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Abstract: Molecularly imprinted polymers (MIPs) are considered as polymeric materials 

that mimic the functionality of antibodies. MIPs have been utilized for a wide variety of 

applications in chromatography, solid phase extraction, immunoassays, and sensor 

recognition. In this article, recent advances of MIPs for the extraction and analysis of 

ochratoxins are discussed. Selection of functional monomers to bind ochratoxin A (OTA) 

with high affinities, optimization of extraction procedures, and limitations of MIPs are 

compared from different reports. The most relevant examples in the literature are described 

to clearly show how useful these materials are. Strategies on MIP preparation and schemes 

of analytical methods are also reviewed in order to suggest the next step that would make 

better use of MIPs in the field of ochratoxin research. The review ends by outlining the 

remaining issues and impediments.  

Keywords: molecularly imprinted polymer; ochratoxin; solid phase extraction; analytical 
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1. Introduction 

In an attempt to explain the enzyme–substrate interactions, the lock-and-key mechanism was 

originally proposed by Nobel laureate Emil Fischer back in the 1970s. Although this theory was later 

disproved by X-ray diffraction studies, the idea of a matrix-designed material that recognizes a 

particular substrate remained the cornerstone of molecular imprinting [1]. Over decades of research, 

molecularly imprinted polymers (MIPs) have gained more and more acceptance with respect to their 

application as polymeric antibodies in analytical chemistry and separation science [2–4]. MIPs are 

solid materials that can be synthesized via a molecular imprinting process, in which a template 

molecule (the target compound) is present during polymerization. Thus, template molecules are 

imprinted into the polymer via the molecular imprinting process. After the removal of the template 

from the polymer, the end-product polymer is called a MIP, in which specific binding cavities with a 

shape and functional groups complementary to the template are created within the polymer matrix [5]. 

Due to the presence of specific binding cavities in MIPs, they exhibit specific selectivity for the 

template molecule, or group selectivity for a class of structurally related molecules. Thus, MIPs mimic 

the function of natural antibodies (monoclonal or polyclonal) [6,7]. They often afford high adsorption 

capacities (~50 mg/g), good site accessibilities, fast binding kinetics (~10 min), and good recoveries 

(~90%). Many applications using MIPs have been reported, such as the removal of 2,4-dichlorophenol 

from contaminated water [8], the sensing of amino acids via a quartz-crystal microbalance (QCM) [9], 

the detection of dansylated amino acids via a surface plasmon resonance sensor [10], the sensing of 

zearalenone with fluorescent probes [11], the detection of caffeine with molecularly imprinted 

quantum dot photoluminescence [12], the detection of amino acids via a capacitive sensor [13], food 

analysis [14–16], and the recognition of the tobacco mosaic virus [17], just to name a few. The 

application of MIPs as sorbents allows not only pre-concentration and cleanup of the sample, but also 

selective extraction of the target analyte, which is particularly important when the sample matrix (such 

as environmental and biological samples) is complex and impurities can interfere with  

quantification [18]. 

Mycotoxins are secondary metabolites that molds produce naturally. Ochratoxin A (OTA) is a 

carcinogenic mycotoxin of wide natural abundance, as produced by several species of Aspergillus (e.g., 

A. ochraceus) and Penicillium (e.g., P. verrucosum) fungi [19–21]. It is suspected to cause the Balkan 

Endemic Nephropathy, which is a fatal kidney disease observed in rural areas of southeast Europe [22]. 

OTA has been found as a contaminant in food and feed and exhibits multiple toxicities in animals and 

mankind, including nephrotoxic, hepatotoxic, immunotoxic, teratogenic, and carcinogenic effects, 

which represent serious health risks to livestock and the general population [23]. The widespread 

occurrence of OTA in cereals, wheat [24], maize, rice, beans, nuts, raisins, and beverages (such as 

milk, coffee, grape juice [25,26], and wine [27–29]) has prompted health regulation authorities to 

define maximal tolerable daily intake levels (5 ng/kg body weight) [30]. Epidemiology studies in 

Bulgaria, Romania, Spain, the Czech Republic, Turkey, Italy, Egypt, Algeria, and Tunisia have also 

found significantly higher serum or plasma levels of OTA in patients with certain kidney disorders 

compared to healthy people, although the association may not be a causal one [31]. Due to their 

ubiquitous presence in foodstuffs and their potential risk for human health, prompt detection is deemed 

important. An excellent review on analytical methods for the determination of mycotoxins has recently 
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been published by Turner and co-workers [32]. The development of analytical methods for OTA 

identification generally involved liquid–liquid extraction, clean-up by an immunoaffinity column 

(IAC), and identification by HPLC with fluorescence detection (HPLC-FLD) [33]. Various extraction 

and clean-up procedures for the determination of OTA by HPLC-FD in musts, wine, and beer were 

compared: (1) dilution with polyethylene glycol 8000 and NaHCO3 solution and clean-up on an IAC; 

(2) extraction with chloroform and IAC clean-up; (3) solid phase extraction (SPE) on C18; (4) SPE on 

reverse-phase phenylsilane; and (5) SPE on Oasis HLB cartridges [34]. The former IAC procedure was 

simple, rapid, and provided flat baselines that were free from most impurity peaks, high OTA 

recoveries and quite repeatable results. Unfortunately, the IACs are relatively costly and have a short 

shelf life. For the assay of real samples (cereals, oat, corn, etc.), denaturation of antibodies by the 

organic co-solvent needed to dissolve hydrophobic analytes in aqueous solution is a serious problem. 

Thus, the design and the synthesis of biomimetic antibodies that can specifically bind a target molecule 

has long been a research goal [35]. The use of MIPs as artificial antibodies for sample pretreatment 

was described, first in a review on emerging sorbent materials for SPE [36], and next in a report on 

immuno-based sample preparation for trace analysis [37]. Over the next few years, MIPs have 

increasingly attracted attention as substitutes for immunoanalysis (e.g., binding assays, biosensors, and 

solid-phase immune-extraction) [38]. The development of a new sorbent for selective SPE that is 

capable of OTA preconcentration prior to HPLC analysis is an important issue. An affordable SPE 

sorbent, compared to the use of IAC columns, will make the screening of foodstuff more frequent in 

both developed and poor countries, thus protecting human health [39]. An overview of conventional 

and emerging analytical methods for the determination of mycotoxins is written by Cigić and Prosen 

[40].  

Although molecular imprinting has been around for over 30 years, recently, this technology has 

made rapid developments. Due to the variety of structures of mycotoxins, it is possible to use the 

molecular imprinting technique for their analysis and selective detection. As early as 2004, a  

two-dimensional extraction procedure employed solid phase extraction (SPE) and MIP for the 

extraction of OTA [41]. Here direct sample loading onto the MIP resulted in low recoveries, thus prior 

removal of interfering acidic matrix compounds by C18 SPE was deemed necessary. Unfortunately, a 

similar result was observed in a control experiment, in which the MIP was replaced by the 

corresponding non-imprinted polymer (NIP). These findings suggested that specific binding to 

molecularly imprinted sites played a minor role in OTA enrichment. Recent developments in 

imprinting technology have made possible the practical application of MIPs in mycotoxin detection. 

The structure activity relationships of reported MIPs for OTA, deoxynivalenol (DON), zearalenone 

(ZEA), and moniliformin (MON) have been reviewed by Appell, Maragos, and Kendra [42]. MIPs 

offer quite a promising tool for the future development of antibody-based methods, in which 

compatibility between sample extract and antibody is a major limiting factor. The current trend in OTA 

determination is largely towards the powerful combination of liquid chromatography with tandem mass 

spectroscopy (LC-MS/MS) [43]. An emerging focus of LC-MS/MS is in the field of multi-residue 

methods for the simultaneous determination of mycotoxins that are being considered by the EU 

legislation in force (i.e., aflatoxins, fumonisins, ochratoxin A, trichothecenes, and zearalenone). This 

topic has been investigated by several research groups, although major problems with extraction and 
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cleanup steps have not been fully resolved [44]. LC-MS/MS is a powerful tool for the identification 

and quantification of masked mycotoxins, which are mycotoxins conjugated to more polar compounds 

(e.g., glucose) that are not detected by routine analytical methods. 

2. Sensor Development for Ochratoxins Using MIPs as Sensing Elements 

Although most validated detection methods are chromatographic, alternative strategies based on 

biosensing principles are emerging. The factors which worked against unattended, continuous 

monitoring of toxins included the inherent instability of suitable protein receptors and antibodies, and 

the irreversible nature of the binding event (which necessitates a continuous supply of reagents for 

sequential measurements). Nevertheless, biosensors were hopefully capable of being used for on-site 

measurement of contamination by specific toxins. Methods for improving the stability, extending the 

range, and for altering the binding characteristics of sensing molecules would be essential, as discussed 

previously by Paddle [45]. An evaluation of MIP films for coulometry used an applied positive 

potential to induce adsorption of the target molecules [46]. The resultant sensors showed a high degree 

of sensitivity, selectivity, and a broad linear range. Imprinting a polymer matrix with binding sites 

located at the surface has been shown to be advantageous for use as the sensor interface. The binding 

sites are more accessible, the mass transfer is faster, and the binding kinetics are faster [47]. A 

molecularly imprinted polypyrrole (MIPPy) film was synthesized on the Spreeta sensor, a miniaturized 

surface plasmon resonance (SPR) device, for the detection of OTA [48]. The MIPPy was 

electrochemically polymerized on the sensor surface from a solution of pyrrole and OTA in 

ethanol/water (1:9 v/v). The film growth was monitored in situ by an increasing SPR angle. The 

binding properties of the MIPPy film were investigated by loading OTA standard solutions into the 

integrated 20-µL flow cell. After 300 s, nonlinear regression was used to determine the maximum 

binding signal. Spreeta results showed that the signal was measurable for OTA concentrations down to 

0.05 ppm. Pulsed elution with 1% acetic acid in methanol/water (1:9 v/v) was found to be efficient for 

the regeneration of the MIPPy film surface. Interference by the matrices of wheat and wine extracts 

was evaluated. No significant binding of the wheat extract with MIPPy was observed when 

acetonitrile/water (1:1 v/v) was used as the mobile phase. Biosensors and sensor arrays provided 

selective, sensitive, and accurate measurements. The feasibility of miniaturizing biosensors and sensor 

arrays, so that they are portable, makes them useful as screening bio-tools meant to ensure the correct 

assessment of mycotoxins in food so as to reassure the consumer [49]. The interfacing of a suitable 

transducer to MIPs is still growing and is expected to have a more significant impact in the field of 

biochemical sensors. A rapid and highly sensitive SPR assay of OTA has recently been reported, using 

Au nanoparticles for signal enhancement on a mixed, self-assembled monolayer surface, in a 

competitive immunoassay format [50]. Although an enormous effort is being put into developing 

biosensors, relatively few toxic analytes can yet be measured by commercially available devices. 
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3. Molecularly Imprinted Solid Phase Extraction (MISPE) for Ochratoxins 

3.1. Selection of Functional Monomer 

To make good MIPs, the selection of suitable functional monomers, cross-linkers, porogen solvents, 

initiators, and polymerization procedures require careful consideration [51]. Crucial to the success of 

these efforts is the rational design of novel basic and neutral functional monomers, so as to allow the 

maximization of the template-functional monomer association via ion-pairing, hydrophobic, and steric 

interactions. Due to the complexity of such factors as functional monomer-template complexation, 

solvent effect, and cross-linking density that drive the imprinting process, the performance of any new 

MIP towards the target molecule is rather difficult to predict. The development of MIP for a specific 

application still relies on empirical optimization. The specificity of a MIP is governed by the factors 

mentioned above (at the preparation stage) and by experimental conditions at the binding stage. Many 

vinyl monomers and different cross-linkers (polyfunctional acrylics) are available commercially at a 

low cost [52]. Free radical polymerization is usually the method of choice for preparing MIPs [53]. To 

induce radical polymerization, an appropriate quantity of initiator is required. Macroscopic polymer 

networks have been most widely synthesized. These MIPs tend to be insoluble materials that provide 

rigidity and mechanical stability to all imprinted binding sites. Since most MIPs are prepared in the 

form of a macroporous monolith, the grinding and sieving process is required to yield proper particle 

sizes for analytical applications. This preparation of MIPs inherits some drawbacks, such as intensive 

labor, insufficient yield, and potential exposure to hazardous airborne particles when toxic molecules 

are imprinted. 

Chen et al. observed enthalpic changes attributed to the rebinding of template molecules to the MIP 

by micro-calorimetric studies [54]. The results suggest that a single one-point interaction is insufficient 

to induce selectivity, regardless of the strength of this interaction. Selectivity requires molecular 

recognition based on multiple electrostatic interactions and secondary interactions, such as 

hydrophobicity and macroscopic phase separation. Spivak et al. have determined that shape selectivity 

is an important contributing factor to the overall MIP selectivity [55]. It was found that branched-

structure templates produce higher-selectivity MIPs than their straight-chain counterparts. Shape 

selectivity, as determined by steric exclusion or optimal fit, maximizes binding interactions. 

With the development of computer technology and quantum chemistry, the computational study of 

MIPs has emerged in hopes of making a good selection of functional monomers that maximize the 

molecular recognition property of MIPs. Wulff et al. used the electrostatic potential surface obtained 

by MolCad to indicate the shapes of occupied and unoccupied molecular cavities of MIP [56]. There 

was a report on using molecular modeling software to study the functional monomer-template 

conformation before polymerization [57]. Chianella et al. employed a virtual library of functional 

monomers to screen against the target template molecule, and the selectivity of MIP was greatly 

improved [58,59]. These results suggested that computer modeling of MIP synthesis, analysis, and 

evaluation would be a promising method for the fast, accurate, safe, and economical study of MIPs. 

Recently, a theoretical and experimental study of nicotinamide MIPs with different porogens was 

conducted by Wu et al. [60]. Good correlations have been found between the interaction energy and the 

selectivity. When the porogen had poor hydrogen bonding, the interaction energy was mainly 
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influenced by the dielectric constant of the solvent. When the porogen had a strong capacity in forming 

the hydrogen bond, both the dielectric constant and the hydrogen bonding would affect the formation 

of the template–monomer complex. This computational study strongly suggested that the interaction 

energy between the template and monomer varied with the pre-polymerization solution composition. 

When using aprotic solvents (such as chloroform, toluene and acetonitrile), the interaction energies are 

mainly influenced by their dielectric constants. The smaller the dielectric constant is, the stronger the 

complexation between template and monomer will be. When using solvents (such as methanol) with a 

high capacity to form hydrogen bonds, the hydrogen bonding would affect the formation of the 

template-monomer complex, thus influencing the interaction energy. This successful prediction model 

may provide a better way of selecting a good solvent for a given a template and functional  

monomer system. 

Preparation of MIPs for OTA recognition is challenging, as relatively few reports can be found in 

the literature. They are all listed in Table 1. It is noteworthy that dual function monomers were 

sometimes employed to improve specific recognition of individual OTA template molecules, by better 

shape complementarity of the polymeric binding pocket and by two specific types of electrostatic 

interactions. 

Table 1. Functional monomers used for OTA MIP preparation from the literature. 

Functional Monomer Structure Reference 

N-Phenylacrylamide 

 

[61] 

A mixture of methacrylic acid 

acrylamide 

(dual functional monomers)  

 

[62] 

methacrylic acid 

 

[63] 

pyrrole 

 

[64–66] 

A mixture of 

diethylaminoethylmethacrylate 

(DEAEM) and itaconic acid (IA) 

(dual functional monomers)  

 

[67] 
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Molecularly imprinted polypyrrole (MIPPy) for OTA recognition via electrochemical imprinting has 

been shown to be promising [68,69]. Easy preparation was expected with the new approach. 

Furthermore, it has been revealed by N1s X-ray photoelectron spectroscopy (XPS) studies that the 

hydrogen of N-H on the pyrrole ring within PPy undergoes protonation in acidic conditions. Under 

alkaline conditions, the N-H will be deprotonated [70]. The removal of the OTA template molecules 

from MIPPy could be achieved by perturbing the hydrogen bonding between the OTA analyte and the 

MIPPy binding cavity. Uptake of the target analyte would be enhanced when the N-H on the pyrrole 

ring is protonated. 

3.2. Optimization of Extraction and Desorption Procedure 

From the practical understanding of MIP development, a number of rules of thumb have emerged in 

the literature that are helpful when developing particular MIPs [71]. It is generally believed that the 

quantity and quality of MIP recognition sites are related to the mechanisms and strengths of the 

monomer-template interactions present in the pre-polymerization mixture. The general guideline, “the 

more stable or stronger the monomer-template complex is, the more selective the MIP will be,” has 

been presumably used as a rule in the selection of functional monomers [72]. As for the selection of 

porogen solvents, it is generally accepted that the MIPs synthesized with aprotic porogens usually have 

higher affinity and selectivity than those prepared using porogens with moderate or strong hydrogen 

bonding capacity [73]. These general guides were drawn from the conventional preparation of MIPs, 

which were prepared by using methacrylic acid (MAA) as a functional monomer, ethylene glycol 

dimethacrylate (EGDMA) as a cross-linker, and an aprotic solvent as the porogen. Thus, hydrogen 

bonding and electrostatic interactions could operate strongly in the non-aqueous environments. In 

aqueous environments, hydrogen bonding and electrostatic interactions could be disrupted. 

Hydrophobic interactions, which are non-specific, could govern analyte retention. An ideal MIP is 

generally the result of good spatial orientation and intermolecular interactions (such as electrostatic, 

hydrogen bonding, and hydrophobic interactions) in both non-aqueous and aqueous environments. The 

recognition affinity of MIPs is increased when they are synthesized in a  

high-concentration template solution [74]. Scatchard analysis often reveals that a binding site of 

heterogeneity does exist [75]. In SPE procedures, various parameters affecting the selectivity of the 

extraction can be optimized [76]. The MIP is then washed with an appropriate solvent that is capable 

of disrupting the non-specific interactions of analytes with the polymer matrix. In a practical analytical 

procedure, pulsed elution has been developed by Mullett et al. to eliminate non-specific bindings [77].  

3.3. Molecularly Imprinted Micro Solid Phase Extraction and Limitations 

In pharmaceutical, clinical, environmental and food chemistry applications, solid-phase extraction 

(SPE) has been widely employed for the isolation and pre-concentration of target analytes, as well as 

for the clean-up of sample matrices [78]. However, matrix interference components can be  

co-extracted with the target analytes when conventional SPE sorbents, such as C18, ion-exchange, and  

size-exclusion materials, are used. The co-extraction and co-elution problems produce undesirable 

results. For example, detector signals can be suppressed or enhanced when matrix components are  

co-eluted with the analytes. These effects are particularly problematic in the case of trace analysis. 
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Many affinity-based sorbent materials have been developed to selectively extract the target analytes, 

such as boronate, lectin, protein A or G, synthetic dyes, immobilized metal ions, aptamers, peptides, 

antibodies, and molecularly imprinted polymers (MIPs) [79,80]. Among these affinity techniques, both 

antibodies and MIPs can be used as single analyte- or group-selective sorbents. Particles of an MIP 

material can be either packed into a micro-column [81–83] for selective SPE, or glued to the surface of 

a solid-phase micro-extraction (SPME) fiber [84]. New fabrication techniques continue to be 

developed for molecularly imprinted solid phase extraction (MISPE) and molecularly imprinted solid 

phase micro-extraction (MISPME) [85]. 

In the framework of research and development, some problems inherent to MISPE were previously 

addressed. These included the reproducible preparation of MIP sorbent materials with consistent 

molecular recognition characteristics, the risk of non-specific bindings, the potential for repeated use of 

MIP, unfavorable polymer swelling in application-relevant solvents, potential sample contamination by 

template bleeding, and slow analyte binding kinetics. Several attempts have been proposing new 

alternatives to minimize the inherent drawbacks of the preparation and use of MIPs. Most notably, 

Tamayo et al. gave an overview on the significant attempts carried out during recent years to improve 

the performance of MIPs in solid-phase extraction [86]. Leakage of template during the storage of MIP 

materials has been reported [88]. A good laboratory practice should resolve this concern. Template 

mimic seems to be an alternative solution to resolving this limitation of MISPE [87]. 

3.4. Strategies on the Preparation of MIP 

Techniques for bead formation have been investigated to obtain more homogeneous MIP particles 

within a narrow size range [88,89]. Precipitation or emulsion polymerization has gained attention due 

to better control of particle sizes and morphologies [90]. However, these types of polymerization 

usually require either the use of special dispersing phases or complicated swelling processes [91]. 

Molecular imprinting to make MIP nanomaterials has gained more and more attention since 2005 [92]. 

MIP nanomaterials can be synthesized by precipitation or emulsion polymerization, to be readily 

suspended in aqueous media. Ye et al. have prepared MIP nanomaterials with controllable size in the 

nano- to micro-meter range [93]. Varying the composition of the cross-linking monomer allowed the 

particle size to be altered in the range from 130 nm to 2.4 µm, whereas the favorable binding property 

remained intact. Applying MIP onto gold nanoparticles for sensing has been shown to be a promising 

strategy [94]. Pavel and co-workers used computational tools not only to investigate the monomer-

template interaction, but also to simulate the template-MIP interaction [95,96]. They used molecular 

dynamics simulation to predict the interaction energies, the closest approach distances, and the active 

groups for different bio-ligands. They found that electrostatic interactions play the most significant role 

in the formation of MIP materials. Acrylic acid, methacrylic acid, acrylamide, acrolein, acrylonitrile, 

styrene, etc., (a total of 25 monomers) were simulated. The minimized structures of five ligands 

(theophylline, theobromine, theophylline-8-butanoic acid, caffeine, and theophylline-7-acetic acid) 

were obtained with the use of the molecular mechanics approach. The simulation results indicated that 

ligands interact with either-COOH or [CH2=CH]- functional groups at the MIP surface. It was also 

found that a molecular structure without functional side groups can be used for molecular imprinting. 

With several successes in MIP computational modeling, some experimental parameters do not seem 
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fully compatible with regard to the reality. These parameters do not account for effects, such as the 

disruption of monomer-template complexes by the cross-linker, the modulation of monomers activity 

as they are increasingly incorporated into the growing polymer network, and the influence of the 

porogen solvent. 

3.5. Schemes of Analytical Methods 

The possibility of solvent-dependent tuning of substrate selectivity or affinity, and the high binding 

capacity, render MIPs as promising SPE adsorbents for pre-concentration of OTA from various 

biologically relevant matrices [97]. Solvent effect on the recognition properties of MIP specific for 

OTA was reported by Turner et al. [98]. Application of multivariate analysis to the screening of new 

MIPs was proposed before [99]. The effect of temperature on OTA biosorption onto yeast cell wall 

derivatives was studied to elucidate isotherms and thermodynamic parameters [100]. Carbon nanotubes 

(CNTs) were used successfully to enhance the binding capacity of a molecularly imprinted polypyrrole 

(MIPPy)-modified stainless steel frit for micro-SPE to determine OTA in red wines [82]. Elution of 

OTA from MIPPy/CNTs, for on-line coupling to HPLC analysis with fluorescence detection, was 

achieved by an ion-pairing mechanism using 2% triethylamine. For a 3 mL sample of red wine, the 

limit of detection was 0.08 ppb (S/N = 3), which is more than adequate for handling the regulatory 

level of 2 ppb. 

3.6. Preparation of MIP Micro-Particles and Nano-Particles 

Three different formats of imprinted polymers can be prepared via bulk, precipitation, and emulsion 

polymerization methods [101]. The synthesis of MIP microspheres, using MAA and triallyl 

isocyanurate, was reported as early as 2005 [102]. A simple surface molecular imprinting technique 

was developed to synthesize MIP-coated SiO2 micro-particles in aqueous solutions [103]. They were 

demonstrated to have high adsorption capacity, excellent selectivity, and site accessibility for the target 

organic pollutant. 

Soluble MIP nanoparticles were synthesized via iniferter initiated polymerization and separated by 

size via gel permeation chromatography [104]. Subsequent fractionation of these particles by affinity 

chromatography allowed the separation of high-affinity fractions from the mixture of nanoparticles. 

Fractions selected this way possess affinity similar to that of natural antibodies (Kd = 6.6 × 10-8 M) and 

were also able to discriminate between related functional analogs of the template. 

4. MISPE for LC-MS/MS Analysis of Ochratoxins and Metabolites 

Among xenobiotics, applications of MS techniques for the analysis of toxins, pesticides, drug 

residues, amines, and migrants from packaging were previously overviewed [105]. OTA in grape was 

determined by nano-HPLC coupled with ESI-mass spectrometry [106]. Currently, there is a trend 

towards developing multi-mycotoxin methods for the simultaneous analysis of several Fusarium 

mycotoxins belonging to different chemical families that is best achieved by LC-MS/MS (liquid 

chromatography with tandem mass spectrometry). Krska et al. gave an overview of the commonly used 

methodology for the analysis of fumonisins (FBs), moniliformin (MON), zearalenone (ZON), and 
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trichothecenes in feeds [107]. Good limits of detection for OTA in wine samples (1.3–3.4 µg/kg) by 

LC/MS/MS have also been demonstrated by Reinsch et al. [108]. In order to reduce the ion 

suppression effect on MS/MS analysis, the use of MISPE for sample clean-up will be a promising 

development in the future.  

5. Molecularly Imprinted Solid Phase Extraction (MISPE) for Other Mycotoxins  

The major mycotoxin-producing fungi are species of Aspergillus, Fusarium, and Penicillium and the 

important mycotoxins are aflatoxins, fumonisins, ochratoxins, cyclopiazonic acid, 

deoxynivalenol/nivalenol, patulin, and zearalenone [109]. In 2006, MIP Technologies signed an 

exclusive distribution agreement with Supelco [110]. SPE cartridges that were prepared using MIP 

technology were termed SupelMIP SPE by the company. This commercialization of MIP materials 

offered tailor-made selectivity for the extraction of trace analytes in complex matrixes. The MISPE 

products provided faster sample preparation and better MS compatibility (reduced ion suppression), 

allowing analysts to achieve lower detection limits and improved sensitivity. By the end of 2009, there 

were 20 different SupelMIP SPE cartridges available in the market. Most target analytes were 

pesticides and drugs. Unfortunately, no SupelMIP SPE cartridge was made for ochratoxins. However, 

consultation on the preparation of new SPE phases is available from the company. In the future, 

development and research for other specific SupelMIP SPE cartridges will be expected. 

6. Remaining Issues and Impediments 

To prepare MIPs with good recognition properties toward target compounds, proper selection of 

functional monomers has always been the first task for most researchers. The complexity of multiple 

interactions among the pre-polymerization components makes the selection of functional monomers 

still a big challenge. A simplified computational approach is often employed to develop a prediction of 

the resulting MIP. Predictive modeling of functional monomer interactions and the resulting binding 

site performance provides a more rational design of synthetic strategies for new MIPs. It can be 

expected that upon establishment of more complex models that provide better resemblance of the 

actual MIP preparation conditions, computational modeling will develop into a useful complementary 

tool, efficiently reducing the large number of MIPs that are currently screened to achieve optimal 

recognition properties. However, the accuracy of predictive simulations will strongly depend on the 

complexity of the model and on experimental conditions. Hopefully, refined simulations, along with 

supporting spectroscopic data, would lead to more accurate modeling of pre-polymerization complexes 

and binding sites. Spectroscopic studies can gather evidence for self-assembly based on ionic and π–π 

stacking interactions (rather than previously assumed hydrogen bridge bonding), leading to a refined 

model of the pre-polymerization complex [111]. In Table 1, a functional monomer with high affinity 

towards OTA, a mix of functional monomers, and a novel conductive polymer, are all feasible for the 

preparation of MIPs for OTA extraction and detection. 

Direct imprinting of OTA was found to be not ideal for the preparation of OTA MIPs [69] due to its 

slow release of OTA template molecules. Structure analogs, such as N-(4-chloro-1-hydroxy-2-

naphthoylamido)-(L)-phenylalanine, have been used as a surrogate in the preparation of MIPs for OTA 

extraction [80]. New desorption chemistry (such as electrochemical, electrospray desorption) with fast 
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kinetics and efficiency for template removal should be investigated in the future. Ideally, slow release 

of template can be eliminated to prevent any potential carry-overs. As for the recovery of OTA from 

different samples matrices, possible binding of OTA to proteins or other sample matrix components 

was tested by acid treatment before extraction, but no significant differences with controls appeared 

[112]. It is in the best interest of researchers to find new ways for the ease of MIP preparation, ease of 

OTA removal from MIP, and ease of use for real-world samples. These remaining issues will definitely 

need a broad investigation of novel polymer chemistry. 

7. Conclusions 

MIPs are synthetic receptors with high-affinity sites that can selectively recognize a target analyte, 

based on its shape, size, or functional group distribution. These receptors are promising due to their 

easy preparation, thermal stability, chemical inertness, and long shelf life at room temperature and 

humidity. From the point of view of analytical chemistry, this protocol is very promising for 

applications in the extraction and analysis of ochratoxins. Recent investigations have led to the 

synthesis of new MIPs for a wider range of mycotoxins. Currently, MIPs are not selective enough in 

the aqueous environment to compete with natural antibodies [113], and better shape selectivity must be 

achieved in future development. In addition, mycotoxins are costly for the large-scale preparation of 

MIPs. The concept of template mimics, surrogate templates, or dummy templates must be used to 

prepare MIPs that are both affordable and selective for the target mycotoxins [105,114]. A couple of 

peptide receptors have recently been selected for ochratoxin A using computational methods by 

screening de novo designed peptide libraries. Affinity characterization resulted in KA = 63 mM-1 for the 

13-mer peptide and KA = 84 mM-1 for the 8-mer peptide [115]. Last, researchers must be able to 

determine a more proper wash solution to remove OTA template molecules from the strongest-binding 

MIP cavities, especially in ultra-trace analysis (by LC-MS/MS). 
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