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Abstract: As cancer is a multifactor disease, it may require treatment with compounds able 
to target multiple intracellular components. We summarize here how curcumin is able to 
modulate many components of intracellular signaling pathways implicated in 
inflammation, cell proliferation and invasion and to induce genetic modulations eventually 
leading to tumor cell death. Clinical applications of this natural compound were initially 
limited by its low solubility and bioavailability in both plasma and tissues but combination 
with adjuvant and delivery vehicles was reported to largely improve bio-availability of 
curcumin. Moreover, curcumin was reported to act in synergism with several natural 
compounds or synthetic agents commonly used in chemotherapy. Based on this, curcumin 
could thus be considered as a good candidate for cancer prevention and treatment when 
used alone or in combination with other conventional treatments. 
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1. Introduction 

Most of the conventional chemotherapeutic agents used today were designed to hit a single 
intracellular target (e.g., Remicade® to counteract tumor necrosis factor, Avastin® to inhibit vascular 
endothelial growth factor). Unfortunately, the physiological and mechanistic deregulations responsible 
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for cancer initiation and promotion implicate often hundreds of genes or signaling cascades so that it 
appears evident that multi-target drugs are requested to overcome complex human diseases such as 
cancer. Taking advantage of the multiple therapeutic effects observed after the use of natural 
compounds in traditional medicine, researchers started to evaluate the anti-tumor effect of natural 
compounds and subsequently tried to understand their mechanism of actions. By this way, they pointed 
out that curcumin, an active chemical component issued from the plant Curcuma longa , exhibits a 
broad range of activities due to its ability to affect multiple intracellular targets [1]. We will detail 
hereafter the different intracellular mechanisms affected by curcumin treatment and the resulting 
therapeutic applications potentially useful for the eradication of cancer. 

2. Curcumin 

Curcumin or diferuloylmethane, a polyphenolic molecule extracted from the rhizome of the plant 
Curcuma longa , is a yellow spice that enters into the composition of curry (Figure 1). This natural 
compound was used over centuries in Ayurvedic, Chinese and Hindu traditional medicine. Nowadays, 
it appears as a promising chemopreventive compound able to reverse, inhibit or prevent the 
development of cancer by inhibiting specific molecular signaling pathways involved in carcinogenesis 
[2–5]. Whereas clinical trials have already demonstrated the safety of curcumin even at high doses  
(12 g/day) [6–10], the clinical advancement of this promising natural compound is hampered by its 
poor water solubility and short biological half-life, resulting in low (micromolar range) bioavailability 
in both plasma and tissues [8,11,12] (Table 1).  

In order to overcome these limitations, several approaches have been tested in vitro  including the 
combination of curcumin with adjuvants (e.g., piperine), and the development of delivery vehicles 
consisting of liposomes, nanoparticules and phospholipid formulations of curcumin. We present in 
Table 1 the ongoing clinical trials involving curcumin in patients affected by cancer. In these trials, 
curcumin was mostly administrated alone or in combination with adjuvants (bioperine) or other natural 
compounds (quercetin, green tea and soybean extracts). Curcumin was also tested for its synergism 
with conventional treatments such as sulindac, capecitabine and celecoxib (Table 1). Completed 
clinical trials performed in patients affected by colorectal cancer [9,10,13,14] confirmed the different 
pharmacological criteria of curcumin cited previously and evaluated the effect of this natural 
compound on cyclooxygenase (COX-2), leukocytic M1G and gluthatione S transferase (GST) levels  
in patients. 

2.1. Curcumin analogues and structure related activity 

The comparison between the effect of curcumin and its naturally occurring analogues including its 
demethoxy derivatives (demethoxycurcumin, bisdemethoxycurcumin) and its active hydrogenated 
metabolites (tetrahydrocurcumin, hexahydrocurcumin and octahydrocurcumin) (Figure 1) pointed out 
possible structure-activity relationships.  
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Table 1. Ongoing clinical trials involving curcumin in patients affected by cancer. 

Status Trial name Disease Treatment applied Clinical 
phase study 

Completed Curcumin (Diferuloylmethane Derivative) With or Without 
Bioperine in Patients With Multiple Myeloma 

Multiple Myeloma Curcumin; Bioperine nd 

Recruiting Curcumin With Pre-Operative Capecitabine and Radiation 
Therapy Followed by Surgery for Rectal Cancer 

Rectal Cancer Radiation: Radiotherapy; 
Capecitabine; Curcumin; Placebo 

Phase II 

Recruiting Curcumin for Prevention of Oral Mucositis in Children 
Chemotherapy 

Chemotherapy Induced 
Mucositis 

Curcumin liquid extract  
Phase III 

Recruiting Curcumin in preventing colorectal cancer in patients undergoing 
colorectal endoscopy and colorectal surgery 

Colorectal cancer Curcumin 
Endoscopy, surgery 

 
Phase I 

Recruiting Trial of Curcumin in Advanced Pancreatic Cancer Adenocarcinoma; Pancreatic 
Neoplasms 

Curcumin  
Phase II 

Active, not recruitingCurcumin in Preventing Colon Cancer in Smokers With Aberrant 
Crypt Foci 

Colorectal Cancer; 
Precancerous/Nonmalignant 
Condition 

Dietary Supplement: curcumin  
Phase II 

Not yet recruiting Bio-Availability of a New Liquid Tumeric Extract Healthy liquid tumeric/curcumin extract  
Phase I 

Recruiting Pilot Study of Curcumin Formulation and Ashwagandha Extract 
in Advanced Osteosarcoma 

Osteosarcoma Dietary Supplement: Curcumin 
powder, Ashwagandha extract 

Phase I and 
II 

Recruiting Gemcitabine With Curcumin for Pancreatic Cancer Pancreatic Cancer Curcumin (+gemcitabine) Phase II 
Not yet recruiting Phase III Trial of Gemcitabine, Curcumin and Celebrex in 

Patients With Metastatic Colon Cancer 
Colon Neoplasm Celecoxib; curcumin Phase III 
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Table 1. Cont. 

Suspended Curcumin for Treatment of Intestinal Adenomas in Familial 
Adenomatous Polyposis (FAP) 

Familial Adenomatous 
Polyposis 

Dietary Supplement: curcumin; 
Dietary Supplement: placebo 

Phase II 

Recruiting Curcumin for Treatment of Intestinal Adenomas in Familial 
Adenomatous Polyposis (FAP) 

Familial Adenomatous 
Polyposis 

Curcumin  
nd 

Terminated Use of Curcumin in the Lower Gastrointestinal Tract in Familial 
Adenomatous Polyposis Patients 

Familial Adenomatous 
Polyposis 

curcumin  
Phase II 

Recruiting Phase III Trial of Gemcitabine, Curcumin and Celebrex in 
Patients With Advance or Inoperable Pancreatic Cancer 

Pancreatic Cancer Gemcitabine; Curcumin; Celebrex  
Phase III 

Completed Curcumin for the Prevention of Colon Cancer Colorectal Cancer Dietary Supplement: curcumin Phase I 
Terminated The Effects of Curcuminoids on Aberrant Crypt Foci in the 

Human Colon 
Aberrant Crypt Foci sulindac; curcumin nd 

Not yet recruiting A Nutritional Supplement Capsule Containing Curcumin, Green 
Tea Extract, Polygonum Cuspidatum Extract, and Soybean 
Extract in Healthy Participants 

Healthy, no Evidence of 
Disease 

Dietary Supplement: curcumin/green 
tea extract/Polygonum cuspidatum 
extract/soybean extract capsule 

 
nd 

Suspended Sulindac and Plant Compounds in Preventing Colon Cancer Colorectal Cancer Dietary Supplement: curcumin, rutin 
Drug : quercetin, sulindac 

 
nd 

Recruiting Curcumin for the Chemoprevention of Colorectal Cancer Adenomatous Polyps Curcuminoids  
Phase II 

Not yet recruiting Trial of Curcumin in Cutaneous T-cell Lymphoma Patients Cutaneous T-Cell 
Lymphoma 

Dietary Supplement: Curcumin 
(Turmeric) 

Phase II 
 

The table was generated by using the registry of federally and privately supported clinical trials conducted in the United States and around the world 
(http://clinicaltrials.gov). Nd: non defined. 
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It was reported that the high anti-inflammatory and anti-tumoral potential of curcuminoids are 
related to low level of hydrogenation and high level of methoxylation but also to the high level of 
unsaturation of the diketone moiety [15]. On the other hand, the radical scavenging potential of the 
curcuminoids was linked to the number of ortho-methoxy substitutions and to the level of 
hydrogenation of the heptadiene moiety of curcumin [16,17]. Indeed, glycosylation of curcumin 
aromatic ring provides a more water-soluble compound with a greater kinetic stability and a good 
therapeutic index [18]. 

Figure 1. Chemical structure of curcuminoids. Curcumin (A), curcumin demethoxy 
derivatives (demethoxycurcumin and bisdemethoxycurcumin) (B) and hydrogenated 
curcumin metabolites (tetrahydrocurcumin, hexahydrocurcumin and octahydrocurcumin). 

 

2.2. Curcumin formulations 

Due to the multiple therapeutic potential of curcumin, various formulations were tested in order to 
enhance its bioavailability and to bring this natural compound to the forefront of therapeutic agents 
[19]. On one hand, formulation of curcumin in nanoparticles [20,21], liposomes [22,23], micelles [24] 
and phospholipid complexes decreases its hydrophobicity and increase its circulation time, its 
permeability through membrane barriers, its solubility as well as its resistance to metabolic stress [11]. 
On the other hand, the use of an adjuvant like piperine isolated from black pepper (that inhibits UGTs 
and p450s) [25], quercetin derived from soy beans (that inhibits sulfotransferases) and genistein (that 
inhibits alcohol dehydrogenase) counteracts detoxification enzymes implicated in curcumin 
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metabolism. This leads to the increase of curcumin absorption, serum concentration and subsequently 
to the increase of curcumin bioavailability [19,26]. 

3. Signaling Pathways Affected by Curcumin Treatment 

As cancer is a multifactorial disease, it requires treatment of multiple molecular targets compounds 
linked to chemoprevention, treatment and drug resistance often observed after chemotherapy.  

In an attempt to improve understanding of the pleiotropic targets of curcumin, different studies have 
been performed so far by microarray gene expression profiling in various cancer types (Table 2). In 
fact, this technical approach allows to assess simultaneously the expression pattern of a high number 
of genes at the RNA level [27,28]. Curcumin could effectively be considered a good candidate for 
cancer prevention when used alone and for cancer treatment in combination with other conventional 
therapies as it is able to target multiple signaling pathways implicated in this disease [29,30]  
(Figure 2). 

Figure 2. Modulation of multiple molecular targets by curcumin in cancer cells. These 
modulations lead to initiation and progression steps of carcinogenesis but also to cancer 
cell death. Arrows represent induction/activation whereas blunt-ended lines represented 
inhibition/repression. 
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Table 2. Evaluation by gene expression profiling of the molecular targets of curcumin in cancer cells. 

Platform Biological System Results Reference 

Oligonucleotide 
arrays 

human K562 chronic myelogenous  
leukemia cell line 

Regulation of cell cycle, JAK-STAT signaling pathway and heat shock related genes by
curcumin in TNF-treated K562 cells. 

 [27] 

Oligonucleotide 
arrays 

human BxPC-3 pancreatic carcinoma  
cell line 

Curcumin alters miRNA expression in human pancreatic cells  
by up-regulating miRNA-22 and down-regulating miRNA-199a*. 

 [28] 

    
Superarray human SK-N-MC neuroblastoma  

cell line 
Curcumin is a potent radiosensitizer that inhibits growth of human neuroblastoma cells and
downregulates radiation-induced pro-survival factors implicating NF-kB transcription 
factor. 

 [29] 

Affymetrix human MDA-MB-231 estrogen-negative 
breast cancer cell line  

Curcumin is able to downregulate the expression levels of inflammatory cytokines CXCL1
and -2 in breast cancer implicating NF-κB transcription factor. 

 [30] 

    
cDNA arrays human CL 1-5 lung adenocarcinoma  

cell line 
Curcumin supresses cancer cell proliferation and invasion in lung carcinoma cells by
downregulating the expression of MT1-MMP, NCAM, TOPO-I TOPO- II and AXL and 
the activity of MMP2 and NF-κB. Additionally expression of different HSP family
members was induced by curcumin. 

 [31] 

    
cDNA arrays human SW620 and Caco-2 colon 

adenocarcinoma cell lines 
Curcumin induces a G2-M cell cycle arrest in epithelial colorectal carcinoma by 
modulating genes implicated in cell cycle progression 

 [32] 

    
Affymetrix wild-type C57BL/6J mice, Nrf2 knockout 

C57BL/6J/Nrf2(-/-) mice 
Novel curcumin-regulated Nrf2-dependent genes implicated in the chemopreventive effects
of curcumin in mice liver and intestine were identified. These genes are implicated in
ubiquitination, proteolysis, electron transport, detoxification, transport, apoptosis, cell
cycle, cell adhesion as well as kinase/phosphatase and transcription factor activity. 

 [33] 
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Table 2. Cont. 

Affymetrix human MDA-1986 oral squamous 
carcinoma cell line 

Several putative, novel molecular targets of curcumin were identified, amongst which
ATF3, a contributor to the proapoptotic effects of this compound.  

 [34] 

    
Illumina human HF4.9 follicular lymphoma  

cell line 
Curcumin is able to downregulate CXCR4 and CD20 in follicular lymphoma cells. These
genes play an important role in pathogenesis of follicular lymphoma. 

 [35] 

    
cDNA arrays human RKO adenocarcinoma cell line Curcumin downregulates p53 target genes at the RNA level. This effect is mediated by

disrupting the native conformation of wild-type p53 protein. 
 [36] 

    
cDNA arrays human HT29 colon adenocarcinoma  

cell line 
Confirmation of the known effects of curcumin as cell cycle arrest in G2/M arrest and 
induction of phase-II genes). Extension of the existing knowledge on these physiological 
effects and detection of new mechanistic impact such as its effects on tubulin genes and the
differential expression of p16(INK4), p53 and RB1. 

 [37] 

    
Affymetrix rat C6 glioma cell line Four primary pathways are targeted by curcumin in neuroglial cells, including oxydative

stress, cell cycle control, DNA transcription and metabolism. Additionally new target genes
related to oxidative stress as well as cell cycle control were identified.  

 [38] 

    
Affymetrix, 
Superarray 

human LNCap androgen-responsive  
prostate adenocarcinoma cell line, human 
C42B androgen non-responsive prostate 
adenocarcinoma cell line (derived from 
LNCap cell line) 

Oxidative stress response was identified as the major pathway involved in curcumin
induced biological responses in prostate cancer cells. Additionally curcumin suppresses
androgen receptor in androgen responsive and refractory cells. 

 [39] 
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3.1. Curcumin and inflammation  

Over the past decades, experimental studies were performed to understand the intracellular 
mechanisms targeted by curcumin that implicated in the promising therapeutic potential of this natural 
compound used since centuries in traditional medicine. Aggarwal and coworkers firstly described 
curcumin as a potent modulator of inflammatory cell signaling [31]. This finding was promising as 
inflammation is highly involved in the promotion step of tumorigenesis, through the induction of 
survival, proliferation, invasion, angiogenesis and metastasis [32]. Aggarwal pointed out that this 
effect on inflammation was mainly due to inhibition of the nuclear factor-κB (NF-κB) signaling 
pathway [33]. Subsequent studies revealed that this natural compound acts on several components of 
this pathway. In fact, curcumin was shown to suppress the activation of IκBα kinase (IKK), the 
phosphorylation and degradation of IκBα and the subsequent phophorylation and nuclear translocation 
of the p65 subunit in several cancer and premalignant cell types [34–40]. This prevention of NF-κB 
activation is also related to the ability of curcumin to inhibit the proteasome function [41–43]. Such an 
inhibition of NF-κB was also induced after treatment with curcumin analogs such as 
demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and 3,5-bis(2-flurobenzylidene)-
piperidin-4-one (EF24) [16,44]. Similar results were also observed in primary cells issued from 
multiple myeloma patients [45] and in patients with advanced pancreatic cancer [46]. It is important to 
notify that NF-κB regulates the expression of more the 450 genes implicated in all main signaling 
pathways [47] such as tumor cell proliferation (cyclins), invasion potential (matrix metalloproteinases 
(MMP), adhesion molecules), angiogenesis (vascular endothelial growth factor (VEGF)) [48] but also 
growth factors (epidermal growth factor (EGF), tumor necrosis factor (TNFα)) and most of the anti-
apoptotic genes (Bcl-2 and X linked inhibitor of apoptosis (XIAP)) [49] as well as numerous 
oncogenes [50]. The down-regulation of the NF-κB pathway by curcumin could thus impact other 
related signaling pathways as demonstrated in several studies [51–55] and provide opportunities for 
both prevention and treatment [56]. 

In addition to its impact on NF-κB, curcumin also affects other molecular events implicated in 
inflammation and subsequent tumor promotion [31,57] such as inflammatory cytokines (TNFα, 
interleukines IL-1, IL-6 and IL-8) [58,59], inflammatory transcription factors (STATs), and 
inflammatory enzymes (Cyclooxygenase (COX)-2, 5-lipoxygenase (LOX)) [60]. 

It is reported in the literature that persistent activation of STATs also mediates tumor-promoting 
inflammation through their collaboration with other transcription factors [31,61,62]. Again, the 
inhibition of this transcription factor represents a promising tool both for prevention and therapy. We 
reported that curcumin alone inhibits STATs expression, especially the decrease of nuclear STAT-3,  
-5a and -5b, without affecting neither STAT1 nor the phosphorylation state of STAT1, -3 or -5 in 
human chronic K562 leukemia cells. When used as a pre-treatment, curcumin inhibits interferon-
gamma-induced phosphorylation of nuclear STAT1 and -3 [63,64]. Similar suppression of STAT3 
activation was also observed in Hodgkin’s lymphoma [52], T-cell leukemia [65], head and neck 
squamous cell carcinoma [66], multiple myeloma cells [52,67] and in CD138+ cells derived from 
multiple myeloma patients [45] following curcumin treatment but also after treatment with curcumin 
analogs such as GO-Y030 [68], FLLL1 and FLLL12 [69] or a curcumin-phospholipid complex [70]. 
The interferon-α-induced activation of STAT1 was also inhibited by curcumin in human lung A549 
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carcinoma and melanoma cells [71]. This inhibition of STAT1 as well as the inhibition of NF-κB were 
suggested to be implicated in the inhibition of COX-2, an important reactive-oxygen-generating 
enzymes implicated in inflammatory processes [55,72–74]. In fact, it was reported that curcumin is a 
potent inhibitor of COX-2 in several cancer types [37,73,75–81]. Moreover, studies performed on 
mononuclear cells from peripheral blood of patients with pancreatic cancer [46] and on oral 
premalignant cells [40] reported an inhibition of COX-2 expression after curcumin treatment. More 
recently, fluorocurcumin, a curcumin analog presenting a higher bioavailability than curcumin, was 
also shown to down-regulate NF-κB and prostaglandin (PG)E2 level so that it was suggested to be a 
potential agent against COX-2 overexpressing tumors [82]. All of these in vitro as well as preclinical 
studies suggested that targeting components of the inflammatory pathways provide good opportunities 
for prevention and therapy of cancer [56].  

3.2. Impact of curcumin on tumor cell proliferation and invasion 

Carcinogenesis is a multistage process with three successive steps, initiation, promotion and 
progression. This process is often linked to oxidative stress, chronic inflammation and hormonal 
imbalance. The chemopreventive effect of curcumin is mainly based on its effectiveness to inhibit 
tumorigenesis through the decrease of cancer cell proliferation.  

A way for curcumin to counteract cancer cell proliferation consists in the arrest of the cell cycle. 
This antiproliferative effect was observed in several cancer cell types (prostate, lung, breast and head 
and neck cancer but also lymphoma and leukemia). In fact, curcumin induces the expression of cyclin-
dependent kinase (CDK) inhibitors p16, p21 and p27, and inhibits the expression of cyclin E and 
cyclin D1 as well as the hyperphosphorylation of retinoblastoma (Rb) protein. This leads to the 
disruption of cell cycle and to the death of cells by apoptosis [83–85].  

The modulation of cyclins could be related to the impact of curcumin on the Wingless (Wnt) 
signaling pathway [86,87], especially through the modulation of the β-catenin/T-cell factor 
(TCF)/lymphoid enhancer factor (LEF) as observed in osteosarcoma [88], colon cancer cells [89,90], 
breast stem and cancer cells [91,92]. The observed decrease of the β-catenin/Tcf transcriptional 
activity was due to the decrease of the nuclear level of expression of β-catenin and Tcf-4 [89]. Similar 
decrease of β-catenin expression was also shown to be responsible of the inhibition of intestinal tumor 
growth in an animal model of familial adenomatous polyposis [93]. Gene expression profiling by 
microarray revealed that curcumin was also able to attenuate the expression of Frizzled-1, a Wnt 
receptor [94]. Demethoxycurcumin and bisdemethoxycurcumin, two curcumin analogs, were also 
reported to decrease the β-catenin transcriptional activity with a comparable potency as curcumin in 
colorectal cancer, through the down-regulation of p300, which is a positive regulator of the Wnt 
signaling pathway. As the tetrahydrocurcumin metabolite exhibits a much lesser impact on the Wnt 
pathway, it was suggested that the conjugated bonds in the central seven-carbon chain of curcuminoids 
are essential for the anti-proliferative activity of curcuminoids [95]. 

Dysregulations of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways were also shown to 
play an important role in cancer cell growth and survival. Thus the targeting of these pathways may 
provide new anti-cancer strategies [96,97]. Curcumin was reported to be a good inhibitor of 
phosphoinositol (PI)3/Akt/mammalian target of rapamycin (mTOR) signaling pathway through the 
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modulation of their expression and phosphorylation in a panel of cancer cell lines derived from 
leukemia [55,98], cervical cancer [99], colorectal carcinoma [100], renal carcinoma [101], breast 
cancer [102], Ewing’s sarcoma [103], prostate cancer cells and xenografts [104–107]. This leads to 
cell death by apoptosis and to the down-regulation of downstream effector proteins and genes such as 
p53, NF-κB and eukaryotic initiation factors (eIFs) which play an important role in the initiation of 
protein synthesis [108,109]. Such an inhibition of PI3/Akt/NF-κB signaling pathway by curcumin was 
also suggested to be implicated in the down-regulation of the expression of P-glycoprotein (P-gp) 
implicated in the multidrug resistance (mdr) 1b gene-mediated multidrug resistance [110]. 

Curcumin analogues such as FLLL11, FLLL12 and 4-hydroxy-3-methybenzoic acid methyl ester 
(HMBME) were also described as good inhibitors of cell proliferation of breast and prostate cancer 
though the modulation of PI3/Akt/ mTOR signaling [69,100,111]. 

The proliferation of solid tumors is also highly linked to their potential to establish metastasis and 
invade surrounding tissues. This phenomenon is based on the ability of tumor cells to produce growth 
factors such as EGF, VEGF and MMPs. 

Matrix metalloproteinases (MMPs) play a major role in this phenomenon by mediating 
neovascularization, endothelial cell migration and tube formation [112]. The alteration of MMP-1, 
membrane type-1 matrix metalloproteinase (MT1-MMP), MMP-2, MMP-9 expression was observed 
after curcumin treatment in vitro  and in vivo  in melanoma [113], prostate [114,115], lung [116] and 
breast cancer cells [117,118].  

Over-expression of epidermal growth factor receptor (EGFR) is highly implicated in cancer cell 
proliferation [119,120]. Curcumin was shown to down-regulate the EGFR expression in pancreatic and 
lung adenocarcinoma expressing COX-2 [81]. This natural compound also inhibits the EGFR intrinsic 
kinase activity in human epidermoid carcinoma [121], breast [122], prostate [123,124] and colon 
cancer cells [125]. This decrease of EGFR expression and activity could be subsequent to the 
inhibition of the ligand-induced activation of EGFR [126], to the peroxisome proliferator-activated 
receptor−γ (PPAR-γ) activation [127], to the suppression of EGFR phosphorylation [128] or to the 
decrease of the early growth factor-1 (Egr-1) transcriptional activity [129] observed after curcumin 
treatment. A similar decrease of the EGFR expression level was also observed in estrogen receptor 
negative breast cancer treated with derivatives of curcumin issued from the replacement of phenyl 
group of cyclohexanone derived curcumin by heterocyclic rings [122]. 

Curcumin also appears to be a direct in vitro and in vivo inhibitor of VEGF and fibroblast growth 
factor (FGF) [48,77,116,130–134], that are usually elevated in many human cancer and that correlate 
with enhanced microvessel density and metastatic spread. The molecular mechanisms, implicated in 
curcumin-inhibition of angiogenesis, consist also in the down regulation of the expression of pro-
angiogenic components such as angiopoietin 1 and 2 genes , Kinase Domain Region (KDR) [131] and 
cell surface expression of vascular adhesion molecules (VCAM-1) [135]. Curcumin and its metabolite 
tetrahydrocurcumin were also reported to decrease the microvascular dilatation, tortuosity and hyper-
permeability in hepatocellular carcinoma implanted in nude mouse [136]. 
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3.3. Curcumin and genomic modulations 

Telomeres are specialized heterochromatic structures localized at the end of human chromosomes. 
They consist of tandem repeats that play structural and functional roles and allow maintaining genome 
stability. In healthy cells, telomeres are shortened during each cell division so that the cells stop 
replicating once the telomeres become too short. In contrast, the majority of solid tumors and leukemia 
acquire elevated telomerase activity to overcome such limitations ensuring thus their immortality and 
unlimited proliferative potential through the bypass of senescence [137,138]. Telomerase inhibition 
emerges thus as an attractive target for cancer therapy [139,140]. Treatment of cancer cells with 
curcumin revealed that this natural compound inhibits telomerase activity by down-regulating the 
human telomerase reverse transcriptase (hTERT), the catalytic core of telomerase which leads thus to 
the suppression of cell viability and to the induction of apoptosis [141–145]. Recent findings suggest 
that such a down-regulation of hTERT could be explained by a decrease of the association of hTERT 
and p23, a component of the molecular chaperone complex Hsp90-p23 that normally interacts with the 
rate-limiting catalytic subunit of telomerase [146]. 

In order to specifically target telomerase, Kappor et al., have taken advantage of the RNA subunit 
conformation of telomerase. They linked a tetraglycine conjugate of curcumin to an 11-mer DNA 
sequence complementary to a telomerase RNA sequence. Treatment of oral KB cancer cells with such 
a construct leads to the a significant reduction of cancer cell growth [147]. 

In addition to genetic alterations, cancer development and progression are also linked to epigenetic 
modifications [148], which consist mainly in DNA methylation and posttranslational histone 
modifications (acetylation, methylation, ubiquitylation, phosphorylation and sumoylation). DNA 
methylation is mediated by DNA methyltransferases (DNMTs). Aberrant hypermethylation of 
promoter CpG islands of tumor suppressor genes results in their transcriptional silencing and tumor 
survival [149]. Curcumin as well as tetrahydrocurcumin were reported to block covalently the catalytic 
thiolate of the C1226 of DNMT1 leading thus to DNA hypomethylation and suggesting a subsequent 
death of tumor cells [150]. 

On the other hand, the level of histone acetylation, resulting from the balance of histone 
acetyltransferase (HAT) and histone deacetylase (HDAC) activities, plays a crucial role in chromatin 
remodeling and in the regulation of gene transcription [151]. The impact of curcumin on these 
implicated epigenetic mechanisms was evaluated and revealed that this natural compound is able to 
induce histone hypoacetylation by blocking the HAT activity in vitro  and in vivo  without affecting 
HDAC [152]. In fact, curcumin was reported to be a potent and specific inhibitor of p300/CREB 
Binding Protein (CBP) histone acetyltransferase activity in several cancer types by promoting their 
proteasomal degradation, whereas its tetrahydrocurcumin metabolite does not affect p300 [153–155]. 
Molecular docking carried out for the human HDAC8 enzyme, pointed out that curcumin could also be 
considered as a potent HDAC inhibitor [156] and other studies showed that it can also significantly 
decrease the amount of HDAC1 and HDAC3 [157]. 

More recently, several studies pointed out that deregulation of microRNAs, a category on small 
noncoding RNAs that function as genes regulators, were also involved in tumorigenesis and related to 
epigenetics alterations. In fact, the microRNA network is implicated in the regulation of many basic 
cellular processes such as proliferation, differentiation and cell death [158–162]. Evidence has been 
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provided that dietary compounds such as curcumin could exert their chemopreventive effect through 
the modulation of miRNAs expression [163]. Indeed, curcumin was reported to alter miRNA 
expression by up-regulating miRNA-22 and down-regulating miRNA-199a* in human pancreatic cells 
[164]. On the other hand, this natural compound was also able to up-regulate the expression of 
miRNA-15a and miRNA-16 which leads to the reduction of the expression of the anti-apoptotic  
Bcl-2 gene [165]. 

4. Mechanisms of Cell Death Induced by Curcumin 

Curcumin is most often described to induce tumor cell death through the well-described apoptosis 
process [166]. However, tumor cell resistance to apoptosis appears frequently and is associated with 
poor prognosis and resistance to cancer treatment [167]. Fortunately, other types of mechanism leading 
to cell death (e.g., autophagy, mitotic catastrophe) are also induced by curcumin in order to 
compensate this lack of induction of cell death mechanisms. 

4.1. Apoptosis 

Apoptosis is a tightly regulated mechanism of cell death that can be initiated by intracellular stress 
signals and extracellular ligands following curcumin treatment in several cancer types [166,168]. The 
intrinsic induction of apoptosis is triggered in response to cellular signals including stress and DNA 
damage. Curcumin was reported to induce the up-regulation of pro-apoptotic proteins from the Bcl-2 
family (Bim, Bax, Bak, Puma and Noxa) and the down-regulation of anti-apoptotic proteins (XIAP, 
Bcl-2, Bcl-xL) [101,105]. This leads to the opening of mitochondrial permeability transition pores, the 
release of cytochrome c, the activation of the apoptosome (caspase-9/apaf-1/cytochrome c) and the 
subsequent cleavage of caspase-3, -6 and -7, Poly (ADP-ribose) polymerase (PARP) and finally to the 
death of tumor cells [169–171]. Pre-clinical studies pointed out that curcumin has similar pro-
apoptotic effect on primary chronic lymphocytic leukemia B cells but that this effect is inhibited in the 
presence of stromal cells. In order to overcome this protective effect mediated by stromal cells, 
curcumin needs to be administered simultaneously with epigallocatechin-3 gallate (EGCG) [172].  

On the other hand, apoptosis may also be induced by the extrinsic pathway at the cell surface 
through the activation of cell membrane receptors (Fas, TRAIL) [173–175]. This pathway leads to the 
assembly of the death- inducing signaling complex (DISC) containing Fas, FAD and caspase-8 and  
-10. The extrinsic pathway converges then to the intrinsic one by the induction of Bid cleavage, the 
subsequent release of cytochrome c and the activation of the cascade of caspases. 

This induction of cell death by apoptosis after curcumin or curcumin analogs treatment [176] 
supports the idea of their possible implication for cancer therapy [16,177].  

4.2. Mitotic catastrophe 

Mitotic catastrophe (MC) is a type of cell death resulting from aberrant mitosis. In fact, this process 
results from a combination of deficient cell-cycle checkpoints (DNA structure and spindle assembly 
checkpoints) and cellular damage. Moreover, it has been reported that the intrinsic mitochondrial 
apoptotic machinery (chromatin condensation, mitochondrial release of proapoptotic proteins,  
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caspase-2 activation and DNA degradation) is highly implicated in the execution of mitotic 
catastrophe, which occurs at the metaphase level, in a p53 independent manner [178,179]. This type of 
mitosis leads to the formation of large non-viable cells with several micronuclei and uncondensed 
chromosomes [179,180]. The disruption of mitotic spindle structure and the appearance of 
micronucleation after curcumin treatment were firstly described in MCF-7 human breast cancer cells 
and were related to curcumin-induced cell cycle arrest in G2/M [181]. Mitotic catastrophe was also a 
way for curcumin to overcome the resistance of tumor cells to apoptosis. In the case of curcumin, the 
induction of MC was related to the inhibition of survivin, a modulator of cell division and apoptosis in 
cancer [182,183]. Moreover, curcumin-induced cytotoxicity observed in a panel of oesophageal cancer 
cell lines after 24h of treatment was associated to MC induction related to an accumulation of the 
mitotic regulator cyclin B1 and of poly-ubiquitinated proteins [184]. Other publications underline the 
fact that curcumin metabolites, derivatives and products of degradation were unable to induce G2/M 
cell cycle arrest and MC compared to the original curcumin compound [185,186]. 

Mitotic catastrophe induction should be considered for clinical approaches, as a correlation was 
found between poor prognosis of treatment and inability of cells to induce MC. Moreover an increase 
of MC induction could compensate impaired induction of apoptosis [167]. 

4.3. Autophagy 

Autophagy is a highly regulated process characterized by sequestration of bulk cytoplasm, long-
lived proteins and cellular organelles in double-membrane vesicles (autophagosomes), which are 
subsequently degraded in lysosomes. The final role of autophagy as a tumor suppressor or a protector 
of cancer cells from anti-cancer therapy is still under investigation [187–189]. In the case of curcumin, 
it was recently reported that this natural compound suppresses the growth of malignant gliomas in 
vitro and in vivo through cell cycle arrest in G2/M transition phase and induction of autophagy. This 
phenomenon has been associated to the inhibition of the Akt/mTOR kinase and to the activation of the 
extracellular signal-regulated kinases (ERK) 1/2 and to the increase of LC-3 II expression [190,191]. 
Such an induction of autophagy was also observed concomitantly with mitotic catastrophe in 
oesophageal cancer after curcumin treatment [184]. 

5. Curcumin Synergistic Effect in Combination with Other Natural or Chemotherapeutic 
Compounds 

As described above, curcumin is a multi-target natural chemopreventive compound by itself. In 
addition to its high chemopreventive potential, this natural compound can act synergistically with 
other natural compounds or other kinds of therapy (radiotherapy, chemotherapy and hormonotherapy). 

5.1. Synergism with natural compounds 

Curcumin was reported to have a synergistic effect with genistein, a natural compound derived from 
soy beans. When combined, they are able to reduce the proliferation of the human breast MCF-7 
oestrogen-positive cells induced by environmental pesticides [192]. Moreover, combination of 
curcumin with 1,25-dihydroxyvitamin D3 (calcitrol) treatment, a well known inducer of monocytic 
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differentiation, was able to stimulate monocytic differentiation of the human promyelocytic HL-60 
cells [193] and to abolish resistance of calcitrol-differentiated HL60 cells to DNA damage–induced 
apoptosis by activating other cell signaling pathways leading to cell death [194]. Diet containing both 
curcumin and omega-3 fatty acids (fish oil diet) leads to the prevention and treatment of pancreatic 
tumor xenografts through the down-regulation of the expression and activity of iNOS, COX-2 and  
5-LOX and up-regulation of p21 [78]. Coadministration of curcumin with embellin, a natural 
benzoquinone derived from Embelia ribes berries, prevents lipid peroxidation, histological alterations 
and oxidative tissue damage occurring usually during chemically-induced hepatocarcinogenesis in 
Wistar albino rats [195]. An additive inhibitory effect on cell proliferation was also observed in human 
prostate cancer PC-3 cells in vitro  and in vivo  in human PC-3 xenografts mice treated concomitantly 
with curcumin and β-phenylethyl isothiocyanate (PEITC), a natural compound issued from cruciferous 
vegetables. This inhibitory effect was related to the suppression of epidermal growth factor (EGFR), 
Akt and PI3K phosphorylations and the inhibition of the NF-κB signaling pathway [128,196]. A 
similar cascade of events was also pointed out following the combination of curcumin and resveratrol 
in vitro  in HCT116 colon cancer cells and in vivo  in colon cancer xenografts [197]. Synergistic 
interactions of curcumin with epigallocatechin-3-gallate (EGCG), a polyphenolic compound found in 
green tea leads to the reduction of their respective dose index in normal, premalignant and malignant 
human oral epithelial cells [198]. In the case of chronic lymphocytic leukemia cells (CLL), synergism 
between EGCG and curcumin allows to overcome the stromal-mediated protection of the CLL cells in 
the case of sequential therapy. By this way, EGCG sensitizes the cells to curcumin effects and is able 
to increase strongly cell death in leukemic cells [172]. Curcumin administrated in combination with 
piperine, an alkaloid from black pepper, inhibits breast stem cell self-renewal without inducing toxicity 
to differentiated cells. This inhibitory effect is mediated by the inhibition of mammosphere formation 
and Wnt signaling pathway, but without causing toxicity to differentiated cells [91].  

A clinical approach revealed that the combination of curcumin with quercetin, a plant derived 
flavonoid, reduces the number and size of ileal and adenomas in patients with familial adenomatous 
polyposis without appreciable toxicity [199]. Most of the natural compounds cited above to have 
synergestic effect with curcumin in vitro  or in vivo  are included in ongoing clinical trials in patients 
affected by cancer. 

5.2. Synergism with conventional therapy  

Due to frequent failure of conventional treatment alone (radiotherapy, chemotherapy and 
hormonotherapy), novel clinical strategies, based on the combination of different treatments together 
or in conjunction with chemopreventive agents, are emerging.  

The combination of curcumin with radiation enhances significantly the radiation-induced 
clonogenic inhibition and induces cell death by apoptosis. This combination of treatment reduces the 
TNFα-mediated NF-κB activity, alters the Bax/Bcl-2 ratio and activates cytochrome c, caspase-9 and 
caspase-3 in PC-3 prostate cancer cells [200], but also in colorectal cancer cells [53]. Pretreatment of 
cervical carcinoma cells results in a significant dose-dependent radiosensitization of these cells. This 
involves an increase of reactive oxygen species (ROS) and extracellular signal-regulated kinase (ERK) 
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1/2 activation [201]. Altogether these data suggest that curcumin can be considered as a potent 
radiosensitizer in prostate and cervical cancer. 

Several studies have also been performed in order to evaluate the potential synergistic activity of 
curcumin in combination with synthetic agents commonly used in chemotherapy. We will first focus 
on the combination of curcumin with chemotherapeutic agents from natural origin and currently used 
in clinic such as Taxol® (paclitaxel), derived from Taxus brevifolia. Curcumin was shown to potentiate 
the effect of paclitaxel-mediated chemotherapy in advanced breast cancer in vitro  and in vivo  and is 
able to inhibit lung metastasis. Such a sensitization of taxol-induced cell death by curcumin was also 
observed in cervical HeLa cancer cells. In both case, the potentiation of chemotherapy by curcumin 
was related to the down-regulation of NF-κB and serine/threonine Akt pathways, to the suppression of 
cyclooxygenase 2 (COX-2) and matrix metalloproteinase-9 (MMP-9) but also to the activation of 
caspases and cytochrome c release [117,202,203]. On the other hand, curcumin appears to be a good 
adjuvant to enhance the induction of apoptosis and the subsequent chemotherapeutic efficacy of 
vinorelbine for the treatment of advanced non-small lung H520 carcinoma cells [204] and of 
celecoxib, a well known COX-2 inhibitor, in pancreatic adenocarcinoma cells [205,206]. This 
synergism of curcumin and celecoxib is responsible for the down-regulation of the COX-2 signaling 
pathway. Such a reduction of COX-2 is also observed in human colon cancer HT-29 cell lines when 
curcumin is associated with the antimetabolite 5-fluorouracil (5-FU) chemotherapeutic agent [207]. 
The combination of curcumin and 5-FU was also reported for the eradication of human gastric 
adenocarcinoma cells through the induction of cell cycle arrest in G2/M transition phase [208]. 
Furthermore, curcumin is able to potentiate the antiproliferative effect of 5-FU associated with 
oxaliplatin or oxoplatin alone and to stimulate cell death by apoptosis through the attenuation of 
epidermal growth factors (EGF) and insuline-like growth factor (IGF) signaling pathways in colon 
cancer HCT-116 and HT-29 cells [209,210].  

In addition to its ability to enhance the antitumoral effect of conventional chemotherapy, curcumin 
is also able to circumvent chemoresistance. Resistance to conventional chemotherapy often appears in 
the case of treatment with platinium (Pt) drugs such as cisplatin and oxaliplatin [211,212]. Several 
reports revealed that combination of curcumin with Pt drugs treatment inhibits the growth of cancer 
cells by modulating EGF and IGF receptors expression and by inducing G2/M cell cycle arrest through 
the modulation of Akt and p38 MAPK [209,210,213,214]. This combination also leads to the induction 
of cancer cell death by apoptosis through the increase of p53 tumor suppressor gene expression, 
through the proteasomal degradation of Bcl-2 mediating cisplatin resistance and through the reduction 
of interleukin-6 production [215,216]. In the case of colon cancer, the emergence of a subset of self-
renewing cells, called cancer stem cells (CSCs), is highly implicated in the failure of oxaliplatin 
treatment. Treatment of oxaliplatin resistant CSCs cells with curcumin results in a marked reduction of 
CSCs cells accompanied by alterations of the level of DNA methyltransferase 1 [217]. These findings 
underline the fact that curcumin is able to increase the sensitivity of resistant cancer cells to Platinium 
drugs and to prevent the emergence of chemoresistant colon cancer cells due to the enrichment of 
cancer stem cells. Sung et al. , showed that curcumin overcomes chemoresistance and potentiates the 
effect of thalidomide and bortezomib by down-regulating NF-κB and its target genes (e.g., cyclin D1, 
Bcl-xL, Bcl-2, XIAP, survivin and VEGF) in human multiple myeloma in vitro  and in vivo  [218]. 
More recently, curcumin was also found to potentiate the anti-tumor effect of gemcitabine, another 
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pyrimidine antimetabolite, by suppressing proliferative and angiogenic biomarkers and by modulating 
the NF-κB signaling pathway in vitro  in human bladder cancer 253JBV cells and in vivo  in an 
orthotopic human bladder cancer [134]. Similar results were observed after combination of curcumin 
with capecitabine in the case of advanced metastatic colorectal cancer in an orthotopic mouse model. 
This combination was also highly effective in suppressing acites and distant metastasis in other organs 
[77]. 

Venkatesan et al.  also reported that curcumin is able to attenuate the myocardial toxicity usually 
observed after adriamycin (doxorubicin) treatment of Wistar rats. In fact, such a pre-treatment with 
curcumin decreases the level of creatinine kinase and lactate deshydrogenase as well as lipid 
peroxidation and it increases the level of endogenous antioxidants in order to counteract the side 
effects of anthracycline chemotherapeutic agents [219]. Such combination of treatment could thus 
limit free radical-mediated organ injury normally observed after adriamycin treatment.  

Curcumin, alone or in combination with docetaxel, was also shown to be highly potent in mice with 
multidrug-resistant tumors, by decreasing both proliferation, microvessel density and by increasing 
tumor cell apoptosis [48]. Recently, the results of a phase I dose escalation trial including fourteen 
patients with advanced or metastatic breast cancer pointed out that curcumin could be used in 
combination with docetaxel. This study allows to determine the maximal tolerated dose (6 mg/mL 
curcumin for seven consecutive days every three weeks in combination with a standard dose of 
docetaxel) as well as their toxicity, safety and effects on tumor marker [220]. Thanks to the 
encouraging data obtained by clinical trial, a comparative phase II clinical trial study is now under 
investigation. 

Curcumin also appeared to be a good candidate to sensitize prostate cancer cells for TRAIL-
mediated immunotherapy. TNFα related apoptosis-inducing ligand (TRAIL) is an inducer of apoptosis 
in many cancer cells and is an attractive cytokine for the treatment of advanced cancers including 
prostate cancer. Although prostate cancer cells (DU145, PC-3 and LNCaP) are mostly resistant to 
TRAIL, they can be sensitized with curcumin to TRAIL-induced apoptosis. This combination induces 
the inhibition of constitutively active NF-κB, DNA fragmentation, the cleavage of pro-caspase-3, pro-
caspase-8 and pro-caspase-9, as well as the truncation of Bid and cytochrome c release. It also leads to 
the inhibition of the anti-apoptotic proteins Bcl-2, Bcl-xL and XIAP [38,105,221–223]. These results 
were confirmed in vivo  by pre-clinical studies performed in PC-3 xenografts [224] and in TRAIL-
resistant LNCaP xenografts [225]. 

6. The “Dark Side” of Curcumin 

All of the previous reported findings have underlined the pharmacologically safety and biological 
effectiveness of curcumin and analogs. However it appeared that many of the anti-cancer effects of 
curcumin observed in vitro  cannot be achieved in vivo  or in patients mainly due to its low 
bioavailability outside the gastrointestinal tract after oral administration [9,226]. Moreover, several 
studies also pointed out that curcumin can exhibit toxicity and carcinogenic effects [12]. In a 2-year 
study performed on rodents fed with curcumin, an equivocal evidence of curcumin carcinogenic 
activity was reported as they observed an increased incidence of hepatocellular and clitoral gland 
adenoma as well as carcinomas of the small intestine, due to curcumin ingestion [227]. Curcumin also 
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appeared responsible for the promotion of lung tumor multiplicity and its progression to later stages in 
transgenic mouse model expressing the human Ki-rasG12C allele and affected by lung cancer [228]. 
These negative effects of curcumin were suggested to be mediated by the presence of α,β-unsaturated 
ketone in its chemical structure that is responsible for the inactivation of the tumor suppressor p53 
[229] and the production of ROS [230]. It also implicates its iron chelator potential [231]. Other 
groups revealed that curcumin could also induce chromosome aberrations [232] and DNA alterations 
[233], which are both highly implicated in carcinogenesis. Moreover, under specific conditions, 
curcumin could also be toxic and can alter the efficiency of conventional chemotherapy and 
radiotherapy [230]. In fact, it has been reported that curcumin inhibits camptothecin-, 
mechlorethamine-, and doxorubicin-induced apoptosis in human breast cancer in vitro  by up to 70% 
and that it also inhibits the cyclophosphamide-induced tumor regression and apoptosis in in vivo 
models in a time and dose dependent manner. It was suggested that this inhibition of chemotherapy-
induced apoptosis by curcumin happened through the inhibition of ROS generation and blockade of 
JNK function after curcumin treatment [234]. All of these findings lead to the conclusion that the 
balance between risk and benefit of curcumin should be taken into account before any clinical use for 
cancer prevention or therapy. 

7. Conclusions 

In this review we have summarized the major intracellular components targeted by curcumin 
treatment. All of these findings reinforce the idea that curcumin could be considered as a potent natural 
compound both for prevention and treatment of multifactorial disease such as cancer. However, more 
translational research and clinical trials with either native or formulated curcumin or in combination 
with compounds already approved for conventional therapies are needed to better understand the 
benefit-risk profile of curcumin before putting this natural compound in the forefront of clinical cancer 
therapy. With this in mind, numerous other natural compounds initially used, as curcumin, in 
traditional cooking or medicine, are now under investigations in order to discover other multipotent 
natural molecules that could be used in cancer prevention or therapy. 
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