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Abstract: The ability of a cyclodextrin-polyurethane polymer to remove ochratoxin A from 

aqueous solutions was examined by batch rebinding assays. The results from the aqueous 

binding studies were fit to two parameter models to gain insight into the interaction of 

ochratoxin A with the nanosponge material. The ochratoxin A sorption data fit well to the 

heterogeneous Freundlich isotherm model. The polymer was less effective at binding 

ochratoxin A in high pH buffer (9.5) under conditions where ochratoxin A exists 

predominantly in the dianionic state. Batch rebinding assays in red wine indicate the 

polymer is able to remove significant levels of ochratoxin A from spiked solutions between 

1–10 μg·L−1. These results suggest cyclodextrin nanosponge materials are suitable to reduce 

levels of ochratoxin A from spiked aqueous solutions and red wine samples. 
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1. Introduction 

Ochratoxin A (OTA) is a secondary metabolite produced by certain fungi of the Aspergillus and 

Penicillium species which frequently contaminate a diverse range of agricultural commodities, 
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including fruits, wines, coffee beans, and cereal grains [1–3]. Exposure to this toxin (see Figure 1) is 

associated with several deleterious effects on consumers, including, nephrotoxicity, neurotoxicity, 

teratogenicity, immunosuppression, and carcinogenicity [4]. The need to reduce exposure to 

mycotoxins has driven the investigation of several biological approaches and inert materials to reduce 

levels in commodities [5,6]. Some materials to selectively bind OTA and reduce free levels in solution 

include activated charcoal, grape pomace, and novel carbohydrates such as β-D-glucans isolated from 

Saccharomyces cerevisiae [7–9]. Recent interest in materials capable of selective interaction with OTA 

through molecular recognition mechanisms has driven the development of molecular imprinted 

polymers and aptamers. These selective recognition materials have enabled more robust analytical 

detection methods, and this molecular recognition approach has promise for other useful applications 

to reduce exposure to OTA [10–12].  

Figure 1. Representation of Ochratoxin A (OTA) (1) and β-cyclodextrin (2). 

 

Cyclodextrin nanosponge materials are a rapidly developing class of novel sorbents capable of 

molecular recognition [13–16]. These polymers include cyclodextrin components that possess 

hydrophobic binding site cavities of an appropriate size to form inclusion complexes with certain 

moieties of small organic molecules, including ochratoxins. β-cyclodextrin, 2, is the most economical 

and commonly used cyclodextrin and features seven α-glucopyranose residues in the cyclic 

carbohydrate structure. The nanosponge materials have seen popular use as binders with “generic” 

binding sites able to remove a broad range of contaminants from aqueous solutions. The binding 

properties of these sites are susceptible to modulation by solvent and other factors. The cyclodextrin 

nanosponge materials are characterized by possessing very low surface areas by nitrogen adsorption  

BET (Brunauer-Emmett-Teller) surface area analysis and exceptional capacity for certain small organic 

molecules [13,15–17].  

Free cyclodextrins have assisted in the recognition and detection of ochratoxins in analytical 

methods, and the ochratoxin-cyclodextrin guest-host complex has been characterized using spectroscopic 

and in silico molecular modeling techniques [18–23]. Spectrofluorimetric methods indicate OTA forms 

a 1:1 complex with β-cyclodextrin, and the interaction is influenced by the anionic and dianionic states 



Toxins 2012, 4              

 

 

100

of the toxin [21,23]. The interactions between OTA and cyclodextrins have been characterized using 

HINT natural force field calculations and circular dichroism experiments [18]. Furthermore,  

β-cyclodextrin has been used as a mobile phase component to assist the selective detection of 

zearalenone and OTA in HPLC methods [22] and to detect moniliformin, zearalenone, and ochratoxin 

A and B in a capillary electrophoresis method [19]. 

In this report, we expand the application of cyclodextrin-OTA complexes by using β-cyclodextrin as 

a critical component in a highly crosslinked polyurethane polymer sorbent. This insoluble polymer is 

evaluated for the ability to reduce levels of OTA in aqueous solutions. The OTA binding results from 

batch rebinding assays are fitted according to Langmuir and Freundlich two parameter-binding models. 

The polymer is demonstrated to reduce significant levels of OTA in red table wine.  

2. Materials and Methods  

2.1. Chemicals 

β-Cyclodextrin, tolylene 2,4-diisocyanate, acetic acid, anhydrous dimethyl formamide, activated 

charcoal, white quartz sand, silica, phosphoric acid, monobasic sodium phosphate, dibasic sodium 

phosphate, sodium hydroxide and OTA (from Petromyces albertensis, >98% TLC) were purchased 

from Sigma-Aldrich (St. Louis, USA). Acetonitrile, acetone, ethanol and methanol were purchased 

from EMB (Gibbstown, USA). Deionized water was used in the preparation of all reagents (Nanopure 

II, Sybron/Barnstead). All solvents were HPLC grade. The standard stock solution was prepared by 

dissolving 1 mg of OTA in 1 mL of methanol.  

2.2. Polymer Synthesis 

Polymers were synthesized following modifications to published procedures [13,15]. In a 40 mL 

glass vial, β-cyclodextrin (2.0 mmol, 2.27 g) was dissolved in anhydrous dimethyl formamide (25 mL) 

by sonication for 15 min. The solution was flushed with a stream of nitrogen in a fume hood and  

2.88 mL of tolylene 2,4-diisocyanate was added. The vial was sealed with a screw top cap, and the 

mixture was vortexed. The solution was sonicated for 15 min, and placed in a water bath at 70 C. 

After 48 h, the excess reagents were removed from the monolith-gel by vacuum filtration and washing 

with excess acetone. The monoliths were sonicated in water, ethanol, and acetonitrile, then filtered, and 

dried under vacuum. Finally, the polymer was ground in a coffee grinder, sieved, and the 38–75 µm 

fractions were collected. Fine particulates were removed by sedimentation in acetone for 30 min  

(3 × 100 mL). The final particles were filtered, washed with excess water, and dried under vacuum. 

2.3. Surface Analysis and Scanning Electron Microscopy 

Surface analysis of the sorbent was performed on a Quantachrome Instruments ASiQ surface area 

analyzer. The sample (about 1 g) was outgassed at 100 °C for 24 h prior to analysis. The measurement 

was made using N2 as the adsorptive and the sample at −196 °C. Surface area was determined using 

the multipoint BET method in the relative pressure (P/Po) range of 0.05–0.20. SEM analysis was 

carried out using a Jeol JSM 6400V scanning electron microscope.  
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2.4. Batch Rebinding Assays 

The β-cyclodextrin-polyurethane polymer was evaluated in batch rebinding assays for the ability to 

remove OTA from aqueous solutions and red wine samples. For the experiments carried out in water 

and buffer, insoluble polymer (2 mg unless otherwise noted) was incubated in 1 mL solutions of OTA 

in water (0.01–5 μg·mL−1) or buffer (0.01–1 μg·mL−1). Samples were shaken on a Lab-line Multi-wrist 

shaker at room temperature for 24 h. The vials were centrifuged and supernatant was filtered  

through 0.2 μm filters (PTFE). All experiments were performed in triplicate. OTA concentrations in 

water were determined using peak areas and standard curves determined in water within the range of 

0.0001–5 μg·mL−1 and buffer within a range of 0.0005–1 μg·mL−1 (r2
water = 0.998; r2

pH 3.5 = 0.999;  

r2
pH 7.0 = 0.973; r2

pH 9.5 = 0.995). The bound OTA was calculated by subtracting the amount of OTA free 

in solution at equilibrium in presence of the polymer from the initial OTA concentration.  

The batching rebinding assay results were analyzed using the Langmuir and Freundlich isotherms. 

The Langmuir equation is expressed as: 

qe = (Q0KLCe)/(1 + KLCe) 

where qe is the amount of OTA bound (mg) per polymer (g) at equilibrium. Ce is the amount of free 

OTA (mg) in solution at equilibrium. Q0 is the calculated maximum amount of OTA bound per gram of 

polymer, and KL is the Langmuir equilibrium constant (L·mg−1) [24].  

The Freundlich equation is described as: 

qe = KfCe
1/n 

Kf is the Freundlich constant, which is attributed to affinity and the adsorptive capacity of the 

polymer. The heterogeneity index, n, provides information on the population of the binding sites, the 

adsorption intensity, and is associated with the favorability of the binding process. A value of n = 1 

suggests the population of binding sites is homogeneous [25].  

2.5. LC-Analysis 

OTA levels in aqueous solutions and red wine samples were determined by LC-fluorescence 

analysis. The HPLC consisted of a Shimadzu LC-20AT pump, a Rheodyne 7725 manual injector with 

a 20 μL injection loop, a RA-10 fluorescence detector, a CBM-20A communication bus model, and a 

Phenomenex Luna 5 μm C18 (2) 100A column (250 × 4.6 mm). The LC-mobile phase consisted of 

acetonitrile/water/acetic acid (49.5:49.5:1). The flow rate was 1 mL·min−1 and the fluorescence 

detector was set with the excitation wavelength of 333 nm and emission recorded at 460 nm. OTA 

eluted at 14 min.  

2.6. Ochratoxin A Determination in Red Wine 

OTA concentrations in spiked red wine were determined with the following modifications to a 

published validated procedure [26]. Red table wine was purchased locally. OTA was isolated using 

C18 Bond Elut (500 mg) columns and a vacuum manifold prior to analysis. Columns were conditioned 

with 5 mL of methanol and 5 mL of water prior to extraction. Wine sample (1 mL) was filtered through 

a 0.2 µm syringe filter (PTFE) and combined with (5 mL) water, and passed through the C18 columns. 
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The column was washed with 2 mL water, and 2 mL (60/40 methanol/water), and dried under vacuum. 

OTA was eluted with methanol (2 mL), and the eluate was filtered through a 0.2 μm syringe filter 

(PTFE) prior to analysis. OTA concentrations in wine were determined using peak areas and standard 

curves determined in wine within the range of 0.0005–0.010 μg·mL−1 for wine (r2 = 0.997). The bound 

OTA was calculated by subtracting the amount of OTA detected free in polymer solutions from the 

amount of OTA detected in wine standard solutions without polymer.  

3. Results and Discussion 

Crosslinked nanosponge polymers similar to the β-cyclodextrin-polyurethane polymer reported 

have exhibited the ability to remove significant levels of phenols, parabens, and other organic 

compounds from aqueous solutions and wastewater [27,28]. These cyclodextrin-polyurethane polymers 

have been characterized by FTIR, BET nitrogen surface area, and elemental analysis [13,17], and 

related cyclodextrin polymers have been extensively characterized [29]. The surface features of the 

polymer in this study are provided in the SEM image in Figure 2. The polymer has a smooth surface 

with channels of various sizes.  

Figure 2. SEM image of a cross section of the β-cyclodextrin-polyurethane polymer at 

magnification of 10,000 times. 

 

The binding properties of the β-cyclodextrin-polyurethane polymer in this study were investigated 

using sorption isotherm analysis to gain insight into the OTA binding mechanism. The experiments 

reported here were carried out with a 24 h incubation period. We did investigate the influence of time 

on the sorption properties, and found that shorter incubation times did not provide maximum 

adsorption of OTA (15 min to 8 h). Reproducible binding studies were obtained with 24 h incubation. 

Figure 3 shows the influence of polymer mass on the sorption of OTA (0.05 μg·mL−1) carried out with 

1 mL deionized water samples. A significant amount of OTA is sorbed at a polymer level of 2 mg, and 

the rest of the experiments described in this paper are carried out at this level. The level of 2 mg·mL−1 

is significantly lower than levels of similar polymers used in related sorption assays. The levels used in 

this study are fivefold lower compared to the levels in a recent patulin study [13] and significantly less 

than the polymer levels to remove phenolic compounds from wastewater [28].  
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Figure 3. Effect of β-cyclodextrin-polyurethane polymer amount on OTA sorption in water 

(1 mL). The values are mean ± standard deviation. 

 

The sorption isotherms for OTA binding to the polymer in water for the range of 0.01–1 μg·mL−1 

are provided in Figure 4. These OTA concentrations are above the recommended levels for agricultural 

commodities (2–10 μg kg−1) fixed by the European Commission [21]. It should be noted, the polymer 

exhibited near complete removal at low levels of OTA. OTA levels lower than the recommended levels 

(2–10 μg L−1) are at levels so low that the bound OTA, qe, is very close to the origin in the plot and 

these levels do not contribute significantly to the Freundlich and Langmuir isotherms of the data of the 

range in Figure 4. The batch rebinding results in the range of 0.01–1 μg·mL−1 are suitable for fit to the 

Langmuir and Freundlich isotherms. Generally, the Langmuir model has several restrictions, and the 

Freundlich isotherm is more suitable for heterogeneous populations of binding sites. The Langmuir 

model is constrained by the several assumptions, including sorption is restricted to a monolayer of 

adsorbate, the binding sites are equivalent, and there is no cooperativity in binding [24]. The assumptions 

of the Langmuir model fit a dynamic binding process where the initial rate of binding is high, and the 

rate of sorption is related to the fraction of binding sites occupied. As binding sites become occupied, 

the rate of sorption is reduced as the number of free binding sites is decreased. Langmuir isotherm 

analysis of the binding results provides the Langmuir affinity constant of 6.60 L·mg−1 and the 

maximum OTA bound per gram of polymer is calculated to be 0.22 mg g−1 (see Table 1).  

Table 1. Isotherm parameters obtained by fitting binding data with the Langmuir and 

Freundlich isotherms for the sorption of ochratoxin A on β-cyclodextrin-polyurethane 

polymer in deionized water. 

Model R2 

Langmuir 
KL (L·mg−1) Q0 (mg·g−1)  
6.60 ± 2.24 0.22 ± 0.03 0.909 

Freundlich 
KF (mg·g−1)(L·mg−1)1/n 1/n  

0.24 ± 0.02 0.49 ± 0.05 0.946 
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Figure 4. Freundlich (black) and Langmuir (silver) isotherms for OTA binding to the  

β-cyclodextrin-polyurethane polymer in water. The values are mean ± standard deviation. 

 

The Freundlich isotherm describes non-ideal sorption on heterogeneous surfaces and is capable of 

describing multi-layer and other moderately complicated binding processes [24]. The value of 0.49 for 

1/n is associated with a mild rise of the sorption isotherm and favorable binding over the range of 

concentrations studied [25]. Comparing the results from the binding studies, the Freundlich  

analysis provides a tighter fit than the Langmuir model based on the determination coefficients (R2). 

This may be explained by the binding process occurring under conditions outside of the assumptions  

of the Langmuir model. This is supported with the heterogeneity index, which suggests the  

β-cyclodextrin-polyurethane polymer possesses a population of binding sites for OTA, a property more 

fit for Freundlich analysis. 

Figure 5. Influence of pH on the OTA removal yield (%) in the presence of 
β-cyclodextrin-polyurethane polymer (2 mg·mL−1) in sodium phosphate buffer (20 mM) 

over concentrations of OTA. ([OTA]intial = 0.01–1 μg·mL−1). The values are  

mean ± standard deviation. 
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The sorptive capacity of broad classes of sorbents, including cyclodextrin polymers, can be 

influenced pH and other factors [30]. The adsorptive capacity of cyclodextrin-based materials for the 

basic dye C.I. Basic Green 4 (Malachite Green) has been observed to be pH dependent [31]. Solid 

phase extraction recoveries of nitrophenols in water by β-cyclodextrin bonded silica have been shown 

to be influenced by pH [32]. OTA possesses acidic phenolic and carboxylic acid groups, and the nature 

of OTA is dependent on pH. To gain insight into the influence of pH on OTA binding to the  

β-cyclodextrin-polyurethane polymer, batch rebinding assays were carried out over OTA concentrations 

of 0.01–1 μg·mL−1 and pH values of 3.5, 7.0, and 9.5 (see Figure 5). The β-cyclodextrin-polyurethane 

polymer (2 mg·mL−1) binds almost all OTA at the concentrations between 0.01–1 μg·mL−1 at pH 

values 3.5 and 7.0. There is a decrease in capacity of the polymer for OTA at the higher pH 9.5 where 

OTA predominantly exists in the dianionic form, suggesting a lesser amount of the dianionic OTA is 

bound to the polymer. The lack of activity may be attributed to the repulsive interactions of the bound 

to the free OTA in the dianionic state. In contrast, the two negatively charged groups are not present in 

the neutral free acid OTA and the anionic OTA. 

It should be noted OTA possesses a greater affinity to free β-cyclodextrin at higher pH [18,21,23], 

which has been rationalized by the favorable interaction of the hydroxyls of the free  

β-cyclodextrin with the dianionic form of OTA. The hydroxyls of the cyclodextrin components of the 

β-cyclodextrin-polyurethane polymer are reacted to form polyurethane residues, and the reduced 

number of these hydroxyls in the polymer may explain the decrease in OTA binding at higher pH 

levels. The increased capacity of the β-cyclodextrin-polyurethane polymer for OTA under acidic is a 

valuable property to reduce OTA levels in acidic beverages, such as juices and wine.  

The efficiency of the β-cyclodextrin-polyurethane polymer to remove OTA from red table wine is 

shown in Table 2. Spiked wine levels between 1–10 μg L−1 were investigated after 24 h incubation with 

the polymer. The β-cyclodextrin-polyurethane polymer (2 mg·mL−1) is capable of removing significant 

amount of OTA from spiked wine samples. The best activity of the polymer was between  

2.5–10 μg·L−1. The lower percent bound at 1 μg·L−1 (61%) may be associated with the OTA levels 

approaching the level of detection of the analytical method. In addition, there may be competition for 

the binding sites of the polymer by other wine constituents of similar molecular size at low levels of 

OTA, a phenomenon that is expected to increase in importance as the relative levels of competing 

substrates for the binding sites increases at lower levels of OTA.  

Table 2. Sorption of ochratoxin A in red wine by β-cyclodextrin-polyurethane polymer a. 

[OTA]Initial (μg L−1) OTABound 
b (μg) % OTABound 

10 8.82 ± 0.23 88 
7.5 7.11 ± 0.11 95 
5 4.62 ± 0.20 92 

2.5 2.33 ± 0.12 93 
1 0.61 ± 0.14 61 

a Red wine samples were spiked with OTA and shaken for 24 h prior to analysis; b The values are 
mean ± standard deviation. 

The binding activity exhibited by the β-cyclodextrin-polyurethane polymer approaches the sorption 

activity of activated charcoal (9.42 ± 0.09 for [OTA]Initial = 10 μg L−1; 2 mg·mL−1 activated charcoal). 
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However, activated charcoal possesses an average surface area over 1090 m2·g−1 as determined by 

nitrogen adsorption BET analysis [33]. Other materials we investigated with various surfaces areas, 

sand and 200–400 mesh silica, did not reduce detectable levels of OTA in red wine (10 μg·L−1) in the 

24 h batch rebinding assays using 2 mg·mL−1 of material. The surface area of the polymer evaluated in 

this study was calculated to be 0.759 m2·g−1 and is similar to previous published surface areas for 

related nanosponge materials [13,17]. This β-cyclodextrin-polyurethane polymer provides a low 

surface area alternative to activated charcoal with suitable OTA binding activity for levels below  

10 μg·L−1 in red wine.  

The non-selective binding of valuable components of beverages by sorbents is an important 

consideration. The “generic binding sites” of the β-cyclodextrin-polyurethane are expected to be 

susceptible to binding and removal a broad range of substrates with OTA. It remains to be  

shown if nanosponge materials can be optimized using select components for more selective  

removal of certain toxins over other constituents from aqueous solutions. One significant advantage  

of the β-cyclodextrin-polyurethane polymer over the use of free cyclodextrins is the  

β-cyclodextrin-polyurethane polymer is insoluble in aqueous solutions, permitting rapid separation of 

the material and toxin from aqueous solutions. Furthermore, the polymer is synthesized as a monolithic 

block, allowing for the possible inclusion of other sorbent components, such as powder charcoals.  

In addition, the β-cyclodextrin-polyurethane particles can be ground to a desired size (38–75 µm in this 

study) or synthesized as films to support easy separation of the sorbent from solutions.  

4. Conclusions  

A nanosponge polymer composed of β-cyclodextrin-polyurethane was evaluated for the ability to 

remove levels of OTA from aqueous solutions and red wine. Analysis of the Langmuir isotherm of the 

OTA binding studies in water indicates the polymer has a maximum capacity of 0.22 mg OTA per 

gram of polymer. Results of the Freundlich isotherm suggest the polymer possesses a heterogeneous 

population of binding sites for OTA. The polymer was capable of reducing levels of OTA up to  

10 μg·L−1 in spiked red wine samples to levels below recommended levels (2 μg L−1). This study 

suggests nanosponge materials can assist reducing levels of natural product contaminants, including 

OTA, in beverages.  
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