
Toxins 2010, 2, 95-115; doi:10.3390/toxins2010095 
 

toxins 
ISSN 2072-6651 

www.mdpi.com/journal/toxins 

Article 

Calprotectin (S100A8/S100A9) and Myeloperoxidase:  
Co-Regulators of Formation of Reactive Oxygen Species 

Arne Bøyum 1,4,*, Knut Kristian Skrede 1,†, Oddvar Myhre 1, Vivi-Ann Tennfjord 1, Christine 

Gran Neurauter 2, Helge Tolleshaug 3, Eirunn Knudsen 4, Per Kristian Opstad 1,  

Magnar Bjørås 2 and Haakon B. Benestad 4 

1 Norwegian Defence Research Establishment, Division for Protection, P.O.B. 25, 2027 Kjeller, 

Norway; E-Mails: Oddvar.Myhre@ffi.no (O.M.); tenv@sb-hf.no (V.-N.T.);  

Per-Kristian.Opstad@ffi.no (P.K.O.) 
2 Institute of Medical Microbiology, National Hospital, 0027 Oslo, Norway;  

E-Mails: Christine.Gran@rr-research.no (C.G.N.); Magnar.bjoras@rr-research.no (M.B.) 
3 Department of Molecular Biosciences, University of Oslo, P.O. Box 1041 Blindern, NO-0316 Oslo, 

Norway; E-Mail: Helge.Tolleshaug@online.no (H.T.) 
4 Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103 

Blindern, N-0317, Oslo University of Oslo, Norway; E-Mails: eirunn.knudsen@medisin.uio.no 

(E.K.); h.b.benestad@medisin.uio.no (H.B.B.) 

†  Deceased on 18 October 2009. 

* Author to whom correspondence should be addressed; E-Mail: arne.boyum@medisin.uio.no;  

Tel.: +47 22851409; Fax: +47 22851249. 

Received: 12 December 2009 / Accepted: 18 January 2010 / Published: 20 January 2010 

 

 

Abstract: Inflammatory mediators trigger polymorphonuclear neutrophils (PMN) to 

produce reactive oxygen species (ROS: O2
-, H2O2, ·OH). Mediated by myeloperoxidase in 

PMN, HOCl is formed, detectable in a chemiluminescence (CL) assay. We have shown 

that the abundant cytosolic PMN protein calprotectin (S100A8/A9) similarly elicits CL in 

response to H2O2 in a cell-free system. Myeloperoxidase and calprotectin worked 

synergistically. Calprotectin-induced CL increased, whereas myeloperoxidase-triggered 

CL decreased with pH > 7.5. Myeloperoxidase needed NaCl for CL, calprotectin did not. 

4-hydroxybenzoic acid, binding ·OH, almost abrogated calprotectin CL, but moderately 

increased myeloperoxidase activity. The combination of native calprotectin, or 

recombinant S100A8/A9 proteins, with NaOCl markedly enhanced CL. NaOCl may be the 

synergistic link between myeloperoxidase and calprotectin. Surprisingly- and unexplained- 
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at higher concentration of S100A9 the stimulation vanished, suggesting a switch from  

pro-oxidant to anti-oxidant function. We propose that the ·OH is predominant in ROS 

production by calprotectin, a function not described before. 

 

Keywords: chemiluminescence; polymorphonuclear neutrophils (PMN); myeloperoxidase; 

calprotectin; S100A8/A9; NaOCl; albumin; cytidine deaminase; 4-hydroxy-benzoic acid 

 

1. Introduction 

 

During phagocytosis of microorganisms polymorphonuclear neutrophils (PMN) rapidly and heavily 

increase oxygen consumption, mainly due to production of reactive oxygen species (ROS) [1]. This 

respiratory burst, which can be triggered from various surface receptors of PMN, can be measured as 

chemiluminescence (CL) in a luminometer. During ROS formation oxygen is reduced to superoxide 

(O2
-), which is converted to H2O2, either spontaneously or by the catalytic action of superoxide 

dismutase. Further reactions generate two potent reaction products, hydroxyl radicals (·OH), in the 

presence of iron, and hypochlorous acid (HOCl), catalysed by myeloperoxidase (MPO) and chloride 

ions. In neutrophils approximately 30–40% of the detectable superoxide is converted to HOCl [2]. 

Unfortunately, ROS not only kill microbes, but they can also cause tissue damage by modifying DNA, 

lipids, proteins, and carbohydrates [1,3]. It is therefore necessary to control the cellular redox state to 

balance beneficial and harmful effects of these agents. 

MPO, the catalyst of HOCl production, may amount to 5% [4] of total protein in PMN, being 

mostly present in the primary granules [5]. We wanted to examine whether the most abundant 

cytosolic PMN protein, calprotectin, might interact with this important generator of ROS. Another 

cytosolic protein, cytidine deaminase, was chosen as control. 

Calprotectin [6,7] is a heterodimer composed of 11 and 13 kDa subunits, whose precise functions 

are still unknown. It belongs to the S100 [8] (S100A8/S100A9) protein family [9]. This calcium-

binding protein with antimicrobial activity constitutes about 5% of total PMN protein [7] and as much 

as 40–50% of cytosolic protein [10]. Calprotectin takes part in inflammatory processes [11], but it is 

not known how. Increased concentrations of calprotectin, extracellularly in various body fluids and 

probably released by PMN, are found in many types of infectious diseases [7]. 

Cytidine deaminase has, apart from its enzyme function, a suppressive effect on hematopoietic 

colony formation in vitro [12,13]. One granulocyte contains approximately 0.1 pg cytidine deaminase 

[14], which may correspond to 0.3–1.0% of cellular protein extractable with water. Plasma 

concentrations of cytidine deaminase increase markedly in response to physical stress [14] and during 

sepsis [15]. 

Since calprotectin and cytidine deaminase co-exist with MPO in PMN, it is difficult to evaluate 

their individual contribution to ROS production in intact cells–if any. Therefore, we used the  

MPO-H2O2-system as a cell-free model of the respiratory burst [16,17], to examine the effects of 

added calprotectin or cytidine deaminase. Luminol was used as effective amplifier of MPO-dependent 

CL. We compared ROS-induction by MPO and calprotectin acting alone, but also together and by 
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varying pH, temperature, and several putatively enhancing or inhibiting ingredients. The results were 

compared with responses elicited by intact PMN and macrophages. 

 

2. Results 

 

2.1. Basic response pattern 

 

The cell-free H2O2-MPO-Cl‾-luminol system was designed to model the respiratory burst. The CL 

peaked within a few minutes, then tapered off for the next 23 minutes of recording (Figure 1a). 

Calprotectin increased (p < 0.05) CL (Figure 1b), whereas cytidine deaminase inhibited it already after 

one minute (p < 0.05).  

 

Figure 1. Luminol-dependent chemiluminescence (CL) of myeloperoxidase (MPO) is 

modified by addition of calprotectin, cytidine deaminase (CDD), and human serum 

albumin (HSA). CL was measured in duplicate every minute (not all values plotted) for  

25 minutes at pH 7.4. (a): Time-response pattern obtained with a mixture of H2O2  

(500 µM) + MPO (0.1 µg/mL) in HBBS (120–130 mM NaCl), ±CDD (3.2 µg/mL). The 

CL was measured as relative light units. Mean values with SEM (sometimes hidden in the 

symbols) from five experiments. (b): CL was induced as described in (a), and the effects of 

calprotectin, CDD and HSA are presented as area under the 0–25 minutes curve  

(CL-AUC). The values are given in per cent of MPO alone control. The combined effect of 

MPO and calprotectin was measured in duplicate in four experiments, of cytidine 

deaminase and HSA in triplicate in three parallel experiments. The percent inhibition by 

CDD gave almost identical results (three experiments) when carried out at room 

temperature and 37 oC. (c): CL-AUC, dose-response curve for calprotectin (without MPO); 

H2O2 500 µM, pH 7.8. Two experiments. 
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Figure 1. Cont. 

 
 

In the four experiments depicted in Figure 1 MPO (0.1–0.3 µg/mL) and calprotectin (16 µg/mL) in 

combination had an additive effect on light emission (p < 0.05). A moderate increase (21%) was also 

observed for 8.0 µg/mL calprotectin (p < 0.05), provided that the data for only the first 10 minutes 

were used. For a total of nine experiments the effect was not only additive (p < 0.001), but also 

potentiated synergistic (p < 0.01); the average CL integrals being MPO 8.9, calprotectin 4.8 and  

MPO + calprotectin 19.1. Even though stimulation by calprotectin varied considerably (see below), it 

was not significantly affected by addition of, or preincubation with, calcium (1–2 mM). It is 

noteworthy that PMN may contain >10.000 µg/mL calprotectin [7]. 

Dose-response experiments showed that the CL was enhanced more than linearly with increased 

concentrations of MPO (0.1–0.4 μg/mL), and at high activity of MPO (not shown) the inhibitory effect 

of a constant cytidine deaminase concentration (3.2 µg/mL) was reduced (p < 0.01). On the other hand, 

with a constant MPO concentration, cytidine deaminase exerted increasing inhibition in the dose range 

0.8–6.4 µg/mL (Figure 1b). The PMN concentration of cytidine deaminase has been measured to be 

100–200 µg/mL [14]. 

In the same molar or mass concentration ranges used for cytidine deaminase and calprotectin, 

control human serum albumin (HSA) had no effect on MPO-CL, but inhibited the response at 

concentrations ≥100 µg/mL (p < 0.05). CL was not induced with MPO or calprotectin when luminol 

was replaced by lucigenin (0.1 mM), which is supposed to mostly reflect superoxide formation. The 

calprotectin had no detectable peroxidase activity in the ECL assay. 
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Figure 2. The effect of pH (a-e) on CL elicited by H2O2-stimulated (500 µM) MPO  

(0.1 µg/mL) and calprotectin (CP; 8 µg/mL); comparison with PMA-evoked cell responses 

(in phosphate buffers, 80–85 mM, osmolality 290 mOsm/kg). (a-c): Triplicate 

measurements of MPO- and CP-induced CL in two experiments with pH 7.0, 7.5 and 7.9 

show the kinetics of the response during 30 minutes and (d) gives the corresponding AUC 

(e): CL elicited by MPO and CP in Dulbecco’s phosphate-buffered (~6 mM) saline  

(~105 mM NaCl)—pH adjusted with NaOH (f): CL elicited by PMA-stimulated human 

granulocytes (2 × 105/ well). (g): rat granulocytes (1.5 × 105/well) and (h): rat peritoneal 

cells (PC; 3 × 105/well). PMA was 10-7 M for human cells and 4 × 10-7 M for rat cells. 

Mean values from two experiments. The graphs (f, g, h) show CL responses for three 

different pH values and the integrals (AUC) are shown in (i), in per cent of integrals 

obtained with pH 7.5. The pH (except e) was adjusted by appropriate portions of Na2HPO4 

and NaH2PO4 (85 mM phosphate, 63 mM NaCl). 
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2.2. The effect of pH changes on MPO- and calprotectin-chemiluminescence, and responses by 

granulocytes and peritoneal cells 

 

As demonstrated for the first time here, calprotectin itself can induce CL. However, the activity of 

calprotectin was lower than for MPO, and we wanted to test if it could be enhanced by modifying the 

experimental procedure. At first we tested pH changes and found that the response (AUC) to 

calprotectin (8 µg/mL) was increased from 1 to 19 (p < 0.001) and the MPO-dependent response 

decreased (AUC from 10 to 7.3, p < 0.01) along with elevation of pH from 7.0 to 7.9 (Figures 2a–d). 

In four new experiments these results were confirmed with another buffer (Dulbecco’s phosphate-

buffered saline), and calprotectin luminescence could be markedly enhanced by a pH increase from 7.1 

to 7.4. In additional tests we found that 2–4 µg/mL of calprotectin, with pH 7.9 and  

60–500 µM H2O2 was appropriate for routine use.  

Controls, relevant according to molar and mass concentrations, with HSA (up to 1000 µg/mL) or 

human immunoglobulin (20 µg/mL) yielded CL (AUC) of ~1 or less (not shown). A pH-dependent 

pattern was also observed for CL elicited by PMA-stimulated human granulocytes, rat granulocytes, 

and rat peritoneal cells (Figure 2f–h). This response (Figure 2i) resembled the pH dependency of the 

calprotectin-response more than that of the MPO-response (Figures 2d, e). 

This pattern was confirmed when H2O2 instead of PMA was used as stimulator of human PMN 

(Figure 3), thereby presumably bypassing the contribution by phagocyte NADPH oxidase. This H2O2 

response was almost aborted by azide (1 mM) at pH 6.1, and the 12-minute response was consistently 

reduced at pH 6.9–7.8, probably reflecting an inhibitory effect of azide on the heme enzyme (MPO). 

However, as pH increased, the response in the azide groups was changed (Figure 3a–d), and the  

60-minute CL integral (at pH 7.4 and 7.8) was increased above control without azide (Figure 3e,  

p < 0.01). With 20000 PMN/well (Figure 3f), we found that 16 µM of H2O2 was sufficient to yield a 

significant (p < 0.05) response. 

 

Figure 3. The effect of pH on kinetics of H2O2-mediated (500 µM) CL-responses in 

human PMN (2 × 105/well) monitored for 60 minutes in phosphate buffer, without and 

with 1 mM Na-azide (a-d). Triplicate measurements from three experiments. (e) gives the  

60-minute integrals (AUC) as a function of pH. (f): Dose-response curve for H2O2 when 

human PMN (2 × 10 4/well) were examined for 30 minutes in a buffer with pH 7.8. Mean 

values from three experiments in per cent of CL-AUC with 500 µM. Note different scales 

on Y axes (a-d). 
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Figure 3. Cont. 

 
 

2.3. CL responses of calprotectin and MPO to H2O2, azide, NaCl, melatonin, and cysteine supplements 

to the reaction mixtures 

 

We also wanted to compare responses of MPO and calprotectin to different reactants, some of 

them known to affect MPO. The responses of MPO and calprotectin to increasing concentrations of 

H2O2 were very different (Figure 4a), even though both agents showed H2O2-dependency.  

H2O2 (500 µM) + luminol, alone, yielded a slight response (AUC~0.9) only at high pH (7.8). MPO 

was much more sensitive than calprotectin to the inhibitory effect of azide (Figure 4b). In fact, there 

was a slight stimulation of calprotectin-H2O2-CL at 0.02–0.1 mM azide (p < 0.05). Calprotectin-H2O2-

CL was independent of the presence of NaCl, whereas MPO-H2O2-CL required a high NaCl 

concentration (Figure 4c), presumably for HOCl production. The response pattern was similar for 

inhibition of MPO and calprotectin by added cysteine and melatonin – added as anti-oxidants [18]—

with MPO the more sensitive (p < 0.01) (Figures 4d, e). 

 

 

 

 



Toxins 2010, 2 

 

 
 

102

Figure 4. Comparative studies of MPO and calprotectin. Triplicate measurements during 

30 minutes. (a): Dose-response of H2O2-induced MPO-CL and calprotectin-CL. The values 

are given in per cent (with SEM) of groups with 500 µM H2O2. Phosphate-buffer with pH 

7.8. Mean values from two experiments. (b): Dose-response of Na-azide. MPO  

(0.16 µg/mL, ~1.3 × 10-8 M). Calprotectin (8 µg/mL, ~0.4 × 10-6 M). Phosphate-buffered 

saline, pH 7.4. The values from two experiments are given in per cent of controls (±SEM) 

without azide. (c) The effect of NaCl on luminol-dependent MPO-CL and calprotectin-CL. 

MPO (0.1 µg/mL, pH 7.4). Calprotectin (4 µg/mL, pH 7.8). The calprotectin had been 

dialysed against a NaCl-free solution. The values are given in per cent of groups with  

100 mM NaCl. Five experiments with and without 100 mM NaCl. (d): Dose-response of 

cysteine on MPO-CL and calprotectin-CL (2 experiments). (e): Dose-response of melatonin 

on MPO-CL and calprotectin-CL (2 experiments). MPO (0.05 µg/mL, pH 7.4), calprotectin 

(4 µg/mL, pH 7.8) in (d) and (e).  
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2.4. The combined effect of calprotectin and NaOCl  

 

The combination of calprotectin (4 µg/mL) and NaOCl (20 µM) strongly enhanced CL in the 

presence of H2O2 (Figure 5), possibly caused by oxidation of calprotectin by NaOCl [19]. Since HOCl 

is the end product in the MPO-system, this finding may explain the synergy observed by combining 

MPO and calprotectin (Figure 1). NaOCl itself may generate significant CL, but high background 

values are largely avoided at low concentrations of H2O2 (Figure 5). Noteworthy, it was necessary to 

incubate the mixture of calprotectin and NaOCl for 17–20 minutes at room temperature in these 

experiments, before the CL reaction could be initiated by adding luminol and H2O2 and enhancement 

demonstrated [19]. Dose-response experiments showed that a calprotectin concentration of  

0.5–1.0 µg/mL was sufficient, when combined with NaOCl and H2O2 (>16 µM), to induce a significant 

CL response, whereas no response was observed in the absence of NaOCl.  

 

Figure 5. Luminol-enhanced combined effect of calprotectin (CP; 4 µg/mL) and NaOCl  

(20 µM) in phosphate buffer with pH 7.8. CP and NaOCl were incubated at room 

temperature for 17 minutes [19] before luminol and H2O2 were added to initiate ROS 

formation. (a): Time-course of CL responses recorded during 30 minutes with 63 µM H2O2 

(b): Effect of increasing concentrations of H2O2 on CL induced by NaOCl, CP, and  

NaOCl + CP. Two experiments.  
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2.5. Recombinant S100A8 (A8) and S100A9 (A9) 

 

A8 remained a monomer in solution while A9 formed a dimer as well (Figure 6), but to a different 

extent in different batches. Dimerization apparently enhanced the capacity to generate CL in the 

presence of H2O2 (data not shown).  

 

Figure 6. Recombinant S100A8 and S100A9, and calprotectin (CP), were separated on 

SD-PAGE prior to SYPRO Ruby staining. A9 tended to form homodimers, whereas with 

the mixture of leucocyte-derived A8 and A9 (CP), the proteins migrated as monomers, 

homodimers or heterodimers. Standard (St) with molecular weight markers (6, 14, 17, 28) 

in kDa. 

 
 

The activity of A9 (Figures 7a, b) clearly depended upon both protein concentration (5–40 µg/mL) 

and pH, as did A8, which produced less CL (not shown). Mercaptoethanol-treated A9 elicited no 

detectable CL. A9 with NaOCl + 32 M H2O2 gave a marked pH-dependent CL-response (Figure 7c). 

An even stronger response was observed with 63 M H2O2 (Figure 7d). However, increasing 

concentrations above 3.6 µg/mL led to a gradual decrease of the CL, in contrast to the set-up without 

NaOCl included (Figure 7a). Similarly, HSA + NaOCl evoked a slight increase of CL up to 25 µg/mL 

albumin, declining to no response at 200–1,000 µg/mL. HSA without NaOCl did not cause any CL 

(2.5 to 1,000 µg/mL). At pH 7.8 similar responses were observed for A8 and A9 when combined with 

NaOCl (not shown). The activity of mercaptoethanol-exposed A9 was also restored by NaOCl.  
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Figure 7. Dose-response curves and pH-dependency for CL generated by A9 and HSA in a 

H2O2-luminol system. (a) shows CL at different concentrations of A9 (pH 7.9); (b) shows 

CL induced by A9 (20 µg/mL) at three different pH. The H2O2 concentration (a, b) was 

500 µM. (c) gives dose-response curves for A9 at two different pH values; 32 µM H2O2. 

(d) shows CL induced by A9 + NaOCl (20 µM), or HSA + NaOCl (20 µM). The effect of 

4-hydroxy-benzoic acid (HBA, 2 mM ), an ·OH trapping compound, was assayed at one 

A9 concentration (3.6 µg/mL). All set-ups in (d) with 63 µM H2O2. Mean values from two 

experiments, corrected for background values in buffers. The experiments were carried out 

with the FLx800 luminometer at room temperature.  

 
 

A molar ratio of 1.6–3.2 between H2O2 and NaOCl proved to be optimal for A9-induced CL. We 

assessed the procedure by keeping the ratio constant at 1.6 in the dose ranges of 4–64 µM for H2O2 and 

2.5–40 µM for NaOCl and obtained a bell-shaped curve for A9-CL, with 1.2 µg A9 per mL (Figure 8). 

Low background levels of the NaOCl + H2O2 were maintained. We saw A9-CL significantly above 

background (p < 0.05) with only 5.0 µM NaOCl + 8 µM H2O2. These values of NaOCl and H2O2 are in 

the physiological range [4,20,21]. It is possible to trigger ROS formation even more by increasing the 

H2O2 concentration (with constant NaOCl), but this tends to elevate the NaOCl-induced background 

levels and leads to more variable responses. For routine use, 10 or 20 µM NaOCl and H2O2 in the  

16–64 µM range is recommended. 
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Figure 8. Chemiluminescence at constant H2O2/NaOCl ratio (=1.6). A9 1.2 µg/mL. 

Phosphate buffer with pH 7.8. Mean values with SEM from three experiments, with the 

FLx800 luminometer at room temperature. 

 
 

2.6. 4-hydroxy-benzoic acid (4-HBA) and L-histidine 

 

4-HBA (2 mM), considered to be an agent trapping hydroxyl radicals [22–24], stimulated (p < 0.05) 

the luminol-H2O2- dependent (500 µM H2O2) MPO-response by 28% (five experiments). On the 

contrary, 4-HBA abrogated CL (p < 0.05) by A8 (500 µM H2O2, three experiments) and A9 (500 µM 

H2O2, two experiments). In five experiments 4-HBA did not affect CL elicited by NaOCl alone, but 

suppressed (see Figure 7d) the intense CL generated by NaOCl + A9 (1.2 µg/mL) + H2O2 (63 µM) by 

65% (p < 0.001).  

 

Figure 9. The effect of L-histidine, a putative singlet oxygen scavenger, on CL-integrals of 

MPO (0.05 µg/mL) and recombinant A9 (8.0 µg/mL), both with 500 µM H2O2, and  

A9 (0.6 µg/mL) + NaOCl (20 µM) with 63 µM H2O2. Two experiments. Values in per cent 

of control without histidine. The results with A9 + NaOCl were confirmed (four 

experiments) with the FLx800 luminometer. 
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Histidine, assumed to be a singlet oxygen scavenger [25], strongly inhibited the NaOCl-increased 

CL induced by A9, whereas inhibition was weaker in the absence of NaOCl, and then similar to the 

effect on H2O2-induced MPO responses (Figure 9).  

 

2.7. Temperature effects 

 

A temperature increase from 24 to 37o C consistently enhanced CL integrals induced by A8 and A9 

in combination with H2O2, but only with NaOCl in the reaction mixture (p < 0.001; data not shown). 

With MPO, or A9, + H2O2, we observed no consistent effect of temperature change.  

 

2.8. The effect of iron and iron chelators 

 

In the absence of NaOCl, iron ions (FeSO4, 140 µM) enhanced luminol-H2O2-CL, and the effect 

was additive when the iron salt was combined with calprotectin. FeCl3 had a similar effect. Lower 

concentrations (10–20 µM) stimulated only marginally. When NaOCl was included, there was no 

additional stimulatory effect of iron ions (0.1–100 µM). Deferoxamine, an iron chelator (200 µM), 

significantly (two experiments) reduced the CL-response (p < 0.01) elicited by A8, A9, A9 + NaOCl, 

NaOCl alone, and MPO. The strongest reduction (90%) was observed with A9 + NaOCl, whereas an 

approximately 50% decline was obtained for MPO and NaOCl set-ups. The interpretation of these 

results is difficult since deferoxamine not only chelates iron, but may also bind and inactivate  

OH-radicals and possibly other ROS [26]. Taken together, the possibility exists that trace amounts of 

iron or other metals can activate calprotectin. 

 

3. Discussion 

 

We have shown that two major PMN cytosolic proteins, calprotectin and cytidine deaminase 

(CDD), had opposite effects on the in vitro luminol-amplified chemiluminescence (CL) elicited by the 

H2O2-MPO-Cl– cell-free system. Calprotectin stimulated CL, whereas cytidine deaminase inhibited it. 

Calprotectin alone, without myeloperoxidase (MPO), also triggered CL. However, at pH 7.4 this effect 

was detectable only at concentrations of 10–20 µg/mL (~1 µM) or more, but 0.05–0.3 µg/mL  

(0.5–3 × 10-9 M) was sufficient for MPO. 

We interpret the results as follows: The ROS formation by MPO and calprotectin both depended 

upon H2O2. Both reactions were inhibited by L-cysteine and melatonin (Figure 4). For MPO it might 

be due to interaction with HOCl, which is the CL promoting end product of the MPO reaction chain 

[2]. For calprotectin the inhibiting mechanism may be different. Calprotectin presumably does not 

generate HOCl, since it, unlike MPO, did not need the presence of chloride for CL (Figure 4c). Other 

findings indicated different CL mechanisms as well: ROS generation by calprotectin or by phagocytes 

(granulocytes, peritoneal cells) markedly increased with increasing pH (Figure 2), but tended to 

decrease in the MPO system. Comparing calprotectin and MPO we found that these two proteins also 

reacted differently to 4-hydroxybenzoic acid, allegedly capable of quenching hydroxyl radicals. 
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Calprotectin had no detectable peroxidase activity as measured with the ECL assay. Taken together, 

these findings suggest that MPO and calprotectin stimulate CL by different mechanisms.  

The synergistic effect of the MPO-calprotectin combination (Figure 1b) may be due to  

MPO-induced HOCl, which stimulates calprotectin activity [19]. Notably, CL in H2O2-stimulated 

human granulocytes (Figure 3) looked like a two-component response, putatively exerted by MPO and 

calprotectin in combination. The MPO response, which seemed to predominate at low pH (Figure 3a), 

was almost aborted by azide, in line with the known azide-sensitivity of MPO. At increasing pH, a 

larger fraction of the total CL can tentatively be ascribed to the more azide-resistant calprotectin 

(Figure 4b). 

The reduced MPO-chemiluminescence in response to a rise of pH contrasts some previous findings 

[27], but agrees with the results of Albert and Jungi [28]. The CL generated by intact PMN increased 

with pH (Figures 2 and 3), in accordance with previous findings [29]. Following phagocytosis there is 

first a pH rise to ~ 7.8 in the phagosomes, followed by a gradual decrease towards 5–6 [30], indicating 

that a pH of 7.8 might be within the physiological range. It is noteworthy that a rise of pH from 7 to 8 

may change the configuration and increase thermal stability of calprotectin [31]. 

ROS detection is based upon exitation/oxidation of luminol, which relaxes to ground state by 

emitting light. For granulocytes, luminol amplifies a weak luminescence that also can be observed in a 

luminol-free medium, supposedly without changing the pattern of ROS formation [32]. The speed of 

occurence and size of the CL pattern can be controlled by varying the concentrations of luminol, H2O2, 

and NaOCl [33,34]. In our study we found that H2O2 triggered luminol-dependent ROS formation by 

calprotectin (A8/A9) and this response was strongly enhanced by adding NaOCl as the fourth 

component. This seems to imply that calprotectin activation is linked to NADPH oxidase and MPO. In 

any case, a mechanism of this kind in phagocytes could probably enhance their ability to fight 

microorganisms. Presumably, hydroxyl radicals, generated by calprotectin, amplify the cells’ 

microbiocidal power. If both MPO and calprotectin can normally engage, independently of each other, 

creating ROS in phagocytes, this might explain why most patients who lack MPO are spared from 

serious infections in spite of their deficiency [35]. 

Clearly, there are several elements that need to be evaluated to identify the physiological role of 

calprotectin. Calprotectin is easily oxidized by NaOCl [19], which may modify its functional 

properties [36]. This points to the possibility that we may be dealing with an active redox system 

[37,38], with calprotectin conceivably playing a dual role during inflammation. One or the other of 

these roles may become the leading one, determined by environmental signals. In fact, a change of 

concentrations may transform reactants from pro-oxidants to anti-oxidants [37], as we observed by 

increasing the concentration of A9 (Figure 7d), which suggests that A9 may act as a scavenger of 

NaOCl. So far, most investigations have focused on inflammatory stimulation by S100A8/A9 proteins 

[39]. However, recent research has indicated that oxidation of these proteins may trigger a switch, 

whereby they come to display anti-inflammatory functions [40]. These may be enhanced by 

nitrosylation [41]. Furthermore, the function of A8 and A9 might be determined also by 

polymerization, i.e. whether they exist as momomers, homodimers, heterodimers or tetramers [42]. 

Proper refolding may also be important for the protein’s function. Such a mechanism could possibly 

explain why recombinant A8/A9 exposed to mercaptoethanol did not generate ROS. In any case this 
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multitude of possible molecular forms could mean that the capacity to generate or scavenge ROS be 

present in only a small fraction of a heterogeneous multimeric complex. 

It is true that a substantial part of our results are shown at an unphysiological pH and probably also 

hydrogen peroxide concentration. However, ours is a very artificial, simplified cell-free in vitro 

system, devised to explore possible oxidative and anti-oxidative phagocyte functions of calprotectin, as 

well as interactions with the better known ROS-generating cellular components. By varying 

concentrations of H+-ions, H2O2, NaOCl, and proteins we have been able to establish procedures in 

which the different variables are balanced within assumedly physiological limits. Whether our findings 

can be validated under conditions present in intact cells or in an inflammatory, extracellular 

environment has to be explored in further experiments.  

In the intact organism the putative interplay between MPO and calprotectin will be largely 

restricted to PMN, monocytes and possibly early B-lymphocytes, in which MPO gene expression has 

been demonstrated [43]. We suggest that on stimulation of PMN, as an initial step, O2
-, generated by 

NADPH-oxidase, is converted to H2O2, which next may react with MPO. Its two reaction products, 

H2O2 and HOCl, are membrane permeable, so they might reach cytoplasmic calprotectin. Cellular 

H2O2 may also be generated in other metabolic pathways. For instance, electrons leaking from the 

mitochondria [44] lead to O2
- and H2O2 formation. In this way, calprotectin may become an integral 

part of cytoplasmic redox regulation or microbial defense mechanisms or both. Considering the very 

high calprotectin concentration in some cell types (PMN) and its widespread distribution, together with 

H2O2, it is hardly surprising that calprotectin has been clinically related to many disease conditions—

Even in atherosclerosis [31,45].  

 

4. Experimental Section 

 
4.1. Chemicals 

 

Hydrogen peroxide (30%), 5-amino-2,3-dihydro-1,4-phtalazinedione (luminol),  

bis-N-methylacridinium nitrate (lucigenin), myeloperoxidase (MPO), phorbol 12-myristate 13-acetate 

(PMA), mercaptoethanol, deferoxamine mesylate, 4-hydroxybenzoic acid, sodium azide, melatonin,  

L-cysteine, L-histidine and human serum albumin (HSA, MW ~ 67 kDa) were purchased from Sigma 

(St. Louis, USA), and Hepes buffer from BioWhittaker (Walkersville, MD, USA). Dextran 500 

(Pharmacia, Uppsala, Sweden) was dissolved in 0.9% NaCl and used as a 3 or 6% solution. Sodium 

hypochlorite (NaOCl, 0.5 M in 0.1 M NaOH), purchased from BDH (Dorset, England), was diluted 

with water. Luminol and PMA were dissolved in dimethylsulphoxide (Sigma) and further diluted in 

water or a buffered salt solution. Phosphate-buffers of different pH were made by mixing appropriate 

portions of 0.2 M NaH2PO4 and 0.2 M Na2HPO4. Peroxidase was measured with the enhanced 

chemiluminescence method (ECL, Amersham Pharmacia Biotech, Oslo). Calprotectin, purified from 

human neutrophils [46], was generously provided by Axis-Shield (Oslo, Norway) and dialysed against 

Hanks’ balanced salt solution (HBSS, Invitrogen, Norway) or phosphate-buffered saline before use. 

The two subunits (S100A8 and S100A9) preferentially combine as a heterodimer, and tend to remain 

associated during purification [47]. However, they may also combine as homodimers and even trimers 
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or tetramers [47], so exact characterization by MW is not always possible. Cytidine deaminase 

(MW~52 kDa) was produced as recombinant protein [13] and dissolved in HBSS. 

 

4.2. Purification of recombinant S100A8 and S100A9 

 

Competent E. coli BL21 CodonPlus(DE3)-RIL cells were transformed with pET28-S100A8 or 

pET28-S100A9 [48], grown in 2 L of LB medium with 25 g/mL kanamycin to OD600 of 1 and 

induced with 1 mM isopropyl--D-thiogalactopyranoside (IPTG, Sigma) for 4 h at 30 ºC. Extract was 

prepared by sonication of the cell pellet in 40 mM Na2PO4, pH 8.0, 300 mM NaCl (sonication buffer) 

and cleared with centrifugation. The cell extract was applied on a Ni-column equilibrated with 

sonication buffer. The column was eluted with a gradient of 50–300 mM imidazole in sonication 

buffer, and purification of A8 and A9 (with and without mercaptoethanol) was monitored by protein 

gel electrophoresis. The N-terminal 6xHis were removed by Thrombin (T-4648, Sigma) cleavage, 

which enhanced the CL-inducing activity of the dialysed proteins. The purified A8 migrated as a 

monomer of apparent molecular weight 10 kDa, while A9 migrated as a monomer and a dimer of 

apparent molecular weight 13 and 26 kDa (Figure 6), respectively. Protein concentration was 

determined by the Bio-Rad protein assay (Bio-Rad), with BSA as a standard. 

 

4.3. Chemiluminescence 

 

A cell-free system was used as model of the respiratory burst in PMN:  

H2O2 + MPO + chloride + luminol. In some experiments MPO was replaced by calprotectin. The 

luminol-enhanced CL was measured as relative light units in a luminometer (Luminoskan, Termo 

Labsystems, Helsinki, Finland), reading the samples in 96-well plates (White Cliniplate, Thermo 

Fisher Scientific, Vantaa-Finland). In some experiments (Figures 7, 8) we used a FLx800 luminometer 

(Biotek Instruments, Inc. Winooski, Vermont, USA). In relative terms the results were similar with the 

two luminometers, but the observed values (arbitrary light units) were quite different. Unless otherwise 

indicated, the recording was done at 37 oC. Each well contained 25 µL H2O2 solution (final 

concentrations are indicated), 5–10 µL MPO, 50 µL luminol (0.1 mM), 10–20 µL test substance and 

buffer (140–170 µL) to yield a total volume of 250 µL. MPO (10–40 µg) was dissolved in 1 mL water 

and stored at 4 oC. The activity was stable for some months, but upon further dilution it was often 

strongly reduced after a couple of days. The chemiluminescence was recorded (2–4 wells per group) at 

1–2 minute intervals for 25–30 (or 60 minutes, Figure 3) minutes, and the integral of the response 

curve (AUC, area under the curve) was calculated. MPO concentration of 0.05–0.3 µg/mL mostly 

yielded AUC in the 5–30 range, but substantially increased responses were sometimes observed with 

modified procedures. Significant responses with MPO, calprotectin or cells were observed with  

8–16 µM H2O2 as stimulator. However, consistent results were best obtained at higher concentration  

(30–500 µM). A control group with buffer, but without luminol and H2O2 was always included.  

Tris-buffers should be avoided because it triggers substantial CL when combined with NaOCl.  

 



Toxins 2010, 2 

 

 
 

111

4.4. Cell separation 

 

Human blood from healthy colleagues was collected into vacutainers containing EDTA. The 

granulocytes were separated as described previously [49]. Male Fisher 344 rats (Møllegaard Breeding 

Centre, Ejby, Denmark) were also used. They were treated in accordance with institutional and 

national guidelines for animal research. Rat granulocytes were prepared as follows: The rats were 

anaesthetized with CO2 and killed by decapitation, and the trunk blood was collected into tubes 

containing EDTA. One part (3–6 mL) of EDTA-blood was mixed with one part of dextran 3% to cause 

aggregation and sedimentation of erythrocytes. Then 3 mL of Lymphoprep (Axis-Shield, Oslo, 

Norway) was installed underneath leucocyte-rich dextran-plasma (4–8 mL) in 15 mL tubes and 

centrifuged for 15 min at 600 g at room temperature. The bottom fraction, comprising >95% 

granulocytes, was collected and washed once. The cell button was suspended in 4 mL lysis solution 

(0.15 M NH4Cl, 1 mM KHCO3, 0.1 mM EDTA) and incubated at room temperature for 7 minutes to 

lyse remaining red cells. If necessary, the procedure was repeated. Rat peritoneal cells were obtained 

by washing the peritoneum of dead animals with 25 mL phosphate-buffered saline. The cells were 

pelleted by centrifugation and resuspended in phosphate buffer or HBSS supplied with 20 mM Hepes 

buffer (pH 7.4) and 5 mM glucose.  

 

4.5. Statistics 

 

The results are given as means with their standard error (SEM). An analysis of variance (ANOVA) 

procedure was used to test for dose-response of cytidine deaminase and calprotectin. Student’s t-test 

was used to assess the difference between two groups. Two-sided P values < 0.05 were considered 

statistically significant. 

 

5. Conclusions  

 

Calprotectin (S100A8/A9), together with H2O2, induced luminol-dependent chemiluminescence 

(CL), and thus triggered formation of reactive oxygen species (ROS). Calprotectin and 

myeloperoxidase (MPO) might thereby collaborate on microbial killing. The CL responses elicited by 

calprotectin and MPO were differentially increased or decreased by varying the experimental 

conditions in several ways. Calprotectin CL was enhanced by addition of NaOCl to the reaction 

mixture. Surprisingly, however, at constant NaOCl concentration, this augmentation vanished when 

the calprotectin concentration was increased, suggesting a switch from pro-oxidant to anti-oxidant 

function. Possibly, calprotectin may launch an attack on microbes, but also protect our own tissues 

from excessive ROS exposure. 
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