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Abstract: Staphylococcus aureus secretes a number of host-injurious toxins, among the 

most prominent of which is the small β-barrel pore-forming toxin α-hemolysin. Initially 

named based on its properties as a red blood cell lytic toxin, early studies suggested a far 

greater complexity of α-hemolysin action as nucleated cells also exhibited distinct 

responses to intoxication. The hemolysin, most aptly referred to as α-toxin based on its 

broad range of cellular specificity, has long been recognized as an important cause of 

injury in the context of both skin necrosis and lethal infection. The recent identification of 

ADAM10 as a cellular receptor for α-toxin has provided keen insight on the biology of 

toxin action during disease pathogenesis, demonstrating the molecular mechanisms by 

which the toxin causes tissue barrier disruption at host interfaces lined by epithelial or 

endothelial cells. This review highlights both the historical studies that laid the groundwork 

for nearly a century of research on α-toxin and key findings on the structural and functional 

biology of the toxin, in addition to discussing emerging observations that have significantly 

expanded our understanding of this toxin in S. aureus disease. The identification of 

ADAM10 as a proteinaceous receptor for the toxin not only provides a greater appreciation 

of truths uncovered by many historic studies, but now affords the opportunity to more 

extensively probe and understand the role of α-toxin in modulation of the complex 

interaction of S. aureus with its human host. 
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1. Introduction 

Staphylococcus aureus α-hemolysin (α-toxin, Hla) is the prototype for the class of small β-barrel 

pore-forming cytotoxins (PFTs) [1–4]. S. aureus α-toxin is secreted as a water soluble monomer, 

capable of binding and oligomerization into a heptameric structure on the host cell membrane [5,6]. 

This molecular transformation on susceptible host cells culminates in the extension of a  

membrane-perforating 1–3 nm β-hairpin lined amphipathic pore through the eukaryotic lipid bilayer, 

allowing for the flow of Ca2+ and K+, ATP, and low molecular weight molecules with a cutoff between 

1 and 4 kDa through the barrel of the pore [1]. While pore formation and cellular lysis are a prominent 

consequence of α-toxin action, a number of studies in recent years have defined cellular responses to 

sublytic intoxication, notably the alteration of cell signaling pathways that govern cell proliferation, 

inflammatory responses, cytokine secretion, and cell-cell interactions (extensively reviewed in [1,7]; 

see also [8–13]).  

For many years the relevance of α-toxin-mediated injury to human disease was the subject of debate 

as multiple investigations focused on the exquisite susceptibility of rabbit erythrocytes to lysis, in 

contrast to a relative insensitivity of human red cells [14–18]. However, in 1964, Siegel and Cohen 

demonstrated that α-toxin causes the aggregation of human platelets at sublytic concentrations [19]. 

Since then, α-toxin has been shown to intoxicate a wide range of human cell types, including epithelial 

cells, endothelial cells, and an array of other hematopoietic-lineage cells including T cells, monocytes, 

macrophages, and neutrophils [1,7,13,18,20–24]. Further, multiple studies have investigated the 

human and small animal host response to the toxin, both shedding light on how this toxin causes injury 

and defining salient features of the cellular and organismal response to the toxin [9,11,13,20,25–33]. 

S. aureus α-toxin has been the subject of a number of exceptional reviews that provide a detailed 

record of the many studies that have contributed to our current knowledge of the toxin; we recommend 

these to the reader [1,7,34–36]. In this review, we will highlight key observations on α-toxin that 

illustrate the defining features of toxin biology and its role in disease pathogenesis. Given the common 

use of pore-forming toxins by bacterial pathogens, it is anticipated that the ever-increasing knowledge 

of S. aureus α-toxin will likely provide greater insight on the biologic function of this family of toxins. 

While many early investigations on α-toxin lack the sophisticated experimental techniques currently 

available, these observations can now be viewed in light of our existing knowledge to have provided 

extraordinary fundamental insights on S. aureus disease and α-toxin-mediated injury. These seminal 

discoveries have been validated over decades of research, now expanded in scope through newer 

observations that provide molecular detail of toxin action and more clearly define the contribution of 

α-toxin to S. aureus disease pathogenesis. Our wealth of insight on this toxin highlights interesting 

new areas for investigation and defines the potential to target α-toxin through preventive and 

therapeutic strategies to combat human S. aureus disease, both of which will be explored in this review. 

2. Historic Studies 

Investigation on the toxic activity of staphylococcal supernatants began in the late 1800s. These 

initial studies attributed lethality in guinea pigs and rabbits, dermonecrosis, inflammation of the 

conjuctival epithelium, and hemolysis to toxigenic substances secreted by S. aureus [37–43]. However, 
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the precipitating event that sparked a rigorous examination of S. aureus and its toxins came in the late 

1920s following a tragedy in Bundaberg, Australia [14,35,44]. Twenty-one children in that town were 

immunized with a diphtheria toxin-antitoxin preparation. Within hours, 16 children experienced 

vomiting, high fever, unconsciousness, and convulsions. Within two days, 12 of the children had died, 

while all of the surviving children developed abscesses at the site of the immunization. F. McFarlane 

Burnet, then in the early days of his career, was commissioned by the Commonwealth of Australia to 

further investigate the cause of this tragedy. The Royal Commission noted in their investigation that, 

“massive production of toxic substances must have taken place if staphylococci were the responsible 

agents” [44]. Burnet discovered that culture supernatants from the vaccine-contaminating S. aureus 

strain caused hemolysis and lethal injury upon injection into rabbits [14,15,44,45]. Further, he 

provided a cohesive analysis of other S. aureus isolates that had been investigated at that time for their 

toxic properties, concluding that a single, heat-labile antigenic substance secreted by this pathogen was 

responsible for multiple biologic effects including hemolysis in vitro, dermonecrosis upon intradermal 

inoculation in vivo, and acute death upon injection into a rabbit. Burnet and his contemporaries also 

made the key observation that active immunization with formalin-treated supernatant preparations or 

passive immunization with antitoxin containing serum derived from immune rabbits afforded 

protection against disease in naïve rabbits and neutralized hemolytic and necrotic activity [14,15]. 

In the years immediately following Burnet’s studies, Glenny and Stevens described two 

immunologically distinct toxins secreted by S. aureus that displayed species-specific hemolytic activity. 

They designated the rabbit-specific toxin as α-toxin [46]. Over the next few decades, crude preparations 

of α-toxin from staphylococcal supernatants led to several significant observations. In particular, rabbit 

erythrocytes were shown to be exquisitely sensitive to hemolysis by α-toxin [47–49]. This sensitivity was 

paralleled by comparative toxicity studies in a number of small animals, which demonstrated that rabbits 

succumb to the lethal effects of the toxin at an LD50 of 2 μg/kg body weight, the lowest of any species 

tested [34].  

In the 1960s, isolation of purified ãtoxin from culture supernatants allowed for a wide range of 

structural, biochemical, and cellular biological experiments to be performed [50,51], tremendously 

advancing knowledge of this toxin and more broadly, the pore-forming family of toxins. Early 

experiments with purified α-toxin indicated the toxin might function by disrupting host cell 

membranes, initially noted by Bernheimer and Schwartz who stated, “In view of the rapidity with 

which it brings about cell damage and in view of its remarkable lytic action on red blood cells, as 

distinct from diphtheria, tetanus, and botulinum toxin which have neither of these properties, perhaps 

the best hypothesis is that it alters or disrupts cell membranes” [51]. Consistent with this hypothesis, 

low molecular weight markers of <1–2 nm in size leaked out of toxin-treated cells [52–55], oligomeric 

structures could be isolated from red cell membrane preparations [56], and membrane lesions could be 

visualized in the plasma membrane of toxin-treated cells [57]. While these effects were not specific to 

rabbit erythrocytes, the molecular mechanism by which α-toxin exhibited selective cytotoxicity across 

a wide array of cells remained a focus of investigation for many years. 
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3. Properties of α-Toxin 

3.1. Toxin Structure and Regulation of Production 

The gene coding for α-toxin was discovered in the early 1980s utilizing a recombinant phage-based 

strategy that transferred the ability to lyse red blood cells to E. coli [58]. Further studies narrowed the 

region responsible for toxin activity to a 1620 base pair genomic DNA fragment [59]; the full DNA 

coding and protein sequence being identified shortly after in 1984 [60]. Present in a single copy on the 

staphylococcal chromosome, the hla locus is rather invariant across sequenced S. aureus strains, with 

almost complete conservation of primary amino acid sequence. The hla locus encodes a 319 amino 

acid protein containing a 26 amino acid leader peptide predicted to be α-helical in structure [60]. The 

polypeptide is processed to yield a mature extracellular protein of 293 amino acids weighing 

approximately 33 kDa [61]. Circular dichroism studies revealed the mature toxin is composed almost 

entirely of β-strands with little to no α-helical structure [62].  

Early evidence suggested that α-toxin monomers aggregated into an oligomeric structure on the host 

cell surface. Electron micrographic images of Hla-treated cells or artificial liposomes led to the discovery 

of ring-like structures 10 nm in diameter with 6–7 subunits and a central pore of approximately  

2–3 nm [56,57,63–67]. Initial biochemical studies, including purification of membrane-bound oligomers, 

led to the determination that α-toxin formed stable hexamers [56,68–70]. Gouaux and colleagues 

clarified these observations, employing X-ray diffraction analysis to propose a heptameric toxin  

structure [6]. This heptameric structure was confirmed in 1996 when Song and colleagues solved the 

crystal structure of the fully assembled toxin pore (Figure 1, [5]). The holotoxin is described to 

encompass three broad domains: (1) the cap domain on the extracellular face of the toxin, exposed to the 

aqueous environment, defining the entry of the pore; (2) the rim domain that is juxtaposed to the outer 

leaflet of the host plasma membrane; and (3) the stem domain that forms the membrane-perforating  

β-barrel pore [5].  

Figure 1. Structure of α-toxin. Crystal structure of α-toxin derived from the RCSB Protein 

Data Bank (PDB, 7AHL) and prepared using PYMOL, noting the regions of the toxin that 

demarcate the entry of the pore (Cap), the membrane-interfacing region (Rim), and the 

membrane perforating stem.  
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Expression of the α-toxin monomer is controlled by several global regulatory systems [71]. The 

accessory gene regulator (agr) locus, codes for a quorum-sensing system that provides the primary 

control of Hla production via a regulatory RNA molecule, RNAIII [72,73]. Activated during late-log 

and stationary phases of growth, the agr system enables the production of the secreted autoinducer 

peptide (AIP). AIP binding to its cell surface, AgrC, activates its response regulator, AgrA [74,75]. 

AgrA binds to the P3 promoter of the agr locus and activates the production of the RNAIII  

molecule [76], culminating in the increased expression and secretion of hla with only 1% of total  
α-toxin remaining cell-associated [73,77]. While this system provides the primary mechanism of 

regulation of hla, expression levels can also be modulated by both the Sae and Sar regulatory  

systems [78–81]. Despite the challenges associated with determining the contribution of these 

regulatory circuits in vivo, it is clear this complex interplay between these global regulators allows for 

the tight control of hla expression and likely facilitates a rapid yet specific response to changing 

environmental conditions. 

3.2. Host Cell Binding 

The molecular mechanism by which α-toxin binds to the surface of host cell membranes had been a 

longstanding subject of debate in the field [17,18,82], as experimental evidence provided by multiple 

investigators either supported the ability of the toxin to bind to membrane lipids or to interact with host 

cells in a specific fashion consistent with proteinaceous receptor binding. Lending support to the 

former mechanism, (1) α-toxin binds to artificial lipid membranes, and can perforate lipid vesicles 

leading to the release of intravesicular contents [52,66,83–89]; (2) the “rim-stem crevice” of the toxin 

directly interacts with membrane lipids [90]; (3) cholesterol depletion abrogates binding of α-toxin to 

host cell membranes [82]; and (4) the addition of exogenous phosphocholine antagonizes toxin  

binding [82]. Further, multiple bacterial pore-forming cytotoxins utilize membrane lipids as their 

cellular receptors establishing a precedent for this mode of interaction [91]. These results, however, 

failed to explain the exquisite cell type and species specificity for α-toxin binding and intoxication, 

highlighted by the drastic difference in susceptibility to Hla-mediated lysis between rabbit erythrocytes 

(with lysis occurring in the low nanomolar range) and human erythrocytes (with lysis occurring in the 

high nanomolar to low micromolar range) [18]. By performing detailed analysis of host cell binding 

using radioiodinated toxin, Cassidy and Harshman determined that α-toxin binding to rabbit erythrocytes 

was saturable with a dissociation constant (Kd) of 6 × 10−9 at 20 °C [17]. They estimated approximately 

5000 discrete toxin-binding sites per red cell, and therefore, argued for the existence of a high-affinity 

receptor for α-toxin. This notion was extended by the findings of Hildebrand and colleagues indicating 

there are ~1500–2000 high-affinity “receptors” on sensitive cells, resulting in half-maximal toxin 

binding at 2 nM, while non-susceptible cells were subject to adsorptive binding of Hla with lysis 

observed only at high toxin concentrations [18].  

For over a decade, the elusive nature of the proteinaceous toxin receptor coupled with the 

demonstrated ability of α-toxin pores to form in a purified lipid membrane cast considerable doubt on 

the necessity or relevance of a protein dock on susceptible cells. Valeva and colleagues aimed to unite 

these seemingly disparate findings by hypothesizing that clustered phosphocholine headgroups serve 

as the high-affinity receptor for α-toxin [82]. Their investigations revealed that treatment of cells with 
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sphingomyelinase considerably diminished toxin binding, as did depletion of cellular cholesterol. 

Interesting recent observations on the role of S. aureus-elaborated membrane vesicles (MV, akin to 

outer membrane vesicles described in Gram negative bacteria) indicate that α-toxin can be delivered to 

the eukaryotic cell packaged in MVs, also requiring cholesterol in the target cell membrane to facilitate 

MV fusion and α-toxin action [92,93].  

While these findings failed to explain the observed species specificity of toxin action on 

erythrocytes, a lipid-receptor hypothesis comprised the prevailing thought in the field until a few years 

ago when ADAM10 was defined as a candidate proteinaceous receptor for α-toxin [94]. Taking 

advantage of the differential susceptibility of rabbit and human erythrocytes to lysis, A Disintegrin 

And Metalloprotease 10 (ADAM10) was determined to be a proteinaceous receptor for α-toxin, 

supported by the following: (1) ADAM10 is precipitated by Hla from the membrane of host cells;  

(2) ADAM10 is required for toxin binding and oligomerization; (3) the requirement for ADAM10 in 

Hla-mediated cytotoxicity is most apparent at low toxin concentrations wherein the need for a  

high-affinity cellular receptor was predicted to be most relevant [17]; and (4) the species specificity 

exhibited by α-toxin was demonstrated to correlate with ADAM10 expression on rabbit erythrocytes, 

in contrast to its absence on the surface of the human red cell [94]. The observed interactions of  

α-toxin with both membrane lipids and a proteinaceous receptor indicate the probable cooperativity of 

these interactions in modulation of toxin binding, assembly and cytotoxicity.  

3.3. Oligomerization and Pore Formation 

The transforming structural events that result in perforation of the host lipid bilayer by α-toxin has 

been the study of intensive investigation, taking advantage of biochemical and structural analytic tools 

to define the movements of discrete protein segments into the membrane to generate the pore. α-Toxin 

exhibits a well-defined pre-pore state, representing the fully assembled oligomeric structure on the host 

cell membrane. As the transition from monomeric toxin through the pre-pore state to the open pore has 

been the subject of extensive review within the structural biology field, we refer the reader to several 

excellent reviews [36,95]. 

Several notable observations have arisen subsequent to these reviews, and have solidified a path 

that allows for structure-function insights to be utilized in the development of disease modifying 

strategies. The α-toxin polypeptide does not contain any cysteine residues, a fact that has been 

capitalized on by a number of studies in which the introduction of cysteine residues has permitted both 

discrete site labeling for assessment of toxin structure and the generation of “locked” mutants that are 

unable to form membrane-inserted pores [96–98]. Valeva and colleagues determined that the  

N-terminal segment of α-toxin undergoes a conformational shift to “latch” onto the neighboring 

protomer, stabilizing the heptameric pore structure [97]. The importance of the N-terminus was further 

demonstrated as the His35 residue precipitates the insertion of the stem domain into the membrane by 

moving into a hydrophobic environment at the pre-pore to pore transition [96]. Consequently, 

substitution mutants at this residue are unable to form a stable oligomer, and are thus incapable of 

assembly into a lytic pore in spite of their preservation of cellular binding ability [96,99–102]. Further 

underscoring the importance of the N-terminus in regulation of toxin assembly, a series of N-terminal 
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truncation mutants encompassing up to the first 18 residues was consistent with a role for this portion 

of the protein in preventing the premature oligomerization of the monomeric toxin in solution [103].  

Several lines of evidence illustrate the magnitude of the conformational change that occurs between 

the monomer-pore transition. Kawate and Gouaux engineered a tether between the pre-stem domain 

and the cap of the toxin by the incorporation of cysteine residues at amino acids 104 and 154 [98]. This 

molecule is “arrested” as a non-injurious heptameric pre-pore under oxiding conditions, resolving to a 

fully lytic pore under reducing conditions. Several years later, the structure of the water-soluble  

α-toxin monomer was reported [104], providing further insight on the mechanism of conversion of the 

pre-pore to the assembled pore. While the small angle X-ray scattering technique utilized to obtain this 

structure suffers from low resolution, this technique was combined with molecular modeling to reveal 

that many features of the monomeric structure are conserved in the heptamer. The transitions from 

soluble monomeric toxin to the fully assembled pore are therefore discernable as distinct 

conformational entities, with the pre-pore to pore transition representing an irreversible molecular 

event. Several significant movements or regions of flexibility are noted in the transition process from 

monomeric toxin to the open pore, consistent with prior biochemical observations: (1) the rather 

dramatic down-folding of the central glycine-rich β-hairpin stem from each subunit (Lys100–Tyr148) 

away from the monomer to perforate the membrane; (2) extension of the N-terminal segment  

(Ala1–Val20) toward the neighboring protomer in the assembled heptamer, stabilizing the structure; and 

(3) flexibility of the phosphocholine binding region at the rim-stem interface [104]. These findings 

were supported by the recent demonstration of the structure of the α-toxin monomer complexed to a 

neutralizing monoclonal antibody [105]. The wealth of insight derived from structure-function studies 

of pore formation has focused considerable interest on His35 and other non-toxinogenic mutants as 

candidates for vaccine development, as well as monoclonal antibody strategies that impede toxin 

action through specific effects on conformational changes that occur in the molecule or through 

blocade of toxin binding [105–108].  

4. Contribution of α-Toxin to S. aureus Disease 

The Bundaberg accident and related investigations were the first of multiple studies to suggest that 

α-toxin may play an important role in the pathogenesis of human disease, now primarily supported 

through two lines of evidence. First, carriers of S. aureus or individuals suffering from S. aureus 

disease develop serum antibody responses to the toxin consistent with toxin expression [26,27,109]. 

While these investigations do not provide a direct correlation between serum antibody titer and disease 

outcome, two recent studies begin to address this issue. Adhikari and colleagues examined a 

population of 100 adults at risk for S. aureus sepsis, revealing that the risk of sepsis was reduced in 

individuals with higher serum antibody titers to Hla and a collection of 4 other S. aureus toxins [109]. 

Fritz and colleagues examined serum anti-Hla responses in 235 children categorized in four  

cohorts—S. aureus colonized without evidence or history of infection, primary skin/soft tissue 

infection, recurrent skin/soft tissue infection, and invasive S. aureus disease. Children with invasive 

disease developed higher anti-Hla antibody titers, suggestive of toxin exposure. Of considerable interest, 

enrollees received one-year follow-up to examine the relationship between antibody titers and protection 
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against S. aureus skin infection. Throughout the follow-up period, a statistically significant increase in 

anti-Hla titer correlated with protective immunity against recurrent infection [27].  

Bacterial genetic and protein profiling analysis provides a second line of evidence implicating  

α-toxin in the pathogenesis of human disease. The so-called “Phage-type 80/81” epidemic of the 1950s 

and 1960s was notable for rampant and severe S. aureus disease in the population, afflicting 

individuals with an array of clinical manifestations of disease including skin/soft tissue infection, 

pneumonia, and sepsis/bacteremia [110–112]. Analysis of the hla and agr loci in these strains revealed 

the capability for α-toxin expression, confirmed by a highly virulent phenotype of these isolates in 

animal studies of Hla-mediated disease [113]. In contrast, these investigators demonstrated that current 

hospital infection isolates (lineage EMRSA-16 and related clones that cluster in the same clonal 

complex) harbor point mutations in both loci, preventing α-toxin production. These strains exhibit a 

corresponding decrease in virulence observed in animal models. Consistent with these findings, current 

epidemic USA300 isolates of S. aureus that cause a significant disease burden in healthy human hosts 

display both increased Hla expression and virulence in experimental models, dependent on the Agr and 

Sae regulatory systems that govern toxin expression [114–116]. In addition, α-toxin expression was 

associated with non-resolution of bacterial peritonitis in individuals receiving peritoneal dialysis [117]. 

Together, these studies are most consistent with the conclusion that α-toxin expression may be 

required for the pathogenesis of invasive disease in healthy individuals, while of lesser relevance in 

individuals that are already predisposed to invasive bacterial infection on account of underlying illness, 

hospitalization, or tissue barrier compromise in the setting of indwelling medical devices [113]. 

Advances in S. aureus genetic manipulation have allowed for perturbation of α-toxin expression 

and a rigorous analysis of its role in the pathogenesis of disease in experimental animals. The use of 

toxin-deficient strains has highlighted the diversity of organs and tissue systems in which α-toxin plays 

a significant role, as Hla-deficient mutants display reduced virulence in animal models of  

pneumonia [20,28], dermonecrotic skin infection [30,118], sepsis [13,119], peritonitis [118,120,121], 

and infection of the cornea [33], central nervous system [32], endocardium [122], and the mammary 

gland [123,124]. 

While early studies alluded to the triad of lethal disease, hemolysis, and dermonecrosis as the chief 

manifestations of α-toxin-induced host injury [14], clinical and disease modeling data highlight a 

considerable complexity of the role of α-toxin in pathogenesis consistent with the ability of the toxin to 

cause injury and elicit cellular responses in a wide array of cell types (Figure 2). The discovery of 

ADAM10 as a cellular receptor for α-toxin has allowed for a more thorough examination of the 

molecular mechanisms by which α-toxin contributes to disease at the epithelial and endothelial tissue 

barriers [11–13]. These findings, along with substantial recent advances in our understanding of  

toxin-mediated regulation of host immunity [9,29,31,125–128], will be the subject of this section. 
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Figure 2. Cellular responses to intoxication by Hla. Multiple cell types are targeted by  

α-toxin, each displaying unique effects that are dependent on the relative concentration of 

toxin to which the cell is exposed. 

 

4.1. Toxin-Induced Tissue Injury 

ADAM10, a cellular receptor for α-toxin, is a zinc-dependent metalloprotease expressed as a type I 

transmembrane protein on the surface of a wide array of host cells [129,130]. The extracellular domain 

of ADAM10 is comprised of an N-terminal enzymatic domain followed by the so-called “disintegrin” 

and cysteine-rich domains, both of which may facilitate protein-protein interactions at the cell surface. 

The short cytoplasmic tail of ADAM10 encompasses a proline-rich sequence and a consensus binding 

site for calmodulin [131]. Functioning as a cellular “sheddase”, ADAM10 is responsible for the 

cleavage of the ectodomains of a large number of host proteins including members of the cadherin 

family, epithelial growth factor, betacellulin, syndecans, chemokines, amyloid precursor protein (APP), 

platelet glycoprotein VI, notch, and ephrin, with substrate specificity varying by cell type [132–140]. 

Cleavage by ADAM10 leads to ectodomain release from the cell surface and the retention of a 

membrane-bound fragment, which is subject to further proteolytic processing. ADAM10-mediated 

cleavage yields discrete biologic outcomes, as many extracellular and intracellular cleavage products 

are active signaling moieties that facilitate both physiologic and pathophysiologic processes. 

The requirement for ADAM10 as a cellular receptor for α-toxin in S. aureus pathogenesis was 

recently demonstrated utilizing conditional knockout approaches in the alveolar epithelium and the 

mature epidermis [11,12]. Germline deletion of ADAM10 results in embryonic lethality at E9.5 [141], 

and is associated with cell-specific abnormalities upon conditional knockout the developing epidermis, 

neuronal progenitor cells, the endothelium, and several hematopoietic lineage cells [142–147]. The 

loss of ADAM10 expression in the lung led to a marked improvement in the outcome of S. aureus 

pneumonia [11], minimizing lethal disease as compared to control mice. Similarly, ADAM10 

knockout in the skin was associated with a reduction in the size of S. aureus skin lesions and 

abrogation of the severe dermonecrotic tissue injury that is a hallmark of the action of α-toxin [12].  

A number of studies indicate that α-toxin induces signaling events in the target cell (Figure 2).  

The small pore formed by the toxin permits the rapid release of ATP, K+ ions (or 86Rb+, a K+  

analogue) [17,128,148], however, restricts the movement of macromolecules across the cell 

membrane. One of the early and perhaps most important, cellular events following toxin pore 

formation is the influx of extracellular calcium into the cell. As a central trigger of cell signaling 

pathways, increased intracellular calcium stimulates hydrolysis of membrane phospholipids and 
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metabolism of arachadonic acid to leukotrienes, prostanoids, and thromboxane A2 [21,149,150]. Toxin 

treatment also leads to the generation of nitric oxide in endothelial and epithelial cells, activation of 

protein kinase C, and induction of NF-κB nuclear translocation [21,150,151]. Together, these events 

signify the pro-inflammatory stimulus evoked by intoxication, also evident by cellular production of 

IL-1β, IL-6, and IL-8 [148,150]. These inflammatory stimuli, as well as associated cell death via 

pyroptosis, can exert a marked impact on the local tissue microenvironment, stimulating immune cell 

recruitment, increasing reactivity of the vasculature, promoting tissue edema, and modulating host 

immunity (further discussed in Section 4.2 below) [9,152–154]. It is attractive to hypothesize that one 

or more domains of ADAM10, particularly the transmembrane domain or cytoplasmic tail of the 

molecule, may contribute to toxin-induced intracellular signaling. This and other facets of the  

Hla-ADAM10 interaction remain to be explored through perturbation of ADAM10 in both the cellular 

and tissue context. 

In the context of epithelial cells (such as pneumocytes and keratinocytes) that are key targets of  

α-toxin, E-cadherin is a principal substrate for ADAM10 [133,155]. Cleavage of E-cadherin by 

ADAM10 results in a loss of the homotypic interaction of the cadherin molecules on adjacent cells at 

the adherens junction, thereby injuring the epithelial tissue barrier function. In vitro studies 

demonstrated the surprising finding that treatment of epithelial cells with sublytic concentrations of  

α-toxin leads to a rapid upregulation of the metalloprotease activity of ADAM10, which in turn 

dismantled the adherens junction through cleavage of E-cadherin [11,12]. Extension of these studies in 

the context of infection revealed that α-toxin caused a primary disturbance of the epithelial barrier in 

the lung and the skin, manifesting as proteinaceous pulmonary edema and dermonecrotic injury, 

respectively. In both of these tissues, the α-toxin-ADAM10 complex was demonstrated to mediate  

E-cadherin cleavage in vivo, correlating with the physiologic evidence of epithelial injury observed 

during infection. These findings prompted examination of the molecular mechanism that underlies 

toxin-induced ADAM10 metalloprotease activation. Activation occurs at subcytolytic concentrations 

of α-toxin [11–13], however requires the formation of a fully assembled, patent heptameric pore on the 

surface of the cell. Three lines of evidence support this mechanism of activation: (1) the HlaH35L 

mutant is unable to trigger ADAM10 activation—while this toxin variant displays normal ADAM10 

binding [94], it is unable to form a stable oligomer on the cell surface and therefore is non-lytic [100]; 

(2) a “pre-pore locked” mutant harboring an engineered disulfide bond that tethers the stem domain to 

the globular cap, precluding insertion of the stem through the plasma membrane under oxidizing 

conditions, only causes ADAM10 activation in the presence of a reducing agent [11]; and (3)  

methyl-β-cyclodextrin, a small molecule that inserts into the open toxin pore, providing functional 

blockade of the pore, abrogates ADAM10 activation [11]. While the specific molecular mechanism of 

ADAM10 activation by α-toxin is not yet elucidated, the observed requirement for calcium in the 

extracellular media of toxin-treated cells is highly suggestive that the toxin pore functions as an ion 

channel permitting the influx of calcium into the cell [11]. It is known that ionophore treatment of cells 

provides a stimulus for activation of ADAM10 [140,156], likely through an “inside-out” signal relay. 

While the cytoplasmic domain of ADAM10 would seemingly be implicated in this signaling 

mechanism, deletion of this domain of ADAM10 does not fully impair ionophore-mediated ADAM10 

activation [140], implying that other domains of the protein and possibly other signal transduction 

proteins play a cooperative role in ADAM10 activation. 
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Beyond the contribution of ADAM10-mediated cleavage of structural proteins that provide tensile 

strength to the tissue barrier, the α-toxin-ADAM10 interaction leads to the rapid dephosphorylation of 

FAK, paxillin, Src, and p130Cas, proteins integral to the establishment and maintenance of cellular 

focal adhesions that tether the cell to the basement membrane [94]. These cell signaling events are 

associated with dissolution of focal adhesions, defining a second molecular mechanism by which  

α-toxin contributes to tissue barrier disruption. Like ADAM10-mediated cadherin cleavage, focal 

adhesion disruption is observed at subcytolytic toxin concentrations, suggesting that an intracellular 

signal transduction cascade is potentially invoked. Together with data on the role of membrane lipids 

and ADAM10 in toxin binding, an integrated model can now be considered in which assembly of a 

multi-molecular protein receptor and signaling complex in a specific lipid microenvironment is 

required for optimal action of α-toxin. 

Tissue barrier disruption is a hallmark of staphylococcal disease, manifest as injury to the skin, 

lung, mucous membranes, and vasculature (in the context of sepsis). Inoculation of α-toxin into the 

lungs of rabbits caused endothelial cell lysis and detachment from the basal membrane leading to 

endothelial barrier permeability and vascular leakage into the alveolar space [152]. In agreement with 

these observations, treatment of pulmonary endothelial cells with α-toxin induced the formation of 

large intercellular gaps associated with a decrease in barrier integrity [154]. Recent studies provide 

molecular insight on the nature of endothelial barrier disruption, demonstrating that α-toxin binding to 

ADAM10 on primary endothelial cells leads to rapid activation of the metalloprotease and cleavage of 

vascular endothelial (VE)-cadherin [13]. Toxin-deficient S. aureus strains display a virulence defect in 

a mouse model of lethal sepsis induced by intravenous inoculation of the pathogen; this correlates with 

toxin-mediated induction of endovascular injury and increased vascular permeability, as documented 

by dye extravasation studies [13]. 

These observations hearken back to the early studies on the role of Hla in lethal disease and 

dermonecrotic injury, now providing molecular detail of α-toxin action in these states of host injury. It 

becomes clear that the functional outcome of the toxin-ADAM10 interaction is predicated both on the 

Hla-induced cell lysis and cell signaling, as well as on the tissue-specific actions of activated 

ADAM10 (Figure 3). The pleiotropic effects of a single toxin can, therefore, now be explained by 

three principles: (1) targeting of multiple host cell types through widespread expression of ADAM10; 

(2) cell-specific susceptibility to pore formation; and (3) diversity of cellular effects of the toxin 

dependent on the level of ADAM10 expression, the native functions of ADAM10 in the cell/tissue, 

and the intracellular signaling events elicited in the cell. Importantly, each of these outcomes are 

absolutely dependent on the assembly and patency of the α-toxin pore [11], demonstrating the primacy 

of the β-PFT structure for the full range of the toxin’s biologic activity.  
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Figure 3. Dual mechanism of action of α-toxin on susceptible host cells. Model illustrating 

key functions of the α-toxin (red)-ADAM10 (blue) complex, facilitating membrane binding 

of the toxin with subsequent oligomerization and pore formation. The formation of the 

toxin pore leads to two functionally linked outcomes—induction of host cell signaling 

and/or cellular lysis (dependent on toxin concentration) and the rapid upregulation of the 

metalloprotease activity of ADAM10 (denoted by a star). ADAM10, in turn, acts in a  

cell-specific manner to cleave ectodomain-containing proteins (orange) that appear to 

represent important biological mediators of α-toxin action.  

 

4.2. Toxin-Induced Immunomodulation 

Multiple studies have indicated that immune cells are targets of α-toxin. While of interest, these 

studies have not yet led to a full appreciation for the role of the toxin in manipulating the immune 

response in vivo to facilitate pathogenesis. In recent years, several key studies have shed light on this 

topic, illustrating that α-toxin targets both innate and adaptive immune cells, altering the host response 

to staphylococcal infection and again demonstrating the diverse capabilities of the toxin.  

Pro-inflammatory signaling in the host in response to infection is a double-edged sword, affording 

protection from pathogens yet contributing to self-injury when overly robust. Inflammation is a key 

feature of S. aureus infection, most readily appreciated in the lungs and skin wherein the rapid 

infiltration of innate immune cells is observed in both human and murine hosts [157–159]. In murine 

pneumonia, α-toxin is required to generate a gradient of keratinocyte-derived chemokine (KC) and 

macrophage inflammatory protein-2 (MIP-2), CXC chemokines that facilitate neutrophil recruitment 

to the lung [160]. α-toxin induces inflammatory responses in multiple cells, resulting in the release of 

cytokines and vasoactive agents [21,148–151,161,162]. One hallmark of innate immune cell activation 

is the secretion of the inflammatory cytokine interleukin-1β (IL-1β), a consequence of inflammasome 

activation and caspase-mediated cleavage of pro-IL-1β to yield the active cytokine. Intoxication with 

α-toxin induces IL-1β secretion in macrophages and monocytes, implicating this lineage as a target of 

the toxin during infection and demonstrating the importance of inflammatory cell death in disease 

pathogenesis [9,31,148]. Craven and colleagues demonstrated that the nucleotide binding domain and 

leucine rich repeat containing gene family, pyrin domain containing protein (NLRP3) inflammasome 

was activated in monocytic cells following exposure to α-toxin, resulting in caspase-1 activation and 

IL-1β secretion [9]. While antagonism of the toxin in vivo through toxin-neutralizing antibodies 

blunted IL-1β secretion during S. aureus pneumonia [116], the molecular mechanisms underlying this 

response in vivo had not been investigated until recently. Following on the work of Craven, Kebaier 
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and colleagues demonstrated toxin-dependent activation of the NLRP3 inflammasome in S. aureus 

pneumonia, leading to necrotic tissue injury [31]. Consistent with these findings, an attenuation of 

disease was observed in mice harboring germline deletion of Nlrp3. Mice lacking expression of 

NLRP3 display increased survival following intratracheal instillation of purified α-toxin, and show 

decreased lung pathology, IL-1β secretion and neutrophilic infiltrates upon infection with live 

staphylococci. These studies strongly implicate the role of NLRP3 and this inflammatory cascade as 

downstream effectors of α-toxin-mediated pathogenesis, linking this pathway to toxin-induced cell 

death that is most consistent with pyroptosis [9,163]. Interestingly, while antagonism of α-toxin by 

active vaccination, passive immunization, and direct small molecule inhibitors decreases the bacterial 

load in the lung during infection [107,116,164], mice harboring a deletion of either Nlrp3 or 

conditional deletion of Adam10 in the alveolar epithelium do not display a decreased bacterial burden 

following infection [11,31].  

Illustrating the complexity of the host-pathogen interaction in distinct tissues, the induction of an 

IL-1β response to S. aureus skin infection is required for host immunoprotection, as mice lacking the 

ability to generate this inflammatory response through genetic deletion of the cytokine or its cellular 

receptor suffer exacerbated skin lesions in response to inoculation with S. aureus [10,165]. The 

establishment of an immunoprotective IL-1β response in the skin depends on neutrophil recruitment to 

the infection site, and elaboration of this cytokine by the neutrophil population [10]. α-toxin 

neutralizing antibodies significantly decrease the amount of IL-1β secreted by isolated mouse 

neutrophils exposed to Hla in vitro, suggesting that the toxin in part contributes to this beneficial 

inflammatory host response in the skin [10]. Taken together, these data illustrate the role of Hla in 

inflammasome activation, and highlights the dichotomy between the beneficial effect of this  

pro-inflammatory response to infection of the skin and the detrimental effect of toxin-mediated 

inflammation in the lung. Interestingly, antagonism of Hla by active or passive immunization affords 

protection in both the lung and the skin [30,107,108,116], highlighting the existing challenges in the 

field to understand how distinct cellular responses to α-toxin are integrated in the context of the tissue 

microenvironment during infection.  

In addition to these effects on innate immunity, there is growing evidence that α-toxin modulates 

the adaptive immune response. Patterning of adaptive immune responses have been noted to occur 

through two mechanisms: (1) direct cellular injury, wherein α-toxin induces apoptotic cell death in 

monocytes, B cells and T cells [22]; and (2) through alteration of signaling between innate and 

adaptive immune cells, particularly via the cytokine interleukin 17A (IL-17A). Treatment of human 

monocytes with subcytolytic concentrations of α-toxin stimulates secretion of IL-17A [166]. This 

cytokine polarizes the helper T cell response towards the induction of Th17 cells, a subset of CD4+ T 

cells that both respond to and express IL-17A, and contribute most notably to immunoprotection of the 

epithelium. The Th17 response has been implicated in both the immunopathogenesis of toxin-mediated 

inflammatory skin disease and in protection against acute infection [159,166,167]. Frank and 

colleagues recently used a whole-transcriptome approach to discern the effect of α-toxin on the host 

response to S. aureus pneumonia. This study compared responses in mice infected with wild-type  

S. aureus to those infected with toxin-deficient S. aureus in a murine disease model, demonstrating 

that toxin expression was associated with induction of the IL-17A response [29]. Mice infected with  

α-toxin-expressing S. aureus generate a T cell repertoire characterized by a greater number of IL-17A+ 
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cells, illustrating a direct impact of the toxin on the adaptive immune system. While the precise 

molecular mechanisms that underlie induction of the polarized Th17 response are not yet known, the 

nucleotide-binding oligomerization domain containing 2 (NOD2) has been shown to play an important 

role in mediating innate immunodefense against S. aureus, as NOD2−/− mice exhibit increased 

susceptibility to both intraperitoneal and subcutaneous S. aureus infection [127,168]. NOD2 functions 

as an intracellular receptor for peptidoglycan (PGN), thus the α-toxin pore is thought to enhance cytosolic 

access for this NOD2 ligand [127]. As NOD2 signaling can promote Th17 differentiation [169], this 

represents a plausible pathway for further investigation.  

While many of these observations suggest that the toxin’s harmful actions are unopposed by the 

host, epithelial cells are able to repair toxin-induced membrane injury and eliminate the toxin through 

a linked process of endocytosis from the membrane and exocytosis of the toxin in so-called 

“toxosomes”, or exosome-like vesicles [170–172]. Further, type-I interferon (IFN) produced by the 

host can afford protection against toxin-induced injury [126]. This effect is dependent on the presence 

of phospholipid scramblase I (PLSCR1), which provides protection against cellular leakage of  

ATP [128]. While the precise mechanisms of action of PLSCR1 are not yet elucidated, strong support 

for the role of this protein in host protection against α-toxin is observed in PLSCR1 knockout mice that 

demonstrate increased susceptibility to the injurious actions of the toxin in the lung [128]. The 

alteration of innate immune signaling pathways and the discovery of the ability of α-toxin to directly 

modulate the adaptive response is thus an exciting area of current research. 

5. Conclusions and Future Directions  

While S. aureus α-toxin has been among the most-studied bacterial cytotoxins, consideration of the 

knowledge gained over nearly a century of research highlights the extraordinary complexity of toxin 

function and illustrates many avenues for future investigation. The discovery of ADAM10 as a cellular 

receptor for α-toxin provides a number of opportunities to probe the biology of the toxin, enabling a 

focused examination of the effects of the toxin on specific cell populations in the context of disease. 

The broad expression pattern of ADAM10 raises several interesting areas for ongoing study that are 

necessary to define the principles that govern cell specificity of toxin action. We put forth several 

hypotheses in this regard: (1) the level of ADAM10 expressed on distinct primary cells may differ, 

forming the basis for relative susceptibility to α-toxin. This model is most consistent with existing data 

in the field noting a correlation between cell surface expression of ADAM10 and  

toxin-mediated lysis; (2) Cell specificity of α-toxin action is conferred by ADAM10 in concert with 

other proteins that display unique expression patterns, thereby providing some restriction to either 

toxin binding (such as a co-receptor) or susceptibility to lysis or ADAM10 activation (modulation of 

cell injury and signaling events); (3) Sensitivity to α-toxin may depend on ADAM10 expression as the 

cellular receptor in certain primary cell populations, while a distinct cellular receptor may exist on 

other cell populations. While the central role of ADAM10 expression has been confirmed in several 

epithelial tissues, primary endothelium, and red blood cells, further studies utilizing cell-type specific 

ADAM10 knockout approaches are anticipated to enable the most clear-cut investigation of this 

hypothesis. Importantly, this approach will not only examine the role of ADAM10 across distinct 
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tissues, but will enable essential paired investigations on the role of the α-toxin-ADAM10 complex in 

disease pathogenesis.  

It is anticipated that further study of the toxin-ADAM10 complex will provide insight on the 

specific nature of the protein and lipid microenvironment that allows for toxin binding, assembly and 

host cellular signaling events generated during intoxication, enable investigation of human genetic 

polymorphisms that may increase susceptibility to disease, and facilitate studies of how Hla and other 

staphylococcal virulence factors act in concert to cause infection. As a number of studies in the field 

have highlighted features of cellular susceptibility to α-toxin in vitro, it will be essential to critically 

examine these observations in vivo, defining the molecular mechanisms of α-toxin-ADAM10 function 

and the role of other protein machinery in the context of S. aureus disease states. While of immediate 

relevance to our understanding of S. aureus disease, these studies will likely impact more broadly on 

our knowledge of pore-forming toxins and potentially highlight novel strategies to interfere with this 

family of toxins.  

Research over the last few years has led to a significant increase in our understanding of the role of 

α-toxin in the molecular pathogenesis of S. aureus disease. A tangible outcome of these studies is an 

appreciation of this toxin as a leading target for disease-modifying therapies, and has engendered an 

increased focus on understanding the role of the toxin in human S. aureus infection. Vaccines, passive 

immunization strategies, small molecule inhibitors of the toxin, and most recently small  

molecule-based targeting of host ADAM10 have all demonstrated a degree of efficacy in combatting 

S. aureus disease in animal modeling systems [11–13,30,105,108,116,119,121,164,173–177]. As such, 

many of these modalities are being developed for, and examined in, human clinical trials. The 

successful implementation of these preventatives and therapeutics will require an integrated 

understanding of the molecular pathogenesis of α-toxin-induced disease, the human clinical infection 

states in which Hla is essential, and an appreciation of the human immunologic responses that confer 

protection against toxin-mediated injury. Building on our wealth of knowledge about α-toxin, it now 

becomes a realistic expectation that modification of toxin-mediated S. aureus disease will be achieved 

in the coming years.  
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