




	
2007

	
OTA induces an increase of mutation at two loci—hypoxantine-guanine phophoribosyl transferase (HPRT) and thymidine kinase (TK).

	
[212]




	
2008

	
DNA adduct cannot be confirmed, but the explanation is given by Pfohl-Leszkowicz et al. (2009) [64]

	
[213]




	
2008

	
Correlation between biotransformation of OTA and direct covalent binding on DNA.

	
[214]




	
2009

	
It is found that the kidney DNA adduct pattern of BEN patients is similar to the kidney DNA adduct pattern of pigs living in the same farm and pigs co-exposed to OTA, fumonisins, and citrinin.

	
[17]




	
2009

	
A different proposal of mechanism for OTA-mediated renal carcinogenesis and threshold model for its risk assessment.

	
[215]




	
2009–2010

	
Identification by LC-MS/MS of these DNA adduct in rat tissues.

	
[64,201]




	
2010

	
OTA is carcinogenic for poultry.

	
[216]




	
2011

	
Induction of mutation only in medulla of rat kidney exposed to carcinogenic dose.

	
[217]




	
2012

	
Relation structure activity studies clearly indicate that OTHQ (ochratoxin hydroxyquinone) is responsible of direct genotoxicity, whereas some others are cytotoxic.

	
[65,209]




	
2012

	
OTA is activated to a species that is a directly genotoxic mutagen. OTHQ in presence of cysteine is also mutagenic.

	
[218]




	

	
A new approach to cancer represents miRNA.

	
[219,220]




	
2013

	
The induction of miR-132 and miR-200c by OTA elevates reactive oxygen species (ROS) levels and profibrotic (profibrotic transforming growth factors β, TGFβ) expression.

	
[221]




	
2014

	
OTA has the potential to initiate or support the development of fibrotic kidney diseases by involving post-transcriptional regulation mechanisms comprising miR-29b. OTA reduces the impact of miR-29b and thus enhances collagen protein expression.

	
[222]




	
2014

	
A low dose of OTA induces micronuclei, and OTA delays the DNA repair kinetics.

	
[223]




	
2014

	
OTA increases proliferating cell nuclear antigen after 13 weeks in kidney and kidney damages. Limited oxidative stress.

	
[224]




	
2015

	
Dietary exposure to OTA represents a serious health issue, including urinary tract tumors in humans.

	
[50]
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Table 10. An overview of chronologically published data on OTA in blood samples from healthy persons.







Table 10. An overview of chronologically published data on OTA in blood samples from healthy persons.







	
Country

	
Collecting Period

	
n+ (%)

	
OTA min–max (μg/L)

	
OTA Mean (μg/L)

	
Reference






	
Europe

	

	

	

	

	




	
Former Yugoslavia

	
1980

	
7.8

	
max. 8.0

	
5.4

	
[229,241]




	
Germany

	
1977–1985

	
56.5

	
0.1–14.4

	
0.6

	
[242]




	
Bulgaria

	
1984,1986, 1989–1990

	
10

	
-

	
12.0

	
[243,244]




	
Poland

	
1983–1985

	
7.2

	
1–40

	
0.28

	
[245]




	
Former Yugoslavia

	
1981–1989

	
0-3.7

	
max. 50.0

	
-

	
[246]




	
Germany

	
1988

	
68

	
0.1–8.4

	
0.75

	
[247]




	
Sweden

	
1989

	
12.8

	
0.3–7.0

	
0.20

	
[78]




	
Czechoslovakia

	
1990

	
21

	
0.5–12.0

	
0.37

	
[248]




	
Denmark

	
1990

	
54.2

	
0.1–13.2

	
1.8

	
[241]




	
France

	
-

	
-

	
0.1–6.0 (rural); 0.1–1.3 (urban)

	
-

	
[249]




	
Czechoslovakia

	
1990–1991

	
40

	
0.5–19.4

	
0.63

	
[250]




	
France

	
1991–1992

	
18.1

	
0.1-161

	
0.4

	
[251,252]




	
Italy

	
1992

	
100

	
0.1–2.0

	
0.53

	
[253]




	
Switzerland

	
1992–1993

	
100

	
0.06–6.02

	
ca. 0.4

	
[105]




	
Hungary

	
1995

	
51

	
0.2–12.9

	
-

	
[254]




	
Italy

	
1994–1996

	
97

	
0.1–57.2

	
0.56

	
[255]




	
Hungary

	
1995

	
82

	
0.2–10.0

	
-

	
[256]




	
Czech Republic

	
1994–2002

	
94.2

	
0.1–13.7

	
0.24

	
[257,258,259,260]




	
Spain

	
1996–1998

	
53.3

	
0.5–4.0

	
0.71

	
[261]




	
Spain

	
1996–1997

	
72

	
0.21–6.96

	
0.63

	
[262]




	
Hungary

	
1997

	
77

	
0.1–1.4

	
-

	
[263]




	
Croatia

	
1997–1998

	
59.4

	
max. 15.9

	
0.30

	
[264,265,266]




	
Sweden

	
1997

	
100

	
0.01–0.48

	
0.21

	
[145,267]




	
Norway

	
1998

	
100

	
0.05–0.42

	
0.18

	
[145,267]




	
Germany

	
1999

	
98.1

	
0.06–2.03

	
0.27

	
[268]




	
UK

	
2000

	
100

	
0.4–3.11

	
1.09

	
[145,269]




	
Norway

	
-

	
-

	
0.02–5.53

	
0.40

	
[270]




	
Bulgaria

	
-

	
100

	
max. 8.4

	
1.59

	
[85]




	
Portugal

	
2001–2002

	
100

	
0.14–2.49

	
-

	
[271]




	
Poland

	
2005

	
100

	
0.1–0.4

	
0.37

	
[272]




	
Germany

	
2005–2006

	
100

	
0.05–0.75

	
0.75

	
[18]




	
Czech Republic

	
2005

	
83.7

	
0.1–2.3

	
0.21

	
[273]




	
Spain

	
2008

	
100

	
0.15–5.71

	
1.09

	
[274]




	
Spain

	
2008

	
98.6

	
0.11–8.68

	
0.86

	
[275]




	
Germany

	
2008

	
100

	
0.19–0.29

	
0.25

	
[276]




	
Spain

	
-

	
100

	
0.06–10.92

	
0.8

	
[277]




	
Italy

	
-

	
99.1

	
0.03–2.92

	
0.23

	
[278]




	
Czech Republic

	
2012

	
96

	
0.1–0.35

	
0.15

	
[279]




	
Czech Republic

	
2012

	
-

	
0.37–1.13

	
0.17

	
[280]




	
Africa

	

	

	

	

	




	
Algeria

	
-

	
66.9

	
max. 9.0

	
2.8

	
[281]




	
Tunisia

	
-

	
62

	
max. 3.2

	
1.22

	
[149]




	

	
-

	
66

	
max. 2.3

	
1.1

	
[282]




	
Egypt

	
-

	
2.9

	
max. 0.91

	
0.08

	
[151]




	
Sierra Leone

	
1996

	
33

	
max. 18.2

	
-

	
[283]




	
Morocco

	
2000

	
60

	
0.08–6.59

	
0.2

	
[284]




	

	
1991–2000

	
62-82

	
0.1–5.5

	
2.0

	
[285]




	

	
1996, 1998

	
100

	
0.1–8.06

	
0.53

	
[150]




	

	
-

	
71

	
max. 7.5

	
2.6

	
[286]




	
Ivory Coast

	
2001, 2004

	
34.9

	
max. 11.62

	
0.58

	
[287]




	
Tunisia

	
-

	
28

	
0.12–3.4

	
0.49

	
[288]




	
Tunisia

	
-

	
52.3

	
0.11–6.1

	
0.77

	
[289]




	
Tunisia

	
2007–2009

	
49

	
1.7–8.5

	
3.3

	
[290]




	
Tunisia

	
-

	
34

	
0.12–1.5

	
0.22

	
[291]




	
Asia

	

	

	

	

	




	
Japan

	
1992-1996

	
85

	
max. 0.28

	
0.07

	
[292]




	
Lebanon

	
2001-2002

	
33

	
max. 1.24

	
0.31

	
[293]




	
Pakistan

	
-

	
97

	
max. 1.24

	
0.31

	
[294]




	
Turkey

	
-

	
-

	
max. 1.43

	
0.44

	
[295]




	
Turkey

	
2008–winter

	
76.7

	
0.03–0.89

	
0.14

	




	

	
2007–summer

	
97.5

	
0.03–1.50

	
0.31

	
[296]




	
Bangladesh

	
-

	
100

	
0.2–6.63

	
0.85

	
[240]




	
Turkey

	
–summer

	
100

	
0.03–1.55

	
0.31

	




	

	
–winter

	
83.3

	
0.05–1.12

	
0.5

	
[297]




	
The Americas

	

	

	

	

	




	
Canada

	
1991

	
38.3

	
max. 9.0

	
1.29

	
[298]




	
Canada

	
1994*

	
100

	
max. 2.37

	
0.88

	
[299]




	
Chile

	
2004

	
54

	
0.4–2.75

	
0.44

	




	
(2 regions)

	

	
91

	
0.4–2.12

	
0.77

	
[300]




	
Costa Rica

	
-

	
95

	
max. 1.91

	
0.62

	
[301]




	
Argentina

	
2004–2005

	
63.8

	
0.19–47.6

	
0.15

	




	
(2 regions)

	

	

	
0.19–74.8

	
0.43

	
[302]








Abbreviations: n+ (%): percentage of positive samples; *study included persons working at grain storage facilities; rural, urban (population).
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Table 11. The results of OTA in human morning urine from different populations.
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Country

	
n

	
n+ %

	
Mean (ng/L)

	
Reference






	
Croatia

	
35

	
94

	
239.0

	
[311]




	
Hungary

	
88

	
61

	
13.0

	
[312]




	
Portugal

	
60

	
70

	
27.0

	
[313]




	
Portugal

	
30

	
43

	
19.0

	
[314]




	
Portugal

	
43

	
72.1

	
26.0

	
[315]




	
Croatia

	
45

	
43

	
17.0

	
[316]




	
Croatia

	
45

	
18

	
7.0

	
[316]




	
Portugal

	
155

	
92

	
18.0

	
[317]




	
Turkey

	
233

	
90

	
14.3 *

	
[318]




	
Germany

	
13

	
100

	
70.0

	
[276]




	
South Korea

	
12

	
100

	
31.0

	
[89]




	
Spain

	
72

	
12.5

	
237.0

	
[319]




	
Spain

	
27

	
no stated

	
-

	
[320]




	
Italy

	
10

	
100

	
-

	
[321]




	
Sri Lanka

	
31

	
93.5

	
20.0 **

	
[322]




	
Portugal

	
95

	
87.4

	
22.0 (winter)

	
[323]




	
Portugal

	
95

	
81.1

	
16.0 (summer)

	
[323]




	
Croatia

	
40

	
78.0

	
90.0 (before enzyme treatment)

	
[324]




	
Croatia

	
40

	
58.0

	
130.0 after enzyme treatment)

	
[324]




	
Cameroon

	
175

	
63

	
280.0

	
[308]




	
Cameroon

	
145: HIV positive

	
17

	
80.0

	
[325]




	
30: HIV: sero-negative

	
10

	
60.0




	
South Africa

	
53

	
98

	
41.0

	
[326]




	
Cameroon

	
220

	
32

	
200.0

	
[309]




	
Italy

	
52

	
100

	
144.0

	
[327]




	
Chile

	
39

	

	
30–433 *** 30–124 ****

	
[239]




	
Portugal

	
472

	
86.4

	
19.0 *****

	
[328]




	
Germany

	
30

	
15

	
40.0

	
[329]




	
Haiti

	
47

	
33

	
109.0

	
[329]




	
Bangladesh

	
72

	
76

	
203.0

	
[329]








Abbreviations: n: numbers of samples; n+ %: percentage of positive samples; * ng/g creatinine; ** GM: geometric mean; *** range in newborns consuming colostrums; **** range of samples collected between 4 and 6 months of infants’ life; ***** mean in ng/kg.
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Table 12. Data on OTA in human milk worldwide.
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Country

	
n

	
n+ (%)

	
Range Positive Samples (ng/L)

	
References






	
European countries




	
Germany

	
36

	
11

	
17–30

	
[330]




	
Italy

	
50

	
18

	
1,200–6,600

	
[332]




	
Sweden

	
40

	
58

	
10–40

	
[331]




	
Hungary

	
92

	
41

	
200–7,200

	
[255]




	
Switzerland

	
40

	
10

	
5–14

	
[105]




	
Italy

	
111

	
20

	
100–12,000

	
[334]




	
Italy

	
4

	
75

	
8-540

	
[335]




	
Norway

	
115

	
33

	
10–130

	
[336]




	
Norway

	
80

	
21

	
10–182

	
[333]




	
Italy

	
231

	
86

	
10–57

	
[337]




	
Poland

	
13

	
38

	
6–17

	
[338]




	
Italy

	
82

	
74

	
5–405

	
[339]




	
Slovakia

	
76

	
30

	
2–60

	
[340]




	
Italy

	
57

	
78.9

	
1–75

	
[341]




	
Germany

	
90

	
60

	
10–100

	
[342]




	
Africa




	
Sierra Leone

	
113

	
35

	
200–337,000

	
[343]




	
Egypt

	
120

	
36

	
5,000–45,000

	
[344]




	
Egypt

	
50

	
72

	
1,890 ± 980 *

	
[345]




	
Australia

	
100

	
2

	
3,000–3,600

	
[346]




	
Asia




	
Turkey

	
75

	
100

	
620–13,111

	
[347]




	
Iran

	
136

	
2.7

	
90–140

	
[348]




	
Iran

	
87

	
84

	
1.6–60

	
[349]




	
The Americas




	
Brazil

	
50

	
4

	
10–20

	
[350]




	
Chile

	
11

	
100

	
44–184

	
[351]




	
Brazil

	
224

	
0

	

	
[352]




	
Chile

	
50

	
80

	
10–186

	
[239]




	
Brazil

	
100

	
66

	
0.3–21

	
[353]








*: no ranges were provided.
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Table 13. The first maximum levels of OTA in foodstuffs under Regulation 466/2001 as amended by Regulation 472/2002.







Table 13. The first maximum levels of OTA in foodstuffs under Regulation 466/2001 as amended by Regulation 472/2002.







	
Foodstuffs

	
Maximum levels (ng/g)






	
Cereals (including rice and buckwheat) and derived cereal products

	
5




	
Raw cereal grains (including raw rice and buckwheat)

	
5




	
All products derived from cereals (including processed cereal products and cereal grains intended for direct human consumption)

	
3




	
Dried vine fruit (currants, raisins and sultanas)

	
10




	
Green and roasted coffee and coffee products, wine, beer, grape juice, cocoa and cocoa products, and spices

	
-
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Table 14. Maximum levels of OTA in foodstuffs under Regulation 1881/2006 as in force.







Table 14. Maximum levels of OTA in foodstuffs under Regulation 1881/2006 as in force.







	
Code

	
Foodstuffs

	
Maximum Levels (ng/g)






	
2.2.1

	
Unprocessed cereals

	
5.0




	
2.2.2.

	
All products derived from unprocessed cereals, including processed cereal products and cereals intended for direct human consumption with the exception of foodstuffs listed in 2.2.9, 2.2.10, and 2.2.13

	
3.0




	
2.2.3

	
Dried vine fruit (currants, raisins, and sultanas)

	
10.0




	
2.2.4

	
Roasted coffee beans and ground roasted coffee, excluding soluble coffee

	
5.0




	
2.2.5

	
Soluble coffee (instant coffee)

	
10.0




	
2.2.6

	
Wine (including sparkling wine, excluding liqueur wine and wine with an alcoholic strength of not less than 15 vol %) and fruit wine

	
2.0




	
2.2.7

	
Aromatized wine, aromatized wine-based drinks, and aromatized wine-product cocktails

	
2.0




	
2.2.8

	
Grape juice, concentrated grape juice as reconstituted, grape nectar, grape must and concentrated grape must as reconstituted, intended for direct human consumption

	
2.0




	
2.2.9

	
Processed cereal-based foods and baby foods for infants and young children

	
0.50




	
2.2.10

	
Dietary foods for special medical purposes intended specifically for infants

	
0.50




	
2.2.11.

	
Spices, including dried spices

	




	

	
Piper spp. (fruits thereof, including white and black pepper), Myristica fragrans (nutmeg), Zingiber officinale (ginger), Curcuma longa (turmeric)

	
15




	

	
Capsicum spp. (dried fruits thereof, whole or ground, including chilies, chili powder, cayenne, and paprika)

	
20




	

	
Mixtures of spices containing one of the abovementioned spices

	
15




	
2.2.12.

	
Liquorice (Glycyrrhiza glabra, Glycyrrhiza inflate and other species)

	




	
2.2.12.1.

	
Liquorice root, ingredient for herbal infusion

	
20




	
2.2.12.2.

	
Liquorice extract for use in food in particular beverages and confectionary

	
80




	
2.2.13.

	
Wheat gluten not sold directly to the consumer

	
8.0
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Table 15. Guidance values for OTA under Commission Recommendation 2006/576/EC as in force.







Table 15. Guidance values for OTA under Commission Recommendation 2006/576/EC as in force.







	
Feed

	
Guidance Value in mg/kg Relative to Feedstuffs with a Moisture Content of 12%






	
Feed materials *—Cereals and cereal products **

	
0.25




	
Complementary and complete feedstuffs

	




	
—Complementary and complete feedstuffs for pigs

	
0.05




	
—Complementary and complete feedstuffs for poultry

	
0.1








* Particular attention must be paid to cereals and cereals products fed directly to the animals that their use in a daily ration should not lead to the animal being exposed to a higher level of these mycotoxins than the corresponding levels of exposure where only the complete feedstuffs are used in a daily ration. ** The term “Cereals and cereal products” includes not only the feed materials listed under Heading 1, “Cereal grains, their products and by-products,” of the non-exclusive list of main feed materials referred to in Part B of the Annex to Council Directive 96/25/EC of 29 April 1996 on the circulation and use of feed materials (OJ L 125, 23.5.1996, p. 35), but also other feed materials derived from cereals in particular cereal forages and roughages.








© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
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