Next Article in Journal
Consequences and Utility of the Zinc-Dependent Metalloprotease Activity of Anthrax Lethal Toxin
Next Article in Special Issue
Intramolecular Modulation of Serine Protease Inhibitor Activity in a Marine Cyanobacterium with Antifeedant Properties
Previous Article in Journal
Toxin-Specific Antibodies for the Treatment of Clostridium difficile: Current Status and Future Perspectives
Previous Article in Special Issue
On the Chemistry, Toxicology and Genetics of the Cyanobacterial Toxins, Microcystin, Nodularin, Saxitoxin and Cylindrospermopsin
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:

A Review on Toxic and Harmful Algae in Greek Coastal Waters (E. Mediterranean Sea)

National Center of Scientific Research “Demokritos”, Institute of Biology, Aghia Paraskevi, 15310 Athens, Greece
Hellenic Center for Marine Research, Institute of Oceanography, 19013 Anavyssos, Greece
Author to whom correspondence should be addressed.
Toxins 2010, 2(5), 1019-1037;
Received: 22 March 2010 / Revised: 23 April 2010 / Accepted: 5 May 2010 / Published: 11 May 2010
(This article belongs to the Special Issue Algal Toxins)


The Greek coastal waters are subjected to harmful algal bloom (HAB) phenomena due to the occurrence of species characterized as toxic (TX), potentially toxic (PT), and non-toxic, high biomass (HB) producers causing harm at multiple levels. The total number of (TX), (PT) and (HB) algae reported in this work are 61, but only 16 species have been associated with the occurrence of important HABs causing damage in the marine biota and the water quality. These phenomena are sporadic in time, space and recurrence of the causative species, and are related to the anthropogenically-induced eutrophication conditions prevailing in the investigated areas.

1. Introduction

The coastline (18,000 km) of the Greek mainland is located in the Eastern Mediterranean Sea, it is surrounded by the Aegean, Ionian and Cretan Seas and its morphological regime shows a variety of gulfs and semi-enclosed gulfs. All these basins are eutrophic [1] since they receive the waters and fertile material from large rivers and/or smaller water outfalls derived from agricultural and industrial activities.
Eutrophication triggers various physical and chemical changes in the marine environment and exerts a pressure on algal populations, allowing the intensive growth of certain harmful-toxin producing species or nuisance blooms that may create problems in the structure of the ecosystem and public health. These blooms are collectively called Harmful Algal Blooms (HABs). The greatest number of toxic species is found among dinoflagellates, but evidence has been provided for several species of other taxa (diatoms, flagellates, cyanobacteria, prymnesiophytes, rhaphidophytes) suggesting that they belong in this category [2,3,4].
Concern about harmful algae in Greek coastal waters has been growing since the late 1970s, when the first symptoms of “fish kills” due to the increased anthropogenic effects led to the fact that HABs-often quoted as the phenomenon of red tides-acquired the attention of scientists and the public. Since then, routine records of phytoplankton samples from almost all major gulfs along the Greek coastline during the last 30 years have revealed the presence of toxic and potentially toxic algae (those producing and/or potentially producing toxins) and non-toxic, high biomass producing species (non-toxic producers, but causing harmful blooms at multiple levels), although their destructive effects were occasional.
The European Commission has funded a number of projects such as EUROHAB (European Initiative on Harmful Algal Blooms) to generate the required research to better manage the effects of toxic/harmful marine microalgae that have caused problems in European marine waters [5]. This paper is the first comprehensive presentation of these species in the Eastern Mediterranean Sea, based on a synopsis of all published information for the period 1977-2009.

2. Sampling Areas and Data Collection

The investigated area (Figure 1) is located in the Eastern Mediterranean and presents the sampling regions along the coastlines of the North Aegean Sea (I), the Western Aegean Sea (II), the Southern Aegean Sea (III), the Ionian Sea (IV) and the Mytilini Island, Eastern Aegean Sea (V). These sites include nine major Gulfs (a: Thermaikos; b: Kavalas; c: Pagassitikos; d: Malliakos; e: Evoikos; f: Saronikos; g: Messiniakos; h: Amvrakikos and i: Kalloni), as well as harbors, docks and marinas.
The collection of data covers the period 1977-2008. The methodology of sampling, preservation of samples, quantitative-qualitative analysis and the toxicity detection/evaluation of each one of the phytoplanktonic species under investigation are given in the literature cited in Table 1. The characterization of species as toxic (TX), potentially toxic (PT) and high biomass (HB) harmful blooms in this work was based on publications providing comprehensive descriptions of the current status of knowledge in the field as well as the IOC-UNESCO Taxonomic Reference List of Harmful Micro Algae [4]. The specifications of toxins were also determined from the literature.

3. Results and Discussion

A traditional system has been adopted for the eukaryotic species taxonomy [6]. Cyanobacteria are prokaryotes that may create problems producing diverse neurotoxins hazardous for human health; they have been classified among the HAB species [7] and are therefore included here. The majority of species are autotrophic (photosynthetic algae), but certain species (mostly dinoflagellates) are heterotrophic (feeding on particulate or dissolved organic matter) and their mode of nutrition (phagotrophy, osmotrophy) has been also taken into consideration [8]. It is interesting to notice that species of the same family differ in toxic properties.
Figure 1. Location of the investigated Gulfs on the map of Greece.
Figure 1. Location of the investigated Gulfs on the map of Greece.
Toxins 02 01019 g001

3.1. Taxonomy and toxic properties of detected HAB species in Greek coastal waters

3.1.1. Class Bacillariophyceae (Diatoms) Order Thalassiophysales

Family Catenulaceae. A strain of the species Amphora coffeaeformis (from Canada) was found to produce Domoic acid. Other strains examined so far were non-toxic. However, the precise identification of the Canadian strain has been questioned [4,9].It is also a mucilage producer [10]. Order Bacillarialles

Family Bacillariaceae. The five species of this family are Domoic acid producers: Pseudo-nitzschia delicatissima [11], Pseudo-nitzschia pseudodelicatissima [12], Pseudo-nitzschia seriata [13], Pseudo-nitzschia pungens [14] and Pseudo-nitzschia calliantha [15].

3.1.2. Class Dinophyceae (Dinoflagellates)

There are five important orders of Dinophyceae identified and presented in this work: Peridiniales, Prorocentrales, Dinophysiales, Gymnodiniales, and Noctilucales. Order Peridiniales

Family Goniodomataceae. This family comprises six species of the genus Alexandrium and one of the genus Gambierdiscus that are among the well known harmful algae. A. catenella is a producer of c1-c4 toxins, Saxitoxins and Gonyautoxins [16,17]. A. tamarense, A. minutum and A. taylori produce Gonyautoxins [18,19]. A. balechii and A. insuetum have been characterized in the literature as species of unknown toxicity, but they have been associated with harmful algal blooms [14,20] and Gambierdiscus sp. is known to be toxic producing Ciguatoxin and Maitotoxine [21].
Family Ostreophidaceae. Coolia monotis produces Cooliatoxin, an analog of Yessotoxin [22].
Family Heterocapsaceae. Heterocapsa circularisquama produces the photosensitizing hemolytic toxins H2-a, H3-a [23].
Family Ostreopsidaceae. The two toxic species of the genus Ostreopsis are O. ovata producing putative Palytoxin and Ovatoxin compounds and O. siamensis, putative Palytoxin [24,25,26].
Family Gonyaulacaceae. Protoceratium reticulatum is a species known as a Yessotoxin toxin producer [27]. Scrippsiella trochoidea is a bloom forming species of unknown toxicity [28].
Family Protoperidiniaceae. Two species of this family have been recorded, Diplopsalis lenticula, a bloom forming species [29] of unknown toxicity and Protoperidinium crassipes, producingAzaspiracid toxins [30].
Family Peridiniaceae. Peridinium quinquecorne is a bloom forming species [31].
Family Ceratiaceae. The four species of the genus Ceratium, C. furca, C. fusus, C. lineatum, and C. tripos occasionally form non-toxic blooms [32] that may cause discoloration of the water and undesirable aesthetic symptoms, but without toxic signs [33,34,35,36]. Order Prorocentrales

Family Prorocentraceae. All species of this family are in the genus Prorocentrum. The four toxic species are: P. borbonicum, producing Borbotoxins [37], P. levis and P. lima, producing Okadaic acid and Dinophysistoxins [38,39], and the Okadaic acid producer P. rhathymum [40]. Species associated with high biomass harmful blooms are: P. arcuatum [41], P. obtusidens [43], P. redfeldii [43], P. micans [44], P. minimum [45], P. dentatum [46] and P. emarginatum [47]. Order Dinophysiales

Family Dinophysiaceae. All species of this family representing the genus Dinophysis are toxic. D. sacculus produces Okadaic acid [48]; D. tripos and D. rotundata, Dynophysistoxin [48,49]; D. acuminata and D. acuta, Okadaic acid/Dynophysistoxin [48]; D. fortii, Okadaic acid/Dynophysistoxin/Palytoxin [48]; D. caudata, Okadaic acid/Palytoxin [48]. Order Gymnodiniales

Family Gymnodiniaceae. All species of this family are toxic except Gyrodinium impudicum, a non-toxic, bloom forming species [50]. Amphidinium carterae, is a producer of the Maitotoxin [51] and G. aureolum produces 1-acyl-3-digalactosylglycerol and octadecapentaenoic acid [52]. One of the two toxic species of the genus Karenia, K.brevis produces Polyether Neurotoxins called Brevetoxins [53] and K. mikimotoi Gymnocin-A [54]. The species Gymnodinium catenatum produces Gonyautoxins and Saxitoxin [55], whereas Karlodinium veneficum, Karlotoxins [56]. Order Noctilucales

Family Noctilucaceae. Noctiluca scintillans is the single species of this family. It is a non-toxic bloom forming species [57] responsible for harmful outbursts (water discoloration, anoxic events).

3.1.3. Class Prymnesiophyceae (Haptophytes) Order Phaeocystales

Family Phaeocystaceae. Phaeocystis puchetii: toxic species producing polyunsaturated aldehyde [58]. Order Prymnesiales

Family Prymnesiaceae. Prymnesium parvum: toxic species producing Prymnesins [59].

3.1.4. Class Rhaphidophyceae (Chloromonadophytes)

Order Chattonellalles
Family Chattonellaceae. Both species of this family Chattonella globosa and C.verucolosa are unknown toxicity high biomass forming species [60].

3.1.5. Class Cyanophyceae (Cyanobacteria) Order Chroococales

Family Chroococaceae. The species Microcystis aeruginosa produces the toxin Microcystin-LR [61], and the species Chroococcus gelatinosus and Synechocystis sallensis are bloom forming species [62]. Order Nostocalles

Family Oscillatoriaceae. Lyngbya agardhii is a high biomass forming species [62] and Trichodesmium erythraeum produces Saxitoxin [63].
Table 1 presents alphabetically the list of species, their toxic properties and the area of their occurrence given in the literature.
Table 1. Toxic (TX), potentially toxic (PT) and high biomass (HB) nuisance species in Greek coastal waters. Shaded rows demarcate species that have caused toxic events.
Table 1. Toxic (TX), potentially toxic (PT) and high biomass (HB) nuisance species in Greek coastal waters. Shaded rows demarcate species that have caused toxic events.
Amphora coffeaeformis (C. Agardh) KützingDomoic acid(PT)V[29]
Pseudo-nitzschia calliantha, Lundholm, Moestrup et HasleDomoic acid(PT)V[29]
Pseudo-nitzschia delicatissima (Cleve) HeidenDomoic acid(PT)I, II, III[73,77]
Pseudo-nitschia pseudodelicatissima (Hasle) HasleDomoic acid(PT)I, II, IV, V[43,78,79]
Pseudo-nitzschia pungens (Grunow ex Cleve) HasleDomoic acid(PT)I, II, III, IV, V[29,43,73]
Pseudo-nitzschia seriata (Cleve) H. Peragallo Domoic acid(PT)I, II, III, V[78,80,81]
Alexandrium balechii (Steidinger) BalechUnknown toxicity(PT)II[82]
Alexandrium catenella (Whedon et Kofoid) BalechSaxitoxin, Gonyautoxin, c1-c4 toxins(PT)I, II[82]
Alexandrium insuetum Balech Unknown toxicity(HB)IV, V[29,43]
Alexandrium minutum HalimGonyautoxins (1-4)(PT)I, II, IV, V[43,64,83]
Alexandrium tamarense (Lebour) BalechGonyautoxins (1-4)(PT)I, II[82,84]
Alexandrium taylori BalechGonyautoxin-4, Gonyautoxin-6(PT)I, II[82]
Amphidinium carterae HulburtMaitotoxin(PT)IV, V[29,85]
Ceratium furca (Ehrenberg) Claparède et LachmannUnknown toxicity(PT)I, II, III, IV, V[29,73,78,80]
Ceratium fusus (Ehrenberg) DujardinUnknown toxicity(PT)I, II, III, IV, V[29,73,78,80]
Ceratium lineatum (Ehrenberg) CleveUnknown toxicity(PT)IV, V[29,79]
Ceratium tripos (Müller) NitzschUnknown toxicity(PT)I, II, III, IV, V[29,73,78,79,80]
Coolia monotis MeunierCooliatoxin(PT)I, III, IV[79,86,87]
Dinophysis acuminata Claparède et LachmannOkadaic acid, Dinophysistoxin-2(TX)I, II, IV[42,43,71,85]
Dinophysis acuta EhrenbergOkadaic acid, Dinophysistoxin-2(PT)I[88]
Dinophysis caudata Saville-KentOkadaic acid, Palytoxin(PT)I, II, IV, V[29,42,43]
Dinophysis fortii PavillardOkadaic acid, Dinophysistoxin-1, Palytoxin (PT)I[42]
Dinophysis rotundata Claparède et LachmannDinophysistoxin-1(PT)I, IV[42,79]
Dinophysis sacculus SteinOkadaic acid(PT)I, II, III, IV, V[29,43,73]
Dinophysis tripos GourretDinophysistoxin-1(PT)I, II[82,88]
Diplopsalis lenticula BerghUnknown toxicity(PT)I, V[29,88]
Gambierdiscus sp.Ciguatoxin, Maitotoxine (PT)III[87]
Gymnodinium catenatum GrahamGonyautoxins (1-4), Saxitoxin(PT)I[84,88]
Gyrodinium aureolum Hulburt1-acyl-3-digalactosyl glycerol, Octadeca- pentaenoic acid (TX)I, II[46,88]
Gyrodinium impudicum Fraga et BravoUnkown toxicity(PT)I, IV[79,84]
Heterocapsa circularisquama Horiguchihemolytic toxin2-a, hemolytic toxin 3-a (PT)V[29]
Karenia brevis(Gymnodinium breve) (Davis) G. Hansen et MoestrupBrevetoxin-1, Brevetoxin-2, Brevetoxin-3(TX)I, II, III[46,70,73,78]
Karenia mikimotoi (Miyake et Kominami ex Oda) Hansen et MoestrupGymnocin-A(PT)IV[79]
Karlodinium veneficum (Ballantine) J. LarsenKarlotoxin-1, Karlotoxin-2(PT)V[29]
Noctiluca scintillans (Macartney) Kofoid et SwezyUnknown toxicity(HB)I[43]
Ostreopsis ovata FukuyoPutative Palytoxin, Ovatoxin-a(PT)I, III, V[29,86,87]
Ostreopsis siamensis SchmidtPutative Palytoxin (PT)I, III[86,87]
Peridinium quinquecornen AbéUnknown toxicity(PT)V[29]
Prorocentrum arcuatum IsselUnknown toxicity(PT)V[29]
Prorocentrum borbonicum Ten-Hage, Turquet, Quod, Puiseux-Dao et CoutéBorbotoxins(PT)I, III[87,89]
Prorocentrum dentatum SteinUnknown toxicity(HB)I, II[46]
Prorocentrum emarginatum FukuyoUnknown toxicity(PT) I, III, IV[79,87,89]
Prorocentrum levis M.A. Faust, Kibler, Vandersea, P.A. Tester & LitakerOkadaic acid, Dinophysistoxin-2(PT)I[89]
Prorocentrum lima (Ehrenberg) SteinOkadaic acid, Dinophysistoxin-1, Dinophysistoxin-2(PT)I, II, III, V[29,73,87,89]
Prorocentrum micans EhrenbergPutative Palytoxin, Ovatoxin-a (PT)I, II, III, IV[73,77,78,79]
Prorocentrum minimum (Pavillard) SchillerUnknown toxicity(HB)I, II, IV, V [29,43,46]
Prorocentrum obtusidens SchillerUnknown toxicity(HB)I[42,43]
Prorocentrum redfeldii BursaUnknown toxicity(HB)I, IV[43,79]
Prorocentrum rhathymum Loeblich III, Sherley et SchmidtOkadaic acid(PT)I, III, IV[85,87,89]
Protoceratium reticulatum (Claparède et Lachmann) BütschliYessotoxin(PT)I[84]
Protoperidinium crassipes (Kofoid) BalechAzaspiracid toxin-1 Azaspiracid toxin-2 Azaspiracid toxin-3(PT)V[29]
Scrippsiella trochoidea (Stein) LoeblichUnknown toxicity(HB)I, II, III, IV, V[29,46,73,78,79]
Phaeocystis pouchetii (M.P. Hariot) G. LagerheimPolyunsaturated aldehydes(HB)I, II, III[46,62,73]
Prymnesium parvum N. CarterPrymnesin-1, Prymnesin-2(PT)I, IV[85,88]
Chattonella globosa Y. Hara et ChiharaUnknown toxicity(HB)I, IV[42,43]
Chattonella verucolosa Y. Hara et ChiharaUnknown toxicity(HB)I, IV[42,43]
Microcystis aeruginosa (Kützing) KützingMicrocystin-LR(TX)II[62]
Lyngbya agardhii P.L.Crouan & H.M.Crouan ex GomontUnknown toxicity(HB)II[62]
Chroococcus gelatinosus GeitlerUnknown toxicity(HB)II[62]
Synechocystis sallensis SkujaUnknown toxicity(HB)II[62]
Trichodesmium erythraeum EhrenbergSaxitoxin(TX)II[62]

3.2. The ecological role of toxic, potentially toxic and bloom forming species in Greek coastal waters

In the present article (Table 1) we nominate toxic (TX) as the species producing blooms associated with evident toxic symptoms in the marine ecosystem, e.g., fish and shellfish death, or in humans consuming the poisoned fish and shellfish populations. Thus, consumption of contaminated shellfish by (a) the diatom Pseudonitzschia seriata, a domoic acid producer, caused [13] amnesic shellfish poisoning (ASP), (b) the dinoflagellate Dinophysis sacculus, an okadaic acid producer, caused [48] diarrhetic shellfish poisoning (DSP) and (c) the cyanobacterium Microcystis aeruginosa,a microcystin-LR producer, caused [61] extensive liver damage.
Potentially toxic (PT) are characterized as species carrying the toxigenic potential according to toxicological analyses, but their presence in an area has not been accompanied by toxic blooms and the relevant symptoms. A noticeable example is the toxic dinoflagellate (GTX1-4) Alexandrium minutum, whose presence did not produce toxic symptoms in the Greek coastal waters since their nutritional status did not favor blooms of this species [64].
Certain non-toxic species create high biomass (HB) blooms that have been characterized as harmful, because their occurrence produces discoloration of the water, undesirable aesthetic symptoms and anoxic harmful conditions to the ecosystem. They also cause severe economic problems due to loss to fisheries and tourism operations [65]. Massive growth of the dinoflagellates Noctiluca scintillans (late winter-early spring), Chatonella globosa (spring)and several species of the genus Prorocentrum in autumn (P. micans, P. triestinum, P. obtusidens and P. rostratum) caused severe water discoloration in Thermakos Gulf during the years 2000-2004 [43].
The total numbers of (TX), (PT) and (HB) algae reported in this work are 61 species. Dinoflagellates included 46 species contributing the 75% of total number (Table 1). Among them, three species are toxic (Dinophysis acuminata, Gyrodinium aureolum, Karenia brevis), seven species are forming high biomass (HB) harmful blooms and the rest (36) are potentially toxic species. Dinoflagellates are referred [66] as the group producing the most potent biotoxins known and with the largest number of HAB species, and the present data (75% dinoflagellates of total number of HAB species) are in accordance with this information.
Diatoms were represented by only six species-all potentially toxic-and this might be attributed to their nutrition requirements for a well balanced ratio (N:P:Si) of all nutrients. This necessity makes them poorer competitors than the non-siliceous dinoflagellates that seem to have a competitive advantage over diatoms if the stoichiometry of nutrients is deviated from its normal status in seawater [67].
Another advantage of dinoflagellates over diatoms is their nutritional mode, since several dinoflagellates are not exclusively phototrophic but heterotrophic/mixotrophic because they can shift to osmotrophy (uptake of dissolved organic substances) and/or phagotrophy (feeding on particulate organic carbon) under changes in nutrient supply ratios (N:P, C:P) and light-depleted conditions [8].
Table 2. Trophic strategies of heterotrophic HAB species.
Table 2. Trophic strategies of heterotrophic HAB species.
SpeciesFeeding mechanismFood typeSource
Alexandrium catenellaOsmotrophyUrea, dextrans[90]
Alexandrium minutumOsmotrophy-PhagotrophyUrea, Cyanobacteria[91,92]
Alexandrium tamarenseOsmotrophy-PhagotrophyUrea, Cyanobacteria, Cryptophytes[92,93,94]
Ceratium furcaPhagotrophyCiliates[95]
Dinophysis acuminataPhagotrophyCiliates[96]
Gambierdiscus sp.PhagotrophyUnknown pray[8]
Gymnodinium catenatumPhagotrophyCyanobacteria[92]
Gyrodinium impudicumPhagotrophyCyanobacteria, Algae[94,97]
Karenia brevisOsmotrophy-PhagotrophyUrea, Cyanobacteria[92,98]
Karlodinium veneficumOsmotrophy-PhagotrophyUrea, Cryptophytes[99,100]
Noctiluca scintillansPhagotrophyAlgae[101]
Ostreopsis ovataPhagotrophyUnknown pray[8]
Ostreopsis siamensisPhagotrophyUnknown pray[8]
Prorocentrum micansPhagotrophyCyanobacteria, Algae[92,94]
Prorocentrum minimumOsmotrophy-PhagotrophyUrea, Cyanobacteria, Algae[92,99,102]
Protoperidinium crassipesPhagotrophyAlgae[103]
Scrippsiella trochoideaPhagotrophyCyanobacteria, Algae[92,94]
Prymnesium parvumPhagotrophyAlgae[104]
Microcystis aeruginosaOsmotrophyLeucine[69]
The 19 identified mixotrophic species in this investigation (Table 2) included 17 dinoflagellates, one prymnesiophyte and one cyanobacterium. Mixotrophic dinoflagellates comprised 40% of the total (46) species in the Dinophyceae class (Table 1) and their feeding types are well known. Nine mixotrophic species (Ceratium furca, Dinophysis acuminata, Gymnodinium catenatum, Gyrodinium impudicum, Noctiluca scintillans, Prorocentrummicans, Protoperidinium crassipes, Scrippsiella trochoidea, Prymnesium parvum) have been reported as phagotrophic, having the ability to feed on prokaryote prey (e.g., cyanobacteria) and/or eukaryote algae (dinoflagellates, cryptophytes). However, the prey of phagotrophic Gambierdiscus sp., Ostreopsis ovata, O. siamensis, is unknown. For species supplementing their nutrition with osmotrophy (Alexandriumcatenella) or osmotrophy and phagotrophy (Alexandrium minutum, A. tamarence, Karenia brevis, Karlodinium veneficum, Prorocentrum minimum), urea proved to be an important nitrogen source, with the exception of the cyanobacterium Microcystis aeruginosa, which may utilize leukine.
Among the 61 species presented in Table 1, certain algae (16) have been associated with the occurrence of important HAB incidents in the investigated areas during the last 30 years, and six among these are heterotrophic species. Table 3 presents the seasonal and spatial distribution of the HAB incidents and the associated impact in the biotic community and water quality.
Table 3. Important HAB incidents in Greek coastal waters.
Table 3. Important HAB incidents in Greek coastal waters.
SpeciesSeason/year of max. abundance (Cells.L−1)GulfImpactSource
Alexandrium insuetum April 2003 (2.5 × 106 ) AmvrakikosWater discoloration [43]
May 2004 (4.7 × 105)
Dinophysis acuminata Jan. 2000 (8.5 × 104)ThermaikosDiarrhetic shellfish toxins[42,71]
Feb. 2002 (3.7 × 104)
March 2003 (2.2 × 103)
May 2004 (1.1 × 104 )
Karenia brevis Sept. 1977 (1.0 × 107)SaronikosMassive fish kill[70,105]
Sept. 1978 (5.0 × 107)
Oct. 1987 (2.7 × 107)
Noctiluca scintillans February-March 2000-2004 (>1.0 × 106)ThermaikosWater discoloration [43]
March 1978 (1.1 × 105)Kavalas Water discoloration[105]
Prorocentrum micans April 1994 (3.7 × 107)ThermaikosWater discoloration Water discoloration[43]
May 1993 (1.1 × 106)Saronikos[46]
Prorocentrum minimum April 2003 (1.2 × 105)N. Aegean coastal area, Saronikos, AmvrakikosWater discoloration [43]
April 2003 (1.1 × 105)
Autumn 2003 (1.0 × 105)
Prorocentrum obtusidens Jan. 2000 (1.2 × 106)ThermaikosWater discoloration [43]
Jan. 2001 (1.2 × 106)
Prorocentrum redfeldii Winter 2000 (1.2 × 106)ThermaikosWater discoloration [43]
Winter 2001 (6.0 × 106)
Phaeocystis pouchetii March 1989 (2.5 × 106)SaronikosWater discoloration[46]
August 1993 (3.5 × 107)EvoikosMucilage [62]
Sept. 1999 (2.7 × 106)
Chattonella globosa Spring 2001 (>104)ThermaikosWater discoloration [43]
Spring 2002 (>104)
Spring 2003 (>104)
Chattonella verucolosa Dec. 1998 (Massive presence)AmvrakikosMass finfish mortality[43]
Microcystis aeruginosa Sept. 1999 (9.9 × 105)EvoikosMucilage [62]
Lyngbya agardhii Sept. 1999 (4.8 × 103 filaments.L−1)EvoikosMucilage [62]
Chroococcus gelatinosus Sept. 1999 (8.2 × 105)EvoikosMucilage [62]
Synechocystis sallensis Sept. 1999 (8.9 × 104)EvoikosMucilage [62]
Trichodesmium erythraeum Sept. 1999 (7.1 × 104 trichomes.L−1)EvoikosMucilage [62]
The present data demonstrate that HAB episodes in Greek coastal waters are sporadic in time, space and recurrence of the causative species. Blooms (up to 5.0 × 107 cells.L−1) of Karenia brevis (Gymnodinium breve) were recorded only in the Saronikos Gulf, three times (September 1977, September 1978, and October 1987) with massive fish kill. Outbreaks of Dinophysis acuminata (up to 8.5 × 104 cells.L−1) were recorded only in the Thermaikos Gulf in January 2000, April 2001, February 2002, March 2003 and May 2004, and they were associated with extensive shellfish deaths. However, this species was also observed in the Amvrakikos and Malliakos Gulfs at several times in low abundances and without toxic symptoms. The huge growth (5.4 × 106cells.L−1) of Noctiluca scintillans caused water discoloration in late winter-early spring occasionally during 2000-2004 in Thermaikos and in Kavala Gulfs. The outbursts of four species of the genus Prorocentrum were also associated with water discoloration. P. obtusidens, P. redfeldii and P. micans occurred in the Thermaikos Gulf during the winter 2000-2001 at abundances up to 6.0 × 106 cells.L−1 and P. minimum was recorded (up to 1.2 × 105 cells.L−1) in April 2003 along the N. Aegean coastal line and in the Saronikos Gulf, and in autumn 2003 in the Amvrakikos Gulf. However, the presence of P. minimum in the Kalloni Gulf did not cause any undesirable incidents [29]. Mass occurrence (4.7 × 105-2.5 × 106 cells.L−1) of Alexandrium insuetum caused water discoloration in the Amvrakikos Gulf in the spring of 2003 and 2004, but in Kalloni Gulf did not create harmful effects [29].
The two Rhaphidophyte species of Chattonella were also involved in severe HAB phenomena. The species C. globosa grew massively (>104 cells.L−1), causing water discoloration during spring 2001-2003 in the Thermaikos Gulf, whereas considerable growth of C. veruculosa caused finfish mortality in the Amvrakikos Gulf in December 1998. The Prymnesiophyte Phaeocystis pouchetii, growing at concentrations up to 3.5 × 107 cells.L−1, caused water discoloration in the Saronikos Gulf (March 1989, August 1993) and “mucilage” problems in the Evoikos Gulf (September 1999). In September 1999, the co-occurrence of five species of the cyanophyceae, Microcystis aeruginosa (9.9 × 105 cells.L−1), Lyngbya agardhii (4.8 × 103 filaments.L−1), Chroococcus gelatinosus (8.2 × 105 cells.L−1), Synechocystis sallensis (8.9 × 104 cells.L−1) and Trichodesmium erythraeum (7.1 × 104 trichomes.L−1) produced a serious harmful bloom in the Evoikos Gulf. The sea surface was covered by mucus-forming “blankets” and “marine snow” transported horizontally and vertically and causing problems to recreation, public health and fish harvesting.
From the ecological point of view, most (TX), (PT) and (HB) algae (Table 1) are “normal” components of inshore waters [72,73]. However, major gaps still exist in our understanding of the factors triggering only certain species to initiate and develop harmful populations. There is evidence that HABs are eutrophication-induced phenomena thriven by anthropogenic activities. Records on the trophic status of the Aegean and Ionian Gulfs [1] proved that the investigated areas (Figure 1) were characterized “eutrophic” because the chl α concentrations were higher (>>1.0 mg chlα. m−3) in relation to the values (<<0.5 mg chlα. m−3) prevailing in the oligotrophic open oceanic waters [74]. The information available on the eutrophication-HAB relationship has recently increased, regarding the general explanation of the competition of phytoplankton species in relation to overall nutrient availability and the ratio between different nutrient species [65].
It is interesting to notice that the species Alexandrium insuetum, A. tamarense, Gymnodinium catenatum, Gyrodinium aureolum, Coolia monotis, Ostreopsis ovata and O. siamensis are not indigenous, but alien species of the Mediterranean Sea. They have been introduced via ship traffic for the Atlantic, Pacific and Indian Oceans [75] and it is obvious that the “ballast water” problem needs urgent attention [76].

4. Conclusions

The available data indicate that 61 identified HAB species (toxic, potentially toxic and high biomass producing algae) have spread across the Greek coastline during the last 30 years. Among these, certain algae (16) were associated with the occurrence of important HAB incidents causing damage in the marine biota and the water quality. There is a strong indication that these incidents were eutrophication-induced phenomena, but sporadic in time, space and recurrence of the causative species.


  1. Gotsis-Skretas, O.; Ignatiades, L. Distribution of chlorophyll α in the Aegean and Ionian Sea. In State of the Hellenic Fisheries; Papaconstantinou, C., Zenetos, A., Vassilopoulou, V., Tserpes, G., Eds.; HCMR: Athens, Greece, 2007; pp. 24–27. [Google Scholar]
  2. Codd, G.A. Cyanobacterial toxins: Their occurrence in aquatic environments and significance to health. In Marine Cyanobacteria; Charpy, L., Larkum, A.W.D., Eds.; Bulletin De L'Institut Oceanographique: Paris, France, 1999; pp. 483–500. [Google Scholar]
  3. Vershinin, A.O.; Orlova, T.Y. Toxic and harmful algae in the coastal waters of Russia. Mar. Biol. 2008, 48, 524–537. [Google Scholar]
  4. Akselman, R.; Cronberg, G.; Elbraechter, M.; Fraga, S.; Halim, Y.; Hansen, G.; Hoppenrath, M.; Larsen, J.; Lundholm, N.; Nguyen, L.N.; Zingone, A. IOC-UNESCO Taxonomic Reference List of Harmful Micro Algae (HABs). Available online:,accessed 3 March 2010.
  5. Anonymous. EUROHAB Science Initiative Part B: Research and Infrastructural Need. In National European and International Programmes.; Granéli, E., Lipiatou, E., Eds.; Office for Official Publications of the European Communities: Luxembourg, 2002. [Google Scholar]
  6. Sournia, A. Atlas du Phytoplankton Marin. Cyanophycees, Dictyochophycees, Dinophycees, Raphidophycees; Centre National de la Recherche Scientifique: Paris, France, 1986. [Google Scholar]
  7. Zingone, A.; Evenoldsen, H.O. The diversity of algal blooms: A challenge for science and management. Ocean Coast. Manage. 2000, 43, 725–748. [Google Scholar]
  8. Burkholder, J.M.; Gilbert, P.M.; Skelton, H.M. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. HarmfulAlgae 2008, 8, 77–93. [Google Scholar]
  9. Sala, S.E.; Sar, E.A.; Ferrario, M.E. Review of materials reported as containing Amphora coffeaeformis (Agardh) Kützing in Argentina. Diatom Res. 1998, 13, 323–336. [Google Scholar]
  10. Bruno, M.; Coccia, A.; Volterra, L. Ecology of mucilage production by Amphora coffeaeformis var. perpusilla blooms of Adriatic Sea. Water Air Soil Pollut. 1993, 69, 201–207. [Google Scholar] [CrossRef]
  11. Todd, E.C.D. Amnestic shellfish poisoning-a new seafood toxin syndrome. In Toxic Marine Phytoplankton; Granéli, E., Sundström, B., Edler, L., Anderson, D.M., Eds.; Elsevier: Amsterdam, The Netherland, 1990; pp. 504–508. [Google Scholar]
  12. Kaczmarska, I.; LeGresley, M.M.; Martin, J.L.; Ehrman, J. Diversity of the diatom genus Pseudo-nitzschia Peragallo in the Quoddy region of the Bay of Fundy, Canada. Harmful Algae 2005, 4, 1–19. [Google Scholar] [CrossRef]
  13. Lundholm, N.; Skov, J.; Pocklington, R.; Moestrup, Ø. Domoic acid, the toxic amino acid responsible for amnesic shellfish poisoning, now in Pseudo-nitzschia seriata (Bacillariophyceae) in Europe. Phycologia 1994, 33, 475–478. [Google Scholar]
  14. Codd, G.A.; Elbrächter, M.; Faust, M.A.; Fraga, S.; Fukuyo, Y.; Cronberg, G.; Halim, Y.; Taylor, F.J.R.; Zingone, A. IOC Taxonomic Reference List of Toxic Algae. Intergovernmental Oceanographic Commission of UNESCO. 2004. Available online: (accessed on 18 March 2009).
  15. Thessen, A.E.; Stoecker, D.K. Distribution, abundance and domoic acid analysis of the toxic diatom genus Pseudo-nitzschia from the Chesapeake Bay. Estuar. Coast. 2008, 31, 664–672. [Google Scholar] [CrossRef]
  16. Faust, M.A.; Gulledge, R.A. Identifying harmful marine dinoflagellates. Contr. US Nat. Herb. 2002, 42, 1–144. [Google Scholar]
  17. Krock, B.; Seguel, C.G.; Cembella, A.D. Toxin profile of Alexandrium catenella from the Chilean coast as determined by liquid chromatography with fluorescence detection and liquid chromatography coupled with tandem mass spectrometry. Harmful Algae 2007, 6, 734–744. [Google Scholar] [CrossRef][Green Version]
  18. Frangopoulos, M.; Guisande, C.; de Blas, E.; Maneiro, I. Toxin production and competitive abilities under phosphorus limitation of Alexandrium species. Harmful Algae 2004, 3, 131–139. [Google Scholar] [CrossRef]
  19. Lim, P.T.; Usup, G.; Leaw, C.P.; Ogata, T. First report of Alexandrium taylori and Alexandrium peruvianum (Dinophyceae) in Malaysia waters. Harmful Algae 2005, 4, 391–400. [Google Scholar] [CrossRef]
  20. Congestri, R.; Bianko, I.; Albertano, P. Potentially toxic thecate dinoflagellates of middle Tyrrhenian coastal waters (Mediterranean Sea). In Harmful Algae; Steidinger, K.A., Landsberg, J.H., Tomas, C.R., Vargo, G.A., Eds.; Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography, and Intergovernmental Oceanographic Commission of UNESCO, 2002; pp. 332–334. [Google Scholar]
  21. Durand-Clement, M. Study of production and toxicity of cultured Gambierdiscus toxicus. Biol. Bull. 1987, 172, 108–121. [Google Scholar] [CrossRef]
  22. Holmes, M.J.; Lewis, R.J.; Jones, A.; Hoy, A.W. Cooliatoxin, the first toxin from Coolia monotis (Dinophyceae). Nat. Toxins 1995, 3, 355–362. [Google Scholar] [CrossRef]
  23. Miyazaki, Y.; Nakashima, T.; Iwashita, T.; Fujita, T.; Yamaguchi, K.; Odaa, T. Purification and characterization of photosensitizing haemolytic toxin from harmful red tide phytoplankton, Heterocapsa circularisquama. Aquat. Toxicol. 2005, 73, 382–393. [Google Scholar] [CrossRef]
  24. Aligizaki, K.; Katikou, P.; Nikolaidis, G.; Panou, A. First episode of shellfish contamination by palytoxin-like compounds from Ostreopsis species (Aegean Sea, Greece). Toxicon 2008, 51, 418–427. [Google Scholar] [CrossRef]
  25. Guerrini, F.; Pezzolesi, L.; Feller, A.; Riccardi, M.; Ciminiello, P.; Dell’Aversano, C.; Tartaglione, L.; Lacovo, E.D.; Fattorusso, E.; Forino, M.; Pistocchi, R. Comparative growth and toxin profile of cultured Ostreopsis ovata from the Tyrrhenian and Adriatic Seas. Toxicon 2009, in press. [Google Scholar]
  26. Rhodes, L.; Towers, N.; Briggs, L.; Munday, R.; Adamson, J. Uptake of palytoxin-like compounds by shellfish fed Ostreopsis siamensis (Dinophyceae). N.Z. J. Mar. Freshw. Res. 2002, 36, 631–636. [Google Scholar] [CrossRef]
  27. Howard, M.D.A.; Smith, G.J.; Kudela, R.M. Phylogenetic relationships of yessotoxin-producing dinoflagellates, based on the large subunit and internal transcribed spacer ribosomal DNA domains. Appl. Environ. Microbiol. 2009, 75, 54–63. [Google Scholar]
  28. Gárate-Lizárraga, I.; Band-Schmidt, C.J.; Lopez-Cortés, D.J.; Muneton-Gomez, M.D. Bloom of Scrippsiella trochoidea (Gonyaulacaceae) in a shrimp pond in the southwestern Gulf of California, Mexico. Mar. Pollut. Bull. 2009, 58, 145–149. [Google Scholar] [CrossRef]
  29. Spatharis, S.; Dolapsakis, N.P., Economou-Amilli; Tsirtsis, G.; Danielidis, D.B. Dynamics of potentially harmful microalgae in a confined Mediterranean Gulf-Assessing the risk of bloom formation. Harmful Algae 2009, 8, 736–743. [Google Scholar] [CrossRef]
  30. Magdalena, A.B.; Lehane, M.; Krys, S.; Fernández, M.L.F.; Furey, A.; James, K.J. The first identification of azaspiracids in shellfish from France and Spain. Toxicon 2003, 42, 105–108. [Google Scholar] [CrossRef]
  31. Gárate-Lizárraga, I.; Muneton-Gomez, M.D. Bloom of Peridinium quinquecorne Abé in La Ensenada de La Paz, Gulf of California (July 2003). Acta Bot. Mex. 2008, 83, 33–47. [Google Scholar]
  32. Baek, S.H.; Shimode, S.; Han, M.S.; Kikuchi, T. Population development of the dinoflagellates Ceratium furca and Ceratium fusus during spring and early summer in Iwa Harbor, Sagami Bay, Japan. Ocean Sci. J. 2008, 43, 49–59. [Google Scholar] [CrossRef]
  33. Glibert, P.M.; Landsberg, J.H.; Evans, J.J.; Al-Sarawi, M.A.; Faraj, M.; Al-Jarallah, M.A.; Haywood, A.; Ibrahem, S.; Klesius, P.; Powell, K.; Shoemaker, C. A. Fish kill of massive proportion in Kuwait Bay, Arabian Gulf, 2001: the roles of bacterial disease, harmful algae, and eutrophication. Harmful Algae 2002, 1, 215–231. [Google Scholar] [CrossRef]
  34. Onoue, Y. Massive fish kills by a Ceratium fusus red tide in Kagoshima Bay, Japan. Red Tide Newslett. 1990, 3, 2. [Google Scholar]
  35. Rost, B.; Richter, K.U.; Riebesell, U.; Hansen, P.J. Inorganic carbon acquisition in red tide dinoflagellates. Plant Cell Environ. 2006, 29, 810–822. [Google Scholar] [CrossRef][Green Version]
  36. Weaver, S.S. Ceratium in Fire Island Inlet, Long-Island New-York (1971-1977). Limnol. Oceanogr. 1979, 24, 553–558. [Google Scholar] [CrossRef]
  37. Ten-Hage, L.; Turquet, J.; Quod, J.P.; Puiseux-Da, S.; Couté, A. Prorocentrum borbonicum sp. nov. (Dinophyceae), a new toxic benthic dinoflagellate from southwestern Indian Ocean. Phycologia 2000, 39, 296–301. [Google Scholar] [CrossRef]
  38. Faust, M.A.; Vandersea, M.W.; Kibler, S.R.; Tester, P.A.; Litaker, R.W. Prorocentrum levis, a new benthic species (Dinophyceae) from a mangrove island, Twin Cays, Belize. J. Phycol. 2008, 44, 232–240. [Google Scholar] [CrossRef]
  39. Vale, P.; Veloso, V.; Amorim, A. Toxin composition of Prorocentrum lima strain isolated from the Portuguese coast. Toxicon 2009, 54, 145–152. [Google Scholar] [CrossRef]
  40. Tianying, A.; Winshell, J.; Scorzetti, G.; Fell, J.W.; Rein, K.S. Identification of okadaic acid production in the marine dinoflagellate Prorocentrum rhathymumfrom Florida Bay. Toxicon 2009, in press. [Google Scholar]
  41. Baric, A.; Grbec, B.; Kuspilic, G.; Marasovic, I.; Nincevic, Z.; Grubelic, I. Mass mortality event in a small saline lake (Lake Rogoznica) caused by unusual holomictic conditions. Sci. Mar. 2003, 67, 129–141. [Google Scholar]
  42. Koukaras, K.; Nikolaidis, G. Dinophysis blooms in Greek coastal waters (Thermaikos Gulf, NW Aegean Sea). J. Plankton Res. 2004, 26, 445–457. [Google Scholar] [CrossRef]
  43. Nikolaidis, G.; Koukaras, K.; Aligizaki, K.; Heracleous, A.; Kalopesa, E.; Moschandreou, K.; Tsolaki, E.; Mantoudis, A. Harmful microalgal episodes in Greek coastal waters. J. Biol. Res.-Thessal. 2005, 3, 77–85. [Google Scholar]
  44. Lassus, P.; Berthome, J.P. Status of 1987 algal blooms in IFREMER. ICES/annex III C.M. 1988, 33A, 5–13. [Google Scholar]
  45. Berden-Zrimec, M.; Flander-Putrle, V.; Drinovec, L.; Zrimec, A.; Monti, M. Growth, delayed fluorescence and pigment composition of four Prorocentrum minimum strains growing at two salinities. Biol. Res. 2008, 41, 11–23. [Google Scholar]
  46. Moncheva, S.; Gotsis-Skretas, O.; Pagou, K.; Krastev, A. Phytoplankton blooms in Black Sea and Mediterranean coastal ecosystems subjected to anthropogenic eutrophication: Similarities and differences. Est. Coast. Shelf Sci. 2001, 53, 281–295. [Google Scholar] [CrossRef]
  47. Faust, M.A. Morphologic details of six benthic species of Prorocentrum (Pyrrhophyta) from a mangrove island, Twin Cays, Belize, including two new species. J. Phycol. 1990, 26, 548–558. [Google Scholar] [CrossRef]
  48. Wright, J.L.C.; Cembella, A.D. Ecophysiology and biosynthesis of polyether marine biotoxins. In Physiological Ecology of Harmful Algal Blooms; Anderson, D.M., Cembella, A.D., Hallegraeff, G.M., Eds.; Springer: Berlin Heidelberg, Germany, 1998; pp. 427–451. [Google Scholar]
  49. Lee, J.S.; lgarashi, T.; Fraga, S.; Dahl, E.; Hovgaard, P.; Yasumoto, T. Determination of diarrhetic shellfish toxins in various dinoflagellate species. J. Appl. Phycol. 1989, 1, 147–152. [Google Scholar] [CrossRef]
  50. Fraga, S.; Bravo, I.; Delgado, M.; Franco, J.M.; Zapata, M. Gymnodinium impudicum sp. nov. (Dinophyceae), a non-toxic, chain forming red tide dinoflagellate. Phycologia 1995, 34, 514–521. [Google Scholar] [CrossRef]
  51. Fessard, V.; Diogène, G.; Dubreuil, A; Quod, J.P.; Durand-Clément, M.; Legay, C.; Puiseux-Dao, S. Selection of cytotoxic responses to maitotoxin and okadaic acid and evaluation of toxicity of dinoflagellate extracts. Nat. Toxins 2006, 2, 322–328. [Google Scholar]
  52. Smolowitz, R.; Shumway, S.A. Possible cytotoxic effects of the dinoflagellate, Gyrodinium aureolum, on juvenile bivalve molluscs. Aquac. Int. 1997, 5, 29–300. [Google Scholar] [CrossRef]
  53. Pierce, R.H.; Henry, M.S. Harmful algal toxins of the Florida red tide (Karenia brevis): Natural chemical stressors in South Florida coastal ecosystems. Ecotoxicology 2008, 17, 623–631. [Google Scholar] [CrossRef]
  54. Satake, M.; Shoji, M.; Oshima, Y.; Naoki, H.; Fujita, T.; Yasumoto, T. Gymnocin-A, a cytotoxic polyether from the noxious red tide dinoflagellate, Gymnodinium mikimotoi. Tetrahedron Lett. 2002, 43, 5829–5832. [Google Scholar]
  55. Gárate-Lizárraga, I.; Bustillos-Guzmán, J.J.; Alonso-Rodríguez, R.; Luckas, B. Comparative paralytic shellfish toxin profiles in two marine bivalves during outbreaks of Gymnodinium catenatum (Dinophyceae) in the Gulf of California. Mar. Pollut. Bull. 2004, 48, 397–402. [Google Scholar] [CrossRef]
  56. Galimany, E.; Place, A.R.; Ramón, M.; Jutson, M.; Pipe, R.K. The effects of feeding Karlodinium veneficum (PLY # 103; Gymnodinium veneficum Ballantine) to the blue mussel Mytilus edulis. Harmful Algae 2008, 7, 91–98. [Google Scholar] [CrossRef]
  57. Mohamed, A.Z.; Mesaad, I. First report on Noctiluca scintillans in the Red Sea off the coasts of Soudi Arabia: Consequencies of eutrophication. Oceanologia 2007, 49, 337–351. [Google Scholar]
  58. Hansen, E.; Ernstsen, A.; Eilertsen, H.C. Isolation and characterization of a cytotoxic polyunsaturated aldehyde from the marine phytoplankter Phaeocystis puchettii (Hariot) Lagerheim. Toxicology 2004, 199, 207–217. [Google Scholar] [CrossRef]
  59. Igarashi, T.; Satake, M.; Yasumoto, T. Structures and partial stereochemical assignments for prymnesin-1 and prymnesin-2: potent hemolytic and ichthyotoxic glycosides isolated from the red tide alga Prymnesium parvum. J. Am. Chem. Soc. 1999, 121, 8499–8511. [Google Scholar]
  60. Thomsen, H.A. Taxonomy of toxic haptophytes (prymnesiophytes). In Manual on Harmful Marine Microalgae, 2nd; Hallegraeff, G.M., Anderson, D.M., Cembella, A.D., Eds.; IOC-UNESCO: Paris, France, 2003. [Google Scholar]
  61. Raabergh, C.M.I.; Bylund, G.; Eriksson, J.E. Hystopathological effects of microcystin-LR a cyclic peptide toxin from the cyanobacterium (blue-green alga) Microcystis aeruginosa on common carp (Cyprinus carpio L.). Aquat. Toxicol. 1991, 20, 131–146. [Google Scholar]
  62. Metaxatos, A.; Panagiotopoulos, C.; Ignatiades, L. Monosaccharide and aminoacid composition of mucilage material produced from a mixture of four phytoplanktonic taxa. J. Exp. Mar. Biol. Ecol. 2003, 294, 203–217. [Google Scholar] [CrossRef]
  63. Negri, A.P.; Bunter, O.; Jones, B.; Llewllyn, L. Effects of the bloom-forming alga Trichodesmium erythraeum on the pearl oyster Pinctada maxima. Aquaculture 2004, 232, 91–102. [Google Scholar] [CrossRef]
  64. Ignatiades, L.; Gotsis-Skretas, O.; Metaxatos, A. Field and culture studies on the ecophysiology of the toxic dinoflagellate Alexandrium minutum (Halim) grown in Greek coastal waters. Harmful Algae 2007, 6, 153–165. [Google Scholar] [CrossRef]
  65. Smayda, T.J. Harmful algal blooms: Their ecotoxicology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 1997, 42, 1137–1153. [Google Scholar] [CrossRef]
  66. Cembella, A.D. Chemical ecology of eukaryotic microalgae in marine ecosystems. Phycologia 2003, 42, 420–44. [Google Scholar] [CrossRef]
  67. Riegman, R.; Colijin, F.; Malschaert, J.F.P.; Klooosterhuis, H.T.; Cadee, G.C. Assessment of growth rate limiting nutrients in the North Sea by the use of nutrient-uptake kinetics. Neth. J. Sea Res. 1990, 26, 53–60. [Google Scholar] [CrossRef]
  68. Faust, M.A. Mixotrophy in tropical benthic dinoflagellates. In Harmful Algae; Reguera, B., Blanco, J., Fernandez, M.L., Watt, T., Eds.; Xunta de Galicia and IOC-UNESCO: Paris, France, 1998; pp. 390–393. [Google Scholar]
  69. Kamjunke, N.; Tittel, J. Utilisation of leucine by several phytoplankton species. Limnologica 2008, 38, 360–366. [Google Scholar]
  70. Pagou, K.; Ignatiades, L. The periodicity of Gymnodinium breve (Davis) in Saronicos Gulf, Aegean Sea. In Toxic Marine Phytoplankton; Granéli, E., Sundström, B., Edler, L., Anderson, D.M., Eds.; Elsevier: Amsterdam, The Netherland, 1990; pp. 206–208. [Google Scholar]
  71. Reizopoulou, S.; Strogyloudi, E.; Giannakourou, A.; Pagou, K.; Chatzianestis, I.; Pyrgaki, C.; Granéli, E. Okadaic acid accumulation in macrofilter feeders subjected to natural blooms of Dinophysis acuminata. Harmful Algae 2008, 7, 228–234. [Google Scholar] [CrossRef]
  72. Ignatiades, L. Annual cycle, species diversity and succession of phytoplankton in lower Saronikos Gulf, Aegean Sea. Mar. Biol. 1969, 3, 196–200. [Google Scholar] [CrossRef]
  73. Ignatiades, L.; Georgopoulos, D.; Karydis, M. Description of phytoplanktonic community of the oligotrophic waters of S. E. Aegean Sea. Mar. Ecol. 1995, 16, 13–26. [Google Scholar] [CrossRef]
  74. Ignatiades, L. Scaling the trophic status of the Aegean Sea, Eastern Mediterranean. J. Sea Res. 2005, 54, 51–57. [Google Scholar] [CrossRef]
  75. Gómez, F. Endemic and Indo-Pacific plankton in the Mediterranean Sea: a study based on dinoflagellate records. J. Biogeogr. 2006, 33, 261–270. [Google Scholar] [CrossRef]
  76. Granéli, E.; Codd, G.A.; Dale, B.; Lipiatou, E.; Maestrini, S.Y.; Rosenthal, H. Harmful Algal Blooms in European Marine and Brackish Waters.; European Commission: Belgium, 1999; EUR 18592. [Google Scholar]
  77. Gotsis-Skretas, O.; Ignatiades, L. Phytoplankton in pelagic and coastal waters. In State of the Hellenic Marine Environment; Papathanassiou, E., Zenetos, A., Eds.; HCMR: Athens, Greece, 2005; pp. 187–193. [Google Scholar]
  78. Gotsis-Skretas, O.; Friligos, N. Contribution to eutrophication and phytoplankton ecology in the Thermaikos Gulf. Thalassographica 1990, 13, 1–12. [Google Scholar]
  79. Nikolaidis, G.; Koukaras, K.; Aligizaki, K.; Kalopesa, E.; Moschandreou, K.; Tsolaki, E. Phytoplankton. In Monitoring of Water Quality in the Coastal Area of Kalamitsi-Preveza (2nd phase); Final Report, Aristotle University of Thessaloniki (A.U.Th.): Thessaloniki, Greece, 2006; pp. 90–106. [Google Scholar]
  80. Friligos, N.; Gotsis-Skretas, O. Relationships of phytoplankton with certain environmental factors in the South Euboikos Gulf (Greece). P.S.Z.N.I.: Mar. Ecol. 1987, 8, 59–73. [Google Scholar]
  81. Spatharis, S.; Mouillot, D.; Danielidis, D.B.; Karydis, M.; Chi, T.D.; Tsirtsis, G. Influence of terrestrial runoff on phytoplankton species richness-biomass relationships: A double stress hypothesis. J. Exp. Mar. Biol. Ecol. 2008, 362, 55–62. [Google Scholar] [CrossRef]
  82. Gotsis-Skretas, O.; Ignatiades, L.; Pavlidou, A.; Metaxatos, A.; Papadopoulos, A.; Pappas, G. Alexandrium spatio-temporal distribution in the STRATEGY areas (WP1) March 2002-October 2002): Greek Area. In Second Year Report of the EU Project ‘‘STRATEGY’’ New Strategy of Monitoring and Management of HABs in the Mediterranean Sea; 2003; pp. 1–14. Annex III. [Google Scholar]
  83. Spatharis, S.; Dolapsakis, N.P.; Danielidis, D.B.; Tsirtsis, G. Dynamics of a HAB developed after an episodic rainfall event in a coastal area. Rapp. Comm. Int. Mer. Medit. 2007, 38, 396. [Google Scholar]
  84. Giannakourou, A.; Orlova, T.; Assimakopoulou, G.; Pagou, K. Dinoflagellate cysts in recent marine sediments from Thermaikos Gulf, Greece. Possible implications of resuspension events on the onset of phytoplankton blooms. Cont. Shelf Res. 2005, 25, 2585–2596. [Google Scholar] [CrossRef]
  85. Dolapsakis, N.P.; Tzovenis, I.; Kantourou, P.; Bitis, I.; Economou-Amilli, A. Potentially harmful microalgae from lagoons of the NW Ionian Sea, Greece. J. Biol. Res.-Thessalon. 2008, 9, 89–95. [Google Scholar]
  86. Aligizaki, K.; Nikolaidis, G. The presence of the potentially toxic genera Ostreopsis and Coolia (Dinophyceae) in the North Aegean Sea, Greece. Harmful Algae 2006, 5, 717–730. [Google Scholar] [CrossRef]
  87. Aligizaki, K.; Nikolaidis, G. Morphological identification of two tropical dinoflagellates of the genera Gambierdiscus and Sinophysis in the Mediterranean. J. Biol. Res.-Thessalon. 2008, 9, 75–82. [Google Scholar]
  88. Nikolaidis, G.; Moustaka-Gouni, M. The structure and dynamics of phytoplankton assemblages from the inner part of the Thermaikos Gulf, Greece. I. Phytoplankton composition and biomass from May 1988 to April 1989. Helgolander Meeresunters 1990, 44, 487–501. [Google Scholar] [CrossRef]
  89. Aligizaki, K.; Nikolaidis, G.; Katikou, P.; Baxevanis, A.D.; Abatzopoulos, T.J. Potentially toxic epiphytic Prorocentrum (Dinophyceae) species in Greek coastal waters. Harmful Algae 2009, 8, 299–311. [Google Scholar] [CrossRef]
  90. Dyhrman, S.T.; Anderson, D.M. Urease activity in cultures and field populations of the toxic dinoflagellate Alexandrium. Limnol. Oceanogr. 2003, 48, 647–655. [Google Scholar] [CrossRef]
  91. Chang, F.H.; McClean, M. Growth responses of Alexandrium minutum (Dinophyceae) as a function of three different nitrogen sources and irradiance. N.Z. J. Mar. Freshwater Res. 1997, 31, 1–7. [Google Scholar] [CrossRef]
  92. Jeong, H.J.; Park, J.Y.; Nho, J.H.; Park, M.O.; Ha, J.H.; Seong, K.A.; Jeng, C.; Seong, C.N.; Lee, K.Y.; Yih, W.H. Feeding by red tide dinoflagellates on the cyanobacterium Synechococcus. Aquat. Microb. Ecol. 2005, 41, 1331–2143. [Google Scholar]
  93. Leong, S.C.Y.; Murata, A.; Nagashima, Y.; Taguchi, S. Variability in toxicity of the dinoflagellate Alexandrium tamarence in response to different nitrogen sources and concentrations. Toxicon 2004, 43, 407–415. [Google Scholar] [CrossRef]
  94. Jeong, H.J.; Yoo, D.Y.; Park, J.Y.; Song, J.Y.; Kim, S.T.; Lee, S.H.; Kim, K.Y.; Yih, W.H. Feeding by phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat. Microb. Ecol. 40, 133–150.
  95. Smalley, G.W.; Coats, D.W. Ecology of the red- tide Dinoflagellate Ceratium furca: distribution, mixotrophy and grazing impact on ciliate populations of Chesapeake Bay. J. Eukaryot. Microbiol. 2002, 49, 63–73. [Google Scholar] [CrossRef]
  96. Jacobson, D.M.; Anderson, D.M. Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thacate dinoflagellates. J. Phycol. 1996, 32, 279–285. [Google Scholar] [CrossRef]
  97. Jeong, H.J.; Yoo, D.Y.; Seong, K.A.; Kim, J.H.; Park, J.Y.; Kim, S.T.; Lee, S.Y.; Ha, J.H.; Yih, W.H. Feeding by the mixotrophic red-tide dinoflagellate Gonyaulax polygramma: mechanisms, prey species, effects of prey concentration and grazing impact. Aquat. Microb. Ecol. 2005, 38, 133–150. [Google Scholar]
  98. Sinclair, G.; Kamykowski, D.; Glibert, P.M. Growth, uptake, and assimilation of ammonium, nitrate, and urea, by three starins of Karenia brevis grown under low light. Harmful Algae 2009, 8, 770–780. [Google Scholar] [CrossRef]
  99. Solomon, C.M.; Glibert, P.M. Urease activity in five phytoplankton species. Aquat. Microb. Ecol. 2008, 52, 149–157. [Google Scholar] [CrossRef]
  100. Adolf, J.E.; Bachvaroff, T.; Place, A.R. Can Cryptophyte abundance trigger toxic Karlodinium veneficum blooms in eutrophic estuaries? Harmful Algae 2008, 8, 119–128. [Google Scholar] [CrossRef]
  101. Hansen, P.J.; Miranda, L.; Azanza, R. Green Noctiluca scintillans: a dinoflagellate with its own greenhouse. Mar. Ecol. Prog. Ser. 2004, 275, 79–87. [Google Scholar] [CrossRef]
  102. Stoecker, D.K.; Li, A.; Coats, D.W.; Gustafson, D.E.; Nannen, M.K. Mixotrophy in the dinoflagellate Prorocentrum minimum. Mar. Ecol. Prog. Ser. 1997, 152, 1–12. [Google Scholar] [CrossRef]
  103. Jeong, H.J.; Latz, M.I. Growth ang grazing rates of the heterotrophic dinoflagellates Protoperidinium spp. on red tide dinoflagellates. Mar. Ecol. Prog. Ser. 1994, 106, 173–185. [Google Scholar] [CrossRef]
  104. Tillmann, U. Kill and eat your predator: a winning strategy of the plankton flagellate Prynmesium parvum. Aquat. Microb. Ecol. 2003, 32, 73–84. [Google Scholar] [CrossRef]
  105. Satsmadjis, J.; Friligos, N. Red tide in Greek waters. Vie et Milieu 1983, 33, 111–117. [Google Scholar]

Share and Cite

MDPI and ACS Style

Ignatiades, L.; Gotsis-Skretas, O. A Review on Toxic and Harmful Algae in Greek Coastal Waters (E. Mediterranean Sea). Toxins 2010, 2, 1019-1037.

AMA Style

Ignatiades L, Gotsis-Skretas O. A Review on Toxic and Harmful Algae in Greek Coastal Waters (E. Mediterranean Sea). Toxins. 2010; 2(5):1019-1037.

Chicago/Turabian Style

Ignatiades, Lydia, and Olympia Gotsis-Skretas. 2010. "A Review on Toxic and Harmful Algae in Greek Coastal Waters (E. Mediterranean Sea)" Toxins 2, no. 5: 1019-1037.

Article Metrics

Back to TopTop