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Abstract: This study describes the insecticidal activity of a novel Bacillus thuringiensis  

Cry-related protein with a deduced 799 amino acid sequence (~89 kDa) and ~19% pairwise 

identity to the 95-kDa-aphidicidal protein (sequence number 204) from patent US 8318900 

and ~40% pairwise identity to the cancer cell killing Cry proteins (parasporins Cry41Ab1 

and Cry41Aa1), respectively. This novel Cry-related protein contained the five conserved 

amino acid blocks and the three conserved domains commonly found in 3-domain Cry 

proteins. The protein exhibited toxic activity against the green peach aphid, Myzus persicae 

(Sulzer) (Homoptera: Aphididae) with the lowest mean lethal concentration (LC50 =  

32.7 μg/mL) reported to date for a given Cry protein and this insect species, whereas it had 

no lethal toxicity against the Lepidoptera of the family Noctuidae Helicoverpa armigera 

(Hübner), Mamestra brassicae (L.), Spodoptera exigua (Hübner), S. frugiperda (J.E. Smith) 

and S. littoralis (Boisduval), at concentrations as high as ~3.5 μg/cm2. This novel Cry-related 
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protein may become a promising environmentally friendly tool for the biological control of 

M. persicae and possibly also for other sap sucking insect pests. 

Keywords: Bacillus thuringiensis; δ-endotoxins; Cry-related protein; parasporins;  

green peach aphid; Myzus persicae 

 

1. Introduction 

Bacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal 

crystalline inclusions containing one or more proteins (Cry and Cyt proteins) [1], some of which are 

toxic to a high number of insect species of the orders Lepidoptera, Diptera and Coleoptera, in addition 

to a few Hemiptera [2–4] and Nematoda [5]. The extremely high insecticidal activity of some Cry 

proteins is mainly due to their oral toxicity, which is produced after the proteolytic activation of 

protoxins and their specific binding to receptors located on the plasma membrane of the midgut 

epithelial cells of susceptible insects [2]. This property makes Bt an environmentally safe and 

ecologically sound microbial agent for controlling insect pests that ingest the toxins present on the 

plant surfaces. However, a few Cry proteins have been found to be poorly active against sap-sucking 

insect pest species such as aphids, whiteflies and plant bugs (Hemiptera). Bt control of these pests, 

which cause major agricultural losses worldwide [6] and have an extremely rapid ability to develop 

resistance to classical chemical insecticides [6–8], may be useful for developing integrated pest 

management strategies. A handful of Cry proteins have been found to be weakly to moderately active 

against hemipterans in artificial diet feeding assays [4,9,10]. Only recently, a Bt crystal protein and a 

binary vegetative insecticidal protein (Vip1/Vip2) with aphidicidal potential have been reported [9,11]. 

Due to their feeding behaviour on the phloem sap of plants, hemipterans can only ingest significant 

amounts of Cry proteins when they are transported in the phloem, e.g., if they are efficiently  

expressed in transgenic Bt plants. So far, only two Bt Cry proteins have been expressed in Bt-plants  

(cotton and wheat), which resulted in deleterious effects for the development and survival of two 

hemipteran species: the cotton pest Lygus hesperus (Knight) (Hemiptera: Miridae) [12] and the wheat 

aphid Schizaphis graminum (Rondani) (Hemiptera: Aphididae) [13]. Bt populations naturally present 

in the soil and the phylloplane often synthesize Cry proteins with unknown biological activities, which 

are estimated to account for more than 90% of the strains of this bacterium in natural environments [14,15]. 

These are generally referred to as non-insecticidal isolates due to their lack of toxicity against 

lepidopterans, dipterans and coleopterans [14,16]. However, some parasporal inclusions produced by 

such strains and with no known insecticidal activity exhibit selective toxic activity against human 

cancer cells and have been designated as parasporins [14,15,17]. Subsequently, parasporins have been 

given alternative Cry designations, which will be used throughout this report. The existence of several 

Cry proteins with biological roles other than insecticidal, e.g. the toxicity of several parasporins against 

human cancer cells [14] and a human pathogenic protozoan [18], led us to hypothesize that Cry proteins 

active against hemipterans may exist in greater numbers than previously recognized. In this study,  

we report the identification, cloning and molecular characterization of a novel Cry-related protein,  

and its toxic activity against the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae).  
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2. Results 

2.1. Draft Genome Sequence of Strain H1.5 

A total of 782 contigs were obtained, totalling 5,958,193 bp with 35.2% G+C content and 6130 

predicted CDSs (coding sequences), including the full-length coding sequence of the novel cry-related 

gene among other CDSs exhibiting homology to different insecticidal proteins, namely 7 CDSs were 

homologous to Cry proteins, two CDSs homologous to Cyt proteins, two CDSs homologous to Vip1 

proteins and two CDSs homologous to Vip2 proteins.  

2.2. Molecular Characterization of the Novel Cry Gene 

The predicted cry-related gene (accession no. KJ427833) was present in a contig that only contained 

this coding sequence, which is 2397 bp long and encoding a protein of 799 amino acids and predicted 

molecular weight of 89 kDa. Its predicted protein sequence exhibited ~19% pairwise identity to  

the 95-kDa-aphidicidal protein (sequence 204) described in patent US 8318900 (accession no. 

AGA40064) [9] and ~40% pairwise identity to cancer cell killing Cry proteins (parasporins Cry41Ab1 

and Cry41Aa) [19] (Figure 1). It contained the five conserved blocks found in 3-domain Cry proteins [1] 

and in parasporins Cry41Aa1 and Cry41Ab1 [19] exhibiting 84.9%, 74.1%, 60.4%, 81.5% and 90% 

pairwise identity from blocks 1–5, respectively. The Cry-related protein also had the three Cry typical 

conserved domains endotoxin_N (InterPro accession no. IPR005639), endotoxin_M (InterPro 

accession no. IPR015790) and delta_endotoxin_C (InterPro accession no. IPR005638) present in other 

known Cry proteins. It also possessed a C-terminal ricin B-like lectin conserved domain between 

amino acids 652 and 799, which is also present in parasporins Cry41Aa1 and Cry41Ab1 (Figure 1), 

but absent in the 95-kDa-aphidicidal protein from patent US 8318900 (data not shown).  

Figure 1. Alignment of parasporins (Cry41Aa1, Cry41Ab1) and the Cry-related protein 

deduced amino acid sequence. Light-blue bars (B1 to B5) indicate the conserved five 

amino acid blocks, Endotoxin (N, M and C) the three-conserved domains and ricin B-like 

lectin indicates the C-terminal conserved lectin domain found in the three protein sequences. 

 

A phylogenetic analysis comparing the deduced Cry-related amino acid sequence against known 

parasporin proteins was performed. The dendrogram showed that the Cry-related protein remained 

grouped with parasporins Ps6Aa1 (Cry63Aa1) [20], Ps3Aa1 (Cry41Aa1) and Ps3Ab1 (Cry41Ab1) 

separately from the rest of parasporins (Figure 2). 
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Figure 2. Dendrogram showing the relationship of a novel Cry-related protein to other 

parasporin (Cry) proteins. Bootstrap values are indicated at the nodes (100 replicates). 

 

2.3. Protein Expression of the Cry-Related Gene 

SDS-PAGE analysis showed that the novel Cry-related protein was successfully expressed in E. coli 

(Figure 3) and produced a major protein of the expected size (approx. 89 kDa) that was found in both 

the soluble fraction (active protein) and the pellet removed by centrifugation (data not shown), 

indicating that the recombinant Cry-related protein was produced in both soluble and insoluble forms 

(inclusion bodies) as result of overexpression. 

Figure 3. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

analysis of the Cry-related recombinant protein expressed in E. coli (right lane). A molecular 

weight marker (Precision Plus Protein Standards, Bio-Rad) was electrophoresed along with 

the sample and the sizes of the related fragments are indicated to the left of the panel. 

 

2.4. Insecticidal Activity of the Novel Cry-Related Protein 

The novel Cry-related protein showed aphidicidal activity against the green peach aphid,  

Myzus persicae. In the preliminary bioassays, mortality was higher than 75% with the two 

concentrations used (100 and 1000 µg/mL) and, therefore, the LC50 value was estimated using four 
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concentrations, 20, 25, 32 and 40 µg/mL, that killed 16% ± 6%, 23% ± 5%, 55% ± 7% and 83% ± 4% 

of the aphids, respectively. The concentration-mortality responses of the Cry-related protein for  

M. persicae fitted a regression line. The interaction between host population and log [protein dose] was 

not significant with the protein, exhibiting a median lethal concentration (LC50) of 32.7 μg/mL (Table 1). 

In contrast, a single concentration of ~3.5 μg/cm2 resulted in no larvicidal activity or impaired growth 

against any of the five lepidopteran species screened (H. armigera, M. brassicae, S. exigua, S. frugiperda 

or S. littoralis).  

Table 1. Toxicity of the Cry-related B. thuringiensis protein against second-instar  

M. persicae nymphs. 

Treatment 
LC50 

(µg/mL) 

Regression line Goodness of fit value 

Slope ± SE a * ± SE χ2 d.f. 

Cry-related protein 32.7 10.3 ± 1.4 −10.6 ± 2.1 0.55 2 

* a: intercept of the regression line. 

3. Discussion 

In the present study, we report the molecular and insecticidal characterization of a novel Cry-related 

protein encoded into the genome sequence of Bt strain H1.5. This genome sequence exhibited typical 

Bt genome features found in other sequenced Bt strains (i.e., genome size, % G+C, number of 

predicted CDSs, etc.); however, this strain also harbours several different and potentially novel 

insecticidal genes in which their pairwise identity (data not shown) strongly suggest that they are 

susceptible to be protected by patent applications. The novel Cry-related protein contained the five 

amino acid conserved blocks and the three conserved domains (Endotoxin_N, Endotoxin_M and 

delta_endotoxin_C) commonly present in other three-domain Cry toxins (Figure 1). Interestingly,  

it also possessed a C-terminal ricin B-like lectin conserved domain between amino acids 652 and 799 

(Figure 1), which was absent in the aphidicidal protein of 95 kDa (US 8318900) [9]. The novel 

aphidicidal Cry-related protein and its phylogenetic relationship with parasporins Cry41Aa1 and 

Cry41Ab1 may suggest its possible activity against cancer cells, a possibility that is currently under 

investigation [19]. Sap-sucking insect pests (aphids, whiteflies and plant bugs) have shown very low 

susceptibility to some Cry proteins [6,21,22] with the lowest reported LC50 values ranging from 70 to 

100 μg/mL for Cry4Aa and higher than 500 μg/mL for Cry3A and Cry11Aa against the pea aphid 

Acyrtoshiphon pisum (Harris) (Hemiptera: Aphididae) [4]. Multiple factors may be responsible for the 

low toxicity of Cry proteins against hemipteran pests relative to lepidopteran pests, the most important 

being the gut pH, which is acidic in aphids and alkaline in lepidopterans, and the abundance and type 

of proteolytic enzymes, cysteine proteases in aphids and mainly serine proteases (trypsin and 

chymotrypsin) in lepidopterans. This explains the higher toxicity of trypsin-pre-activated Cry3A, Cry4A 

and Cry11A against A. pisum [4]. The novel Cry-related protein exhibited two-fold higher toxicity 

against the green peach aphid, M. persicae, with an LC50 value of 32.7 µg/mL, than Cry4Aa for  

A. pisum, in the range 70–100 μg/mL [4]. However, and compared to the 95-kDa aphidicidal protein, 

which killed 80% L. hesperus at approximately 50 μg/mL showing also some (not quantified) toxic 

activity against Aphis glycines (Matsumura) (Hemiptera: Aphididae) [9], the novel Cry-related protein 
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exhibited a similar performance, killing 83% of M. persicae aphids at 40 μg/mL. The steep regression 

line slope of Cry-related protein for M. persicae was noticeable, and was much higher than the 

regression line slopes of other Bt proteins, which are usually between 0 and 4 [23–25], indicating that 

small changes in protein concentrations have a dramatic effect on aphid mortality. The ricin B-like 

lectin domain might be involved in the toxicity of this protein against M. persicae. Lectins are 

carbohydrate-binding proteins that play a role in plant defences against herbivorous insects and affect 

several insect physiological processes by binding to glycoproteins of the gut membrane being 

particularly antinutritional and toxic for hemipterans [6,26]. For example, Cry1Ac protein, upon fusion 

to the nontoxic ricin B-chain galactose/N-Acetylgalactosamine binding lectin, increased toxicity 

against susceptible and resistant insects but also against the insect pest Cicadulina mbila (Naude) 

(Hemiptera: Cicadellidae) [27], which is not susceptible to natural Cry1Ac proteins [4]. The purified 

(soluble) Cry-related protein was not toxic to any of the five lepidopteran species tested (H. armigera, 

M. brassicae, S. exigua, S. frugiperda and S. littoralis) while the specificity bases for the activity 

against M. persicae remain unknown. Crystal proteins are ingested as non-toxic protoxins, solubilized 

and proteolytically transformed to active protease-stable fragments into the midgut of susceptible 

insects [1,28]. Defects in activation or absence of specific midgut proteases can lead to the lack of 

activity for a given Bt toxin. For instance, in the lepidopterans Plodia interpunctella (Hübner) and 

Heliothis virescens (Fabricius), resistance to Cry1A was produced because midgut proteases failed in 

proteolytically activating the protoxin [29]. Because of the per os mode of action of Bt and the  

sap-sucking feeding behaviour of aphids, development of genetically modified crops expressing 

aphidicidal Cry proteins is a potential method for Bt-control of aphids. In addition, toxins should be 

present in the plant phloem in lethal quantities. Previous studies have demonstrated the effective action 

of different aphidicidal proteins expressed in transgenic plants under the control of powerful promoters 

such as the CaMV35S constitutive plant viral promoter (cauliflower mosaic virus 35S promoter) or the 

phloem-specific sucrose synthase promoter Asus1 from Arabidopsis thaliana [26,30]. For example,  

Yu and Wei (2008) successfully constructed a transgenic wheat plant that stably expressed the Cry1Ac 

protein and the PTA agglutinin under the control of the CaMV35S promoter, which confers resistance 

to the wheat aphid S. graminum and the oriental armyworm Mythimna separata (Walker) 

(Lepidoptera: Noctuidae), producing significant reductions in the survival rate, development, fecundity 

and biomass in both species [13]. Moreover, Baum et al. (2012) constructed a transgenic cotton plant 

expressing the Cry51Aa2 protein, also controlled by the CaMV35S promoter, that negatively affected 

the survival and development of the plant bug L. hesperus [12]. A transgenic Bt-oilseed rape 

expressing a truncated synthetic version of the cry1Ac gene (driven also by the CaMV35S promoter) 

has been used to analyse the bioavailability of the protein against the aphid, M. persicae, which is a 

non-target species for the Cry1Ac protein [21]. The protein was detected in the plant phloem at very 

low concentrations (2.7 parts-per-billion), suggesting the potential value of using highly aphidicidal 

Cry proteins to target these insects. As an alternative to transgenic applications, it has been shown that 

some Bt strains can be taken up endophytically by plants [31] and that application of Bt strains to cut 

leaf stems could result in toxicity to Aphis gossypii (Glover) (Hemiptera: Aphididae) [32]. Development of 

this technology may contribute with the use of aphidicidal Bt strains into integrated pest  

management strategies. Here, the novel aphidicidal Cry-related protein has successfully proven its 
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toxicity against the green peach aphid M. persicae, and may become a promising environmentally-friendly 

tool for the biological control of this hemipteran pest. 

4. Materials and Methods 

4.1. Bacterial Strains and Plasmids  

The Bt H1.5 strain, from the Bt collection held at the Universidad Pública de Navarra  

(Pamplona, Spain) [33,34] and the Escherichia coli DH5α strain were cultured in Luria-Bertani (LB) 

medium (1% tryptone, 0.5% yeast extract, and 1% NaCl, pH 7.0) at 28 °C and 37 °C, respectively.  

E. coli DH5α was used as a host strain for transformation whereas E. coli BL21(DE3) was used for 

protein expression and grown in 2× YT medium (1.6% tryptone, 1% yeast extract, and 0.5% NaCl,  

pH 7.0) at 37 °C. The vector pGEM-T Easy (Promega, Madison, WI, USA) was used for routine 

cloning of PCR products and the expression vector pET-28b(+) (Merck Millipore, Darmstadt, 

Germany) was used for the production of recombinant proteins. 

4.2. Genome Sequencing 

Total DNA (chromosome and plasmids) from Bt strain H1.5 was isolated using the Wizard 

Genomic DNA Purification Kit (Promega, Madison, WI, USA) following the manufacturer’s 

instructions for DNA isolation from Gram-positive bacteria. The purified DNA was then used to 

construct a pooled Illumina library and sequenced using a HiSeq 2000 Sequencing System  

(Illumina Sequencing, San Diego, CA, USA) in a single read mode with a read length of 50 bases 

(GATC Biotech, Constance, Germany). 

4.3. Computational Analysis of DNA and Protein Sequences 

The millions of reads produced by sequencing were assembled using CLC Genomic Workbench 6.0 

(Qiagen, Aarhus, Denmark) with the de novo assembly tool and default parameters. The resultant 

contigs were then analysed with BLAST [35] using a custom insecticidal toxin database constructed 

with insecticidal protein sequences obtained from public databases and the BtToxin_scanner [36]. 

Multiple sequence alignments, phylogenetic trees, conserved domain searches, cloning and primer 

design, were performed using suitable tools included in Geneious Pro v6.1.4 (Biomatters Ltd., 

Auckland, New Zealand) [37]. 

The multiple sequence alignment was performed including amino acid sequences of Cry-related 

protein and parasporin (Cry) proteins using Geneious Alignment tool and default parameters.  

A Neighbor-Joining phylogenetic inference was performed on the multiple amino acid alignment with 

the Geneious Tree Builder tool by using Jukes-Cantor as genetic distance model. The support for 

nodes in the tree was obtained from 100 bootstrap iterations. 

4.4. Amplification and Cloning of the Novel Cry-Related Gene Sequence 

For the amplification of the full-length cry-related gene sequence, a pair of primers was designed 

based on the sequences upstream of the start (ATG) and downstream of the stop (TAA) codons of  
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the gene. The PCR reaction was performed in a 25 μL (final volume) mixture containing 5 μL  

5× reaction buffer, 10 mM dNTPs, 6.3 pmol forward and reverse primers, 0.5 U proof reading 

PrimeSTAR HS DNA polymerase (Takara Bio, Otsu, Japan) and 100 ng total DNA. PCR was performed 

using the following cycling conditions: 4 min initial denaturation at 94 °C, 35 amplification cycles  

(1 min denaturation at 94 °C, 1 min annealing at 52 °C and 2.5 min extension at 72 °C) with a final 

extension step at 72 °C for 10 min. The blunt-ended, ~2.4 kb PCR product was agarose purified using 

NucleoSpin Extract II kit (Macherey-Nagel, Düren, Germany), end modified by an A-tailing  

procedure and ligated into pGEM-T Easy according to the manufacturer’s instructions (Promega, 

Madison, WI, USA). The ligated insert was then cloned into E. coli DH5α using standard procedures [38]. 

Plasmid DNA was purified using the NucleoSpin Plasmid kit (Macherey-Nagel, Düren, Germany) and 

the corresponding DNA sequences obtained with an automatic Applied Biosystems 3730×I nucleotide 

sequence analyzer (Sistemas Genómicos, Valencia, Spain). The sequence obtained was analysed from 

at least two different H1.5 colonies to ensure that no mismatches were present in the wild-type sequence. 

This allowed the design of another full-length pair of primers from the start to the stop codon including 

an upstream 5' BamHI (5'-GGATCCGATGAACCAAAATTATAACAAC-3') and a downstream  

3' SalI (5'-GTCGACTTATAACTTATTCAGTTTG-3') restriction sites. The insert was then ligated 

into pGEM-T easy and transformed into E. coli DH5α. Plasmid was purified using the NucleoSpin 

Plasmid kit (Macherey-Nagel, Düren, Germany), digested with BamHI and SalI restriction enzymes, 

purified from the agarose gel, ligated into predigested pET-28b(+), and cloned into E. coli BL21(DE3). 

A clone of the recombinant strain was selected and sequenced to verify the correct N-terminal fusion to 

the polyhistidine-tag encoded in the pET-28b(+) expression vector.  

4.5. Protein Expression and Purification 

The recombinant E. coli BL21(DE3) strain harbouring the novel cry-related gene was pre-cultured 

overnight at 37 °C with vigorous shaking at 200 rpm (MaxQ 4000 orbital shaker, ThermoFisher, 

Waltham, MA, USA) in 2× YT medium containing 50 μg/mL kanamycin. This pre-culture was diluted 

1/25 in 500 mL 2× YT medium containing 50 μg/mL kanamycin and further incubated at 37 °C with 

vigorous agitation (250 rpm) up to an OD600 of between 0.7 and 1.0. Expression was induced immediately 

by adding isopropyl-β-D-1-thiogalactopyranoside (IPTG, Bioline, London, UK) to a final concentration 

of 1 mM and incubation for 1–3 h. Samples were centrifuged at 5000 g for 15 min at 4 °C, and the 

resulting pellet weighed and resuspended with 3 mL sonication buffer (50 mM NaH2PO4 pH 8.0,  

300 mM NaCl, 3 mg/mL lysozyme, 25 U Benzonase (Novagen, Billerica, MA, USA) and 100 μM 

phenylmethylsulfonyl fluoride (PMSF, Calbiochem, Darmstadt, Germany) per gram of pellet. Samples 

were further incubated at 37 °C for 30 min and sonicated on ice water with a Branson analog sonifier 

250 (Branson Ultrasonics Corporation, Danbury, CT, USA) by applying two 1 min pulses with 

constant duty cycle at 60 W, separated by a 1 min cooling period. Insoluble material was pelleted by 

centrifugation at 12,000 g for 30 min at 4 °C and the soluble cellular fraction filtered through sterile 

0.45 and 0.22 μm syringe filters. Protein purification was performed at room temperature using Protino 

Ni-TED 2000 Packed Columns according to the manufacturer’s instructions (Macherey-Nagel, Düren, 

Germany). Once the bound polyhistidine-tagged protein was eluted, the buffer exchange procedure 

was performed immediately at room temperature with Milli-Q water and GE Healthcare PD-10 
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desalting columns. This step also prevents the potential toxic effects of imidazole [39,40] to the insects 

tested in bioassays. The resultant expressed protein was then concentrated by lyophilization, resuspended 

in Milli-Q water, and analyzed by sodium dodecyl sulfate-polyacrylamide (Bio-Rad, Alcobendas, 

Spain) gel electrophoresis (SDS-PAGE) stained with Coomassie brilliant blue R-250 (Sigma-Aldrich, 

Dorset, UK) [38]. The protein concentration was quantified by the Bradford method [41]. 

4.6. Insect Rearing and Bioassays 

A colony of M. persicae (Sulzer) was started from a single virginoparous female collected in a 

pepper field (El Encín, Alcalá de Henares, Spain) in 1989. This aphid species was reared on pepper 

plants (Capsicum annuum L.) in controlled environmental conditions, at 25 °C, 60% ± 5% RH 

(relative humidity) and a 16:8 h (light:dark) photoperiod. The five lepidopteran insects tested, 

Helicoverpa armigera (Hübner), Mamestra brassicae (L.), Spodoptera exigua (Hübner), Spodoptera 

frugiperda (J.E. Smith), and Spodoptera littoralis (Boisduval) belong to the Noctuidae family and have 

been reared for more than 25 generations on artificial diet [42] under controlled conditions (25 °C, 

60% ± 5% RH, and 16:8 h light:dark photoperiod) at the insectary facilities of the Universidad  

Pública de Navarra. For the bioassays with M. persicae, cohorts of 300 second-instar nymphs were 

obtained from gravid females during a two-day period prior to the experiment. To evaluate the 

insecticidal activity of the novel Cry-related protein, the purified (soluble) recombinant protein was 

incorporated into a liquid diet containing 20% (w/v) sucrose in Milli-Q water. Preliminary assays to 

estimate protein activity were performed twice with two protein concentrations (100 and 1000 μg/mL) 

each time. The median lethal concentration (LC50) was determined using four different protein 

concentrations (20, 25, 32 and 40 μg/mL) that were estimated to kill between 5% and 95% of the tested 

insects. The bioassay was performed eight times. Groups of 15 second-instar nymphs were placed 

inside a cylindrical plastic cage without a lid (3 cm diameter × 1.5 cm height). The cages were covered 

with a Parafilm (Bemis, Neenah, WI, USA) layer, on which 100 µL drops of protein-containing diet or 

protein-free diet (as negative controls) were loaded and confined using a second Parafilm layer. Water 

was used instead of protein dilutions in negative controls. Aphids were allowed to feed on the liquid 

diet through the Parafilm membrane. Bioassays were conducted at 25 °C, 60% ± 5% RH, and a 16:8 h 

(light:dark) photoperiod. Mortality was recorded after 72 h. Concentration-mortality results were 

subjected to Probit analysis [43] and expressed as the median lethal concentration (LC50) in μg/mL.  

For the bioassays with lepidopterans, groups of 24 neonate larvae of H. armigera, M. brassicae, S. exigua,  

S. frugiperda and S. littoralis were used. A single dose of ~3.5 μg/cm2 of the purified (soluble) 

recombinant protein diluted in water was poured onto 9 cm petri dishes (200 μL/plate) containing a 

layer of solidified artificial diet covering the entire dish base, and allowed to dry in sterile conditions. 

Water was used instead of protein dilutions in negative controls. Bioassays were conducted at 25 °C, 

60 ± 5% RH, and a 16:8 (light/dark (h)) photoperiod and mortality was recorded after seven days. 

5. Conclusions 

In this study, a novel cry-related gene was successfully identified from Bt strain H1.5, cloned and 

expressed in E. coli. The insecticidal activity of the purified recombinant protein was tested in 

bioassays against several lepidopteran pest species and the green-peach aphid M. persicae. This novel 
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Cry-related protein showed the lowest LC50 value (32.7 μg/mL) reported to date for a Cry protein 

against an hemipteran pest, which are not in general very susceptible to the toxic activity of the Cry 

toxins produced by Bt. 
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