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Abstract: The aims of the current study were to determine the half-lethal concentration of 

ochratoxin A (OTA) as well as the levels of lactate dehydrogenase release and DNA 

fragmentation induced by OTA in primary porcine fibroblasts, and to examine the role of 

-tocopherol in counteracting its toxicity. Cells showed a dose-, time- and  

origin-dependent (ear vs. embryo) sensitivity to ochratoxin A. Pre-incubation for 3 h with  

1 nM -tocopherol significantly (P < 0.01) reduced OTA cytotoxicity, lactate 

dehydrogenase release and DNA damage in both fibroblast cultures. These findings 

indicate that -tocopherol supplementation may counteract short-term OTA toxicity, 

supporting its defensive role in the cell membrane. 
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Abbreviations: LC50—half-lethal concentration; LDH—lactate dehydrogenase;  

MTT—3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide; OTA—ochratoxin 

A; TUNEL—Terminal deoxynucleotidyl transferase dUTP nick end labeling 

 

1. Introduction 

Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillum species. It occurs in 

several agricultural products and causes diseases both in humans and animals [1]. OTA has been 

implicated in renal and hepatic toxicity, neurotoxicity, teratogenicity, and immunotoxicity [2], and it is 

considered by the International Agency for Research on Cancer as possibly carcinogenic (group 2B) to 

humans [3], making consistent exposure to OTA a cause of serious concern. 

The scientific panel on contaminants in the food chain of the European Food Safety Authority 

released an opinion related to OTA in food [4], in which it summarized the major information on OTA 

related to human health but also indicated the susceptibility of pigs and other animals to OTA. In 

porcine species, OTA is responsible for acute, subchronic and chronic intoxications, and the effects, 

correlated with the latter two, are of major concern for financial losses in the agriculture and food 

industry [5]. The main clinical patterns associated with OTA intoxication in swine are impaired renal 

function, depression, anorexia, decreased weight gain and productivity [6]. 

At the cellular level, OTA toxicity involves various mechanisms of action: lipid peroxidation, 

disruption of calcium homeostasis, inhibition of protein synthesis, mitochondrial respiration, and DNA 

damage [7]. The toxicological effects of OTA depend on the duration and concentration of exposure 

[5]. OTA can act in different ways: it can express its toxicity directly or by indirect mechanisms, such 

as by inducing cytotoxicity, oxidative cell damage and increased cell injury [8]. Previous reports  

[2,5–11] indicate that the OTA toxicity and DNA damage, measured in vivo and in vitro, are most 

likely attributable not only to cellular oxidative damage mediated by lipid peroxidation, but also to 

direct genotoxic effect. However, the molecular mechanism involved in the apoptotic or 

antiproliferative effects of OTA is still unclear. In particular, O’Brien and Dietrich [5], in their review 

on OTA, highlighted its questionable role as a pro-apoptotic or pro-cytotoxic agent. Considering that 

induction of cell death is a process involving many factors, such as substance, dose/time exposure and 

the cellular in vitro models investigated, OTA could be responsible for an apoptotic or a necrotic 

process. Understanding the molecular mechanism of action of OTA is essential for improving the 

toxicity-reducing countermeasures applied. 

-Tocopherol is a member of the vitamin E compound group that has several biological roles 

[12,13]. Vitamin E is a potent antioxidant; its function as a peroxyl radical scavenger that terminates 

chain reactions is well documented [14,15]. The beneficial effects of vitamin E, particularly of  

-tocopherol, include its position and movement within the cellular membrane, its ability to donate 

H atoms, as well as the efficiency of tocopheroxyl radical recycling by cytosolic reductants  

(i.e., Antioxidant network vitamin E–vitamin C–Glutathione (GSH)–thiol redox cycle) [16,17]. In light 

of these properties, the use of antioxidant compounds as counteracting agents against both the 

oxidative damage induced by OTA through membrane lipid peroxidation and OTA genotoxicity have 
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been reported by several authors [18,19]. In vivo, it has been demonstrated that vitamin E decreases 

OTA genotoxicity [20], while our previous in vitro studies indicated that -tocopherol has protective 

activities against OTA, reducing ROS production in established cell lines [18,21]. 

The primary aim of this study was to determine the toxic effects of OTA in primary porcine 

fibroblast cell cultures by the MTT assay, LDH release, DNA fragmentation and TUNEL stain. 

Further, we aimed to determine the contribution of -tocopherol in counteracting the cytotoxicity and 

DNA damage induced by OTA in the same in vitro model. 

2. Results and Discussion 

2.1. Cytotoxic effect and LDH release induced by ochratoxin A  

We first investigated the LC50 of OTA after 24 h and 48 h of treatment in ear and embryo porcine 

fibroblasts and found that the LC50 differed between the two cell types. At all incubation times, the 

fibroblasts derived from ear were the most sensitive to OTA cytotoxicity (LC50 = 0.93 g/mL after 

24 h; LC50 = 0.92 g/mL after 48 h), while fibroblasts isolated from the embryo showed a time-

dependent sensitivity (LC50 = 4.24 g/mL after 24 h, 2.34 g/mL after 48 h). Previous studies have 

shown different cytotoxic responses to in vitro OTA challenges in different cell lines [18]. Our results 

confirm that the origin of the cells could explain the response to OTA stimuli, as reported by several 

groups [22,23]. To date, most of the studies have been conducted using epithelial cells originated from 

several mammalian species, but only human fibroblasts were used in some studies [19,22]. 

Figure 1 shows the data on LDH release by primary porcine ear and embryo fibroblasts in the 

presence of several concentrations of OTA at 24 and 48 h of incubation. In both cell types, LDH 

release increased significantly (P < 0.01) at OTA concentrations above 2.5 g/mL after 24 and 48 h of 

incubation. Schwerdt et al. [22], in their studies on the long-term effects of OTA on primary 

fibroblasts, indicated that LDH release in the media increased only after five days of exposure to OTA, 

while Russo et al. [19] reported a significant LDH release after 72 h of OTA treatment. However, in 

our study, after only 24 h of incubation, the fibroblast cultures showed considerable LDH release when 

OTA was present at concentrations similar to the doses used by Russo et al. [19], indicating early 

cellular membrane damage. 

Figure 1. Concentration-dependent release of LDH into culture media by primary porcine 

ear and embryo fibroblasts after 24 h (a) and 48 h (b) exposure to OTA concentrations. 

Values are means, with standard errors of the mean represented by vertical bars.  
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2.2. Detection and quantification of DNA damage induced by ochratoxin A  

OTA was able to induce DNA fragmentation in both primary porcine fibroblast cultures, as 

measured by a diphenylamine assay. After 24 h of incubation, in the absence of OTA (control), 14% 

DNA fragmentation in both primary cultures occurred. A dose-dependent fragmentation in fibroblast 

cultures, due to the exposure to increasing concentrations of OTA, was found (Figure 2). At 0.6 g/mL 

of OTA, the DNA fragmentation percentage of both types of fibroblasts were similar to control levels. 

Exposure to high OTA concentrations (2.5, 5, or 10 g/mL) led to increasing percentages of DNA 

fragmentation in the two types of cells. At 10 g/mL of OTA, DNA fragmentation was 92% in 

fibroblasts isolated from ear and 66% in embryonic fibroblasts. These results confirm the different 

sensitivities of fibroblasts to OTA-induced cell damage. Russo et al. [19] report that human fibroblast 

cultures show DNA damage after 72 h of OTA exposure at high concentration. However, OTA 

concentrations lower than the dose used by Russo et al. [19] revealed that these damages occurred 

earlier and were present after 24 h of OTA exposure. The different origins of the cells (human vs. 

porcine) could explain the difference in sensitivity. Moreover, as indicated by O’Brien et al. [24], the 

cellular response to OTA toxicity related not only to the amount of the mycotoxin that gained access to 

the cells but also to the individual cell tolerance to OTA load.  

Figure 2. DNA fragmentation in primary fibroblasts 24 h post–OTA stimulation. 

 

Cell death may occur by several mechanisms. It is well known that LDH release is a marker of 

cellular membrane damage, while DNA fragmentation measurements give an indication of the 

percentage of fragmented DNA out of the total nuclear DNA of cultured cells. A comparison of DNA 

fragmentation with LDH release after 24 h of OTA exposure is shown in Figure 3. After 24 h exposure 

to 0.6, 5, or 10 g/mL OTA in both fibroblast cultures, we observed that the changes in DNA 

fragmentation and LDH release were almost proportional. Based on these data, we suggest that the cell 

death process induced by OTA involved both cellular and DNA damage. Gekle et al. [25], showed that 

OTA exposure induces apoptosis and necrosis in the MDCK-C7 and MDCK-C11 cells, respectively, 

as indicated by comparing DNA fragmentation with LDH release.  
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Figure 3. Comparison of DNA fragmentation and LDH release in fibroblasts cultures after 

24 h of exposure to 0.6, 2.5, 5, or 10 g/mL OTA. The solid line indicates an equal 

percentage of DNA fragmentation and LDH release. During necrosis, the experimental 

values should be close to this line [25]. In the presence of the selected OTA concentrations, 

in both cell cultures the experimental values indicated proportional changes in DNA 

fragmentation and LDH release. 

 

2.3. Detection of DNA damage by TUNEL assay 

In a series of experiments, we examined the effect of OTA exposure on fibroblast cultures using the 

TUNEL assay. Figure 4 shows representative photos of ear fibroblast morphology and nuclear stains in 

cells maintained in culture and exposed to OTA for 24 h. In the absence of OTA, the uniformity of 

monolayers, the typical fibroblast shape and cell-cell interactions in cultures were evident in 

fibroblasts from both sources tested. Only 4% and 6% of nuclei were apoptotic in cultures of primary 

ear and embryonic fibroblasts, respectively. The percentage of dark-brown apoptotic nuclei in primary 

fibroblasts, isolated from ear and embryo, co-incubated for 24 h with 0.6 g/mL of OTA, were 32% 

and 16%, respectively. In both ear and embryo fibroblast cultures after 24 of OTA incubation above 

LC50, monolayers were completely destroyed and cell debris were evident in all the microscopic fields. 

Although studies conducted by several groups [10,22,25] indicate the apoptotic pathway as the 

means by which OTA induces toxicity in vivo and in vitro, the determination of predominant cell death 

pathways depends on several conditions, such as the experimental model, the dose of toxin and the 

duration of the exposure. The mechanisms and morphologies of apoptosis and necrosis are different, 

but there is an overlap between these two processes, in what has been called ―necrosis–apoptosis 

continuum‖ [26]. In fact, it is not simple to distinguish the predominant process, as apoptosis and 

necrosis can occur simultaneously [27]. Understanding the evolution of cell death in cellular models is 

critical. Therefore, once again, it is important not only to consider the concentration and duration of 

toxin exposure and the cell type, but also to employ multiple endpoint assays [24]. 
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Figure 4. Representative photographs of selected fields of TUNEL-stained ear fibroblasts 

are shown. The TUNEL-positive nuclei, indicating apoptotic cells, are stained brown 

(black arrows), while the vital nuclei are stained violet (haematoxylin). (a) Ear fibroblasts 

in culture for 24 h (no OTA). (b) Ear fibroblasts treated with 0.6 g/mL OTA for 24 h.  

(c) Ear fibroblasts treated with 1.25 g/mL OTA for 24 h. (d) Ear fibroblasts treated with  

1 nM -tocopherol and 0.6 g/mL OTA for 24 h. Bars = 200 m.  

 

2.4. Effect of -tocopherol on ochratoxin A–induced toxicity  

The inhibitory effects of -tocopherol on OTA cytotoxicity were evaluated using several toxicity 

assays: MTT test, LDH release, DNA fragmentation and TUNEL assays. 

Pre-treatment with -tocopherol (1 nM) for 3 h, followed by OTA exposure for 24 h, significantly 

(P < 0.01) reduced the loss of cell viability induced by OTA in both in vitro models, as determined by 

the MTT test: by 17.5% in ear fibroblasts exposed to 0.3 g/mL OTA and by 14.7% in embryonic 

fibroblasts exposed to 0.6 g/mL OTA. Treatment with 1 M of antioxidant solution did not affect 

OTA toxicity. After 48 h, -tocopherol at both concentrations was unable to counteract the  

OTA-induced cytotoxicity in either cell type. 

The data on LDH release induced by OTA after 3 h pre-incubation with 1 nM or 1 M -tocopherol 

in fibroblast cultures are shown in Figure 5. At 24 h of incubation, in ear fibroblasts, -tocopherol at 

both concentrations significantly (P < 0.01) decreased LDH release when OTA was present at  

0.3–0.6 g/mL. In embryonic fibroblasts at both concentrations of antioxidant, LDH release in the 

presence of all OTA concentrations used was significantly reduced (P < 0.05) compared to control 

cultures (OTA only). After 48 h of co-incubation with tocopherol and OTA, no difference in LDH 

release in either cell type was detected. These data confirm that the origin of the cells can not only 

explain the response to OTA stimuli, but also the sensitivity to antioxidant response. 
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Figure 5. Effect of -tocopherol on OTA-induced LDH release in primary porcine 

fibroblasts at 24 h. Values are means, with standard errors of the mean represented by 

vertical bars. (a) Ear fibroblasts. (b) Embryonic fibroblasts. 

 

The effects of 3 h pre-incubation with 1 nM or 1 M -tocopherol on OTA-induced DNA 

fragmentation in primary fibroblasts is shown in Figure 6. Treatment with 1 nM α-tocopherol resulted 

in a significant (P < 0.05) decrease in DNA fragmentation compared with control incubation (OTA 

only). This decrease was 15% in the presence of 5 g/mL of OTA in ear fibroblasts and 16% in the 

presence of 10 g/mL of OTA in embryonic fibroblasts. 

Figure 6. Effect of -tocopherol on OTA-induced DNA fragmentation in primary porcine 

fibroblasts at 24 h. Values are means, with standard errors of the means represented by 

vertical bars. (a) Ear fibroblasts. (b) Embryo fibroblasts. 

 

The effects of -tocopherol pre-treatment on DNA fragmentation induced by OTA were evaluated 

by TUNEL assay. In ear fibroblasts α-tocopherol pre-treatment (1 nM or 1 μM) did not significantly 

reduce the percentage of apoptotic nuclei by 12% and 9%, respectively. A representative photograph 

of ear fibroblasts pre-incubated with -tocopherol and co-incubated with 0.6 g/mL OTA for 24 h is 

shown in Figure 4(d). In embryonic fibroblasts, α-tocopherol pre-treatment (1 nM or 1 μM) 

insignificantly decreased the percentage of apoptotic nuclei in the presence of 0.6 μg/mL OTA by 11% 

and 8%, respectively. α-tocopherol was not able to reduce the damage to nuclei when OTA 

concentrations were above LC50 (embryonic: 5 g/mL OTA; ear: 1.2 g/mL OTA), since the cells of 

treated monolayers detached, and cellular debris floated in the observed fields (data not shown). 
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Taken together, our results indicate that -tocopherol counteracts the toxicity of the mycotoxin 

OTA. In particular, the pre-incubation with -tocopherol reduced LDH release and DNA damage in 

both fibroblast cultures, thereby preserving the integrity of the cells. It is well known that -tocopherol 

is fundamental to cellular defence mechanisms against endogenous and exogenous oxidant agents [15]. 

This compound is a peroxyl radical scavenger that terminates the free radical chain reaction [16], and 

its hydrophobic nature stabilises its position in the phospholipid bilayer. In fact, in the core of the 

cellular membrane, as described by Traber and Atkinson [16], the antioxidant characteristics of  

-tocopherol are due to its H atom donating ability, its position and movements in the cellular 

membrane, and its activity in cytosolic reduction reactions that recycle tocopheroxyl radicals, thus 

preventing lipid peroxidation.  

As demonstrated by Baldi et al. [18], in MDCK and BME-UV1 cell lines, the cytotoxicity and ROS 

production induced by OTA are reduced by antioxidant pre-treatments. In particular, -tocopherol 

significantly reduces OTA-induced ROS production. This inhibition is concentration-dependent: 

treatment with a higher concentration (10 mM) results in a significantly greater degree of protection 

against ROS production. OTA causes lipid peroxidation and free radical formation in mammalian 

cells. The oxidative metabolism sustained by enzymes such as cytochrome P450 enzymes and 

enzymes with peroxidase activities, is responsible for OTA biotransformation and subsequent ROS 

production [28]. The OTA toxicity reduction is due to the scavenging of lipid hydroperoxil radicals by 

vitamin E. This is due to the increase in the activity of the glutathione peroxidase, which utilizes GSH 

for catalyzing the reduction of hydroperoxides [20]. 

Moreover, in BME-UV1 cells, -tocopherol at two different concentrations (1 nM and 10 M) 

reduces DNA fragmentation [21]. In this study, antioxidant pretreatment resulted in a reduction of 

DNA fragmentation by 2–5% in the presence of 0.6–2.5 g/mL OTA. Schaaf and co-workers [29], in 

their studies on oxidative damage and free radical generation induced by OTA, observed that  

-tocopherol at micromolar concentrations does not prevent the loss of cell viability in cultured renal 

cells. As described by Azzi [14], the effect of -tocopherol depends on the oxidative environment in 

which it is active. This interaction allows -tocopherol to act as a sensor, monitoring the cellular 

environment through concentration changes and transferring the information from the membrane to the 

nucleus. The effects of - tocopherol on protein kinase C and the other molecular signaling pathways, 

as suggested by Fazzio et al. [30], could vary, considering the cell-specific pathways of cellular 

proliferation in which vitamin E can act. 

3. Materials and Methods  

3.1. Chemicals  

Ochratoxin A, racemic -tocopherol, penicillin, streptomycin and 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazoliumbromide (MTT) were purchased from Sigma-Aldrich (St. Louis MO, USA). 

Dulbecco’s Minimum Essential Medium (DMEM) and glutaMax were obtained from Gibco 

(Invitrogen); and FBS (South America) from Bio Whittaker. Ochratoxin A was dissolved in methanol 

to obtain a stock solution of 5000 g/mL. According to the data obtained in preliminary studies 

[31,32], racemic -tocopherol was dissolved in absolute ethanol to prepare a stock solution of 10 mM. 
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These stock solutions were used for further dilutions in DMEM containing 0.6% FBS to obtain the 

final concentrations of each compound. 

3.2. Cell culture 

In this study, primary porcine fibroblasts isolated from embryo and from ear were used. Fibroblasts 

were grown in monolayers in 75-cm
2
 plastic culture flasks (Nunclon, Nunc Denmark) in Dulbecco’s 

Minimum Essential Medium (DMEM) supplemented with 1% glutaMax, 2500 I.U./mL penicillin,  

2.5 mg/mL streptomycin and 10% FBS. Primary fibroblasts were cultivated in a humidified 

atmosphere with 5% CO2 at 37 °C and split 1:4 once a week. In all experiments in this study, we used 

embryonic porcine fibroblasts between passages 5 and 10 and ear between 5 and 8. All experiments 

were conducted in media containing 0.6% serum, the minimum useful concentration to maintain the 

selected in vitro models. 

3.3. Determination of the half-lethal concentration and LDH release induced by ochratoxin A  

Cells were seeded in 96-well culture plates (3000 cells/well, in 200 μL of complete medium) and 

were cultured for 24 h. A dose–response experiment was set up. Fibroblast cultures were exposed to 

increasing concentrations of OTA (0–10 g/mL) for the following 24 or 48 h. 

The effects of OTA treatments on fibroblast viability were determined using the MTT test. Cellular 

viability was determined using a colorimetric assay based on the production of the chromophore 

formazan from 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT). Formazan is 

produced in viable cells by the mitochondrial enzyme succinate dehydrogenase. 

At the end of the incubation, the media were removed, the monolayers were washed with PBS 

twice, 150 μL MTT stock solution (5 mg/mL) in PBS was added to each well, and the plates were 

incubated for 3 h at 37 °C in a humidified chamber. To dissolve the formazan, 150 μL dimethyl 

sulfoxide was added to each well, after discharging the MTT solution. Absorbance at 540 nm was 

determined on a Biorad 680 microplate reader (Bio-rad, Veenendaal, The Netherlands). 

Cells incubated with culture medium alone, representing 100% viability, were included as negative 

controls in all experiments. 

The percentage cytotoxicity was calculated as follows: 

Percentage cytotoxicity = (1 – mean optical density in presence of OTA/mean optical density of 

negative control) × 100. From these data the half-lethal concentration (LC50) of OTA for each primary 

cell culture was calculated. 

Cell membrane damage induced by OTA was detected by LDH release using a CytoTox 96
®

  

Non-Radioactive Cytotoxicity Assay (Promega) as instructed by the manufacturer. 

Primary porcine fibroblasts were seeded in 96-well plates at the density as described above and 

cultured for 24 h. Afterward, the cells were exposed to OTA solutions (concentration range:  

0–10 g/mL) for 24 or 48 h. At the end of the incubation period the media were removed and cells 

washed with PBS twice. 

LDH is a stable cytosolic enzyme released upon cell lysis. The amount of LDH was measured with 

an enzymatic assay using tetrazolium salts in conjunction with diaphorase. Briefly, after treatments 

supernatants were removed and centrifuged for 5 min at 1500 × g at 4 °C. 50 μL of each supernatant 
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was transferred to a 96 well plate. Cells were lysed by adding 15 μL of 9% Triton X-100 solution in 

water per 100 μL of culture medium containing 0.6% of serum, followed by incubation for 1 h at 

37 °C. Cells debris were removed by centrifugation for 5 min at 1500 × g at 4 °C and 50 μL of each 

sample was transferred to 96 well plate. Then, 50 μL of LDH substrate was added to the supernatants 

and cell lysates. After incubation for 30 min at room temperature in the dark, the enzymatic assay was 

stopped by adding 50 mL of 1 M acetic acid and the plate was read at 490 nm using a 

microplate reader. 

The percentage of LDH release was calculated as the amount of LDH in the supernatant over total 

LDH from both supernatant and cell lysate. 

3.4. Detection and quantification of DNA damage induced by ochratoxin A 

DNA fragmentation was measured with the diphenylamine method as described by Sandau et al. 

[33]. Primary porcine fibroblasts were seeded in 75-cm
2
 flasks (density: 0.55 × 10

5
 cells/mL) and 

grown at 37 °C in 5% CO2 for 5 days. At sub-confluence, fibroblasts were incubated with OTA  

(0–10 g/mL) for 24 h. After incubation, the media were removed and centrifuged at 1,800 × g for  

20 min to collect the detached cells (fraction S). The fraction S was subsequently lysed in 5 mL of  

ice-cold lysis buffer [10 mM Tris, 1 mM EDTA (pH 8.0), 0.5% Triton X-100] for 30 min at 4 °C. The 

remaining adherent cells were scraped off the plastic and lysed in 5 mL of ice-cold lysis buffer as well.  

After cell lysis, the intact chromatin (fraction B) was separated from DNA fragments (fraction T) by 

centrifugation for 20 min at 13,000 × g. Samples were treated with one volume of 25% trichloroacetic 

acid (TCA), precipitated overnight at 4 °C, and recentrifuged 20 min a 13,000 × g at 4 °C, and then the 

supernatants were removed. 

DNA was hydrolysed by adding one volume of 5% TCA to each pellet and heating 15 min at 90 °C 

in a heating block. DNA content was quantitated using the diphenylamine reagent. Afterward, 1600 μL 

of DPA solution (in 10 mL glacial acetic acid: 150 mg diphenylamine, 150 μL H2SO4 and 50 μL 

acetaldehyde 16 mg/mL solution) were added to each fraction and incubated for 4 h at 37 °C in 

the dark. 

The OD600 of each fraction (S, B, and T) was determined. The percentage of DNA fragmented was 

calculated as the ratio of the DNA content in the supernatant (T) to that in the pellet (B), considering 

also the quantity released by cells undergoing apoptosis and lysis during the experiment. 

Percentage of fragmented DNA = [(S + T)/(S + T + B)] × 100  

3.5. Detection of DNA damage induced by ochratoxin A by TUNEL (TdT-mediated dUTP nick end 

labeling) assay 

Primary porcine fibroblasts were seeded at a density of 0.4 ×10
5
 cells/mL in chamber slides, which 

had two chambers (Nunc Lab-Tek, Nunc, Denmark), which were previously coated with a thin layer of 

poly-L-lysine 0.01% (Sigma) to support cellular adhesion. Cells were cultured for 24 h in complete 

medium. Afterward, the media were removed and the fibroblast monolayers washed twice with PBS. 

Based on results obtained from previous assays, 0.6 g/mL OTA and the appropriate LC50 (embryonic 
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LC50: 5 g/mL OTA; ear LC50: 1.2 g/mL OTA) were added to each chamber slide for the  

following 24 h. 

At the end of the incubation, the media were removed and the cells fixed with 4% 

paraformaldehyde at room temperature for 25 min. The TUNEL assay was performed using the 

DeadEnd Colorimetric Apoptosis Detection kit (Promega, Madison, WI, USA). The monolayers were 

washed twice with PBS and permeabilized by immersing the slides in 0.2% Triton X-100 solution in 

PBS for 5 min at room temperature. After washing with PBS, cells were incubated with biotinylated 

nucleotide mixture together with terminal deoxynucleotidyl transferase enzyme. Horseradish 

peroxidase–labeled streptavidin (streptavidin HRP) was then added to bind to these biotinylated 

nucleotides, which are detected using the peroxidase substrate hydrogen peroxide and the stable 

chromogen diaminobenzidine (DAB). Afterward, to visualize and estimate the apoptotic and normal 

cells, haematoxylin staining was performed. Images (20X and 40X) were captured under an Olympus 

BX51 microscope. For each experiment, ~500 cells were counted in randomly selected fields, and the 

percent of TUNEL-positive cells was calculated. 

3.6. Determination of the effect of -tocopherol against OTA-induced toxicity 

To evaluate the most suitable concentrations of -tocopherol for interaction experiments with OTA, 

a dose–response curve for this compound was established using serial concentrations from the 

nanomolar to micromolar range (data not shown). Cell culture setup and conditions were as detailed 

above. Primary porcine fibroblasts were cultured with LC50 doses of OTA in the presence or absence 

of -tocopherol (1 nM or 1 M). Cell viability and LDH release after antioxidant treatment were 

assessed as previously described. 

To determine cell viability, primary fibroblasts were first pre-incubated for 3 h with -tocopherol 

and then exposed to increasing concentrations of OTA for 24 or 48 h. Cells were also exposed to 

antioxidant alone or ethanol (the -tocopherol solvent) alone to evaluate any non-specific effects. 

Inhibition of cytotoxicity was determined by MTT, LDH release, DNA fragmentation and TUNEL 

assays and calculated as the percentage inhibition (percentage cytotoxicity OTA–percentage 

cytotoxicity of (OTA + antioxidant)). 

3.7. Statistical analysis 

The data are expressed as means ± standard errors (SE). At least three replicates at each incubation 

time were performed, and all the experiments were performed twice. Obtained data were analyzed by 

one-way ANOVA (General Linear Models Procedure) [34]; Duncan’s post-hoc multiple range test was 

used, with P ≤ 0.05 considered statistically significant. 

4. Conclusions 

Primary porcine fibroblast cultures offer new in vitro opportunities to study OTA cytotoxicity and 

the role of -tocopherol in counteracting the several types of damage induced by this mycotoxin. OTA 

cytotoxicity developed through several mechanisms of action. The cellular inhibition associated with 

the LDH release and DNA fragmentation induced by OTA showed different sensitivities in the two 
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fibroblast cultures. -Tocopherol treatments could reduce the damage induced by OTA at different 

cellular levels. Our results point to the conclusion that the use of -tocopherol offers new strategies to 

reduce OTA cytotoxicity, supporting its defensive role in the cell membrane and its multiple functions 

in cellular metabolism. 
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