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Abstract: T-2 toxin and selenium deficiency are considered important etiologies of Kashin—Beck
disease (KBD), although the exact mechanism is still unclear. To identify differentially expressed
microRNAs (DE-miRNAs) in the articular cartilage of rats exposed to T-2 toxin and selenomethionine
(SeMet) supplementation, thirty-six 4-week-old Sprague Dawley rats were divided into a control
group (gavaged with 4% anhydrous ethanol), a T-2 group (gavaged with 100 ng/g-bw/day T-2 toxin),
and a T-2 + SeMet group (gavaged with 100 ng/g-bw/day T-2 toxin and 0.5 mg/kg-bw/day SeMet),
respectively. Toluidine blue staining was performed to detect the pathological changes of articular
cartilage. Three rats per group were randomly selected for high-throughput sequencing of articular
cartilage. Target genes of DE-miRNAs were predicted using miRanda and RNAhybrid databases,
and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway were enriched. The
network map of miRNA-target genes was constructed using Cytoscape software. The expression
profiles of miRNAs associated with KBD were obtained from the Gene Expression Omnibus database.
Additionally, the DE-miRNAs were selected for real-time quantitative PCR (RT-qPCR) verification.
Toluidine blue staining demonstrated that T-2 toxin damaged articular cartilage and SeMet effectively
alleviated articular cartilage lesions. A total of 50 DE-miRNAs (28 upregulated and 22 downregulated)
in the T-2 group vs. the control group, 18 DE-miRNAs (6 upregulated and 12 downregulated) in the T-
2 + SeMet group vs. the control group, and 25 DE-miRNAs (5 upregulated and 20 downregulated) in
the T-2 + SeMet group vs. the T-2 group were identified. Enrichment analysis showed the target genes
of DE-miRNAs were associated with apoptosis, and in the MAPK and TGF-f3 signaling pathways in
the T-2 group vs. the control group. However, the pathway of apoptosis was not significant in the T-2
+ SeMet group vs. the control group. These results indicated that T-2 toxin induced apoptosis, whereas
SeMet supplementation antagonized apoptosis. Apoptosis and autophagy occurred simultaneously
in the T-2 + SeMet group vs. T-2 group, and autophagy may inhibit apoptosis to protect cartilage.
Compared with the GSE186593 dataset, the evidence of miR-133a-3p involved in apoptosis was more
abundant. The results of RT-qPCR validation were consistent with RNA sequencing results. Our
findings suggested that apoptosis was involved in articular cartilage lesions induced by T-2 toxin,
whereas SeMet supplementation antagonized apoptosis, and that miR-133a-3p most probably played
a central role in the apoptosis process.

Keywords: T-2 toxin; selenomethionine; microRNAs; apoptosis; articular cartilage
Key Contribution: The apoptosis pathway was significantly associated with articular cartilage

lesions exposed to T-2 toxin, whereas SeMet supplementation antagonized apoptosis. miR-133a-3p
was most likely involved in the process of apoptosis.

1. Introduction

The T-2 toxin, a cytotoxic fungal secondary metabolite, is derived from Fusarium
oxysporum, and it is widely distributed in cereals and animal feed [1]. The T-2 toxin
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causes harm to humans and animals, as well as damages to the nervous system, immune
system, digestive system, reproductive system, and other systems [2—6]. Kashin—-Beck
disease (KBD) is an endemic and chronic osteoarthritis, and the clinical changes include
thickening and deformities of limbs, short fingers, short limbs and dwarfism, etc. The
pathological changes are primarily degeneration and necrosis of articular cartilage and
epiphyseal plate cartilage [7]. Although more than 50 environmental risk factors for
KBD have been identified, the etiology and pathology of the disease have not yet been
conclusively determined [8]. The T-2 toxin is considered to be one of the important etiologies
of KBD. In an epidemiological survey, T-2 toxin was measured more frequently in KBD
patients [9]. Furthermore, the T-2 toxin can damage human articular chondrocytes through
degrading the extracellular matrix [10-12]. However, the potential mechanism of T-2-
induced articular cartilage damage is unclear.

Selenium (Se) deficiency is also considered as a primary etiological hypothesis for
KBD [13]. Se is an essential trace element required for the growth and development for
humans and animals [14]. Se deficiency not only damages multiple tissues and organs in
animals, such as the liver, spleen, and testis [15,16], but also causes the decline of human
immunity and an increase in cancer risk [17,18]. Se occurs in both inorganic and organic
forms, and organic Se, such as selenomethionine (SeMet), is easily absorbed and utilized
and frequently used as a Se supplement [19]. Previous studies confirmed that the T-2 toxin
combined with Se deficiency may be the cause of KBD. In rat models, increased levels of
FGF3 and FGFR2 were observed in the cartilage with the T-2 toxin plus low Se diets [20].
With combined low Se and T-2 toxin, it was discovered the levels of heat shock protein 47
and type II collagen decreased significantly, which increased cartilage degradation and
cartilage damage [11]. Additionally, supplementing Se in KBD endemic areas had a certain
effect on the prevention and treatment of children with KBD [21].

MicroRNAs (miRNAs) are a class of 18-23 nucleotides of short-stranded non-coding
RNA which cannot encode proteins [22]. miRNAs can inhibit the translation of mRNAs or
directly degrade mRNAs by binding to the 3" untranslated region of a specific target gene
mRNA [23]. miRNAs play crucial roles in the processes of cell differentiation, apoptosis,
tumor formation, viral replication, and tissue development [24-26]. Previous studies have
proved that the abnormal expression of miRNA caused various human diseases, including
cancer, cardiovascular disease, and diabetes [27-29]. Therefore, miRNAs have been pro-
posed as biomarkers for early detection and predictive diagnosis of diseases. miRNAs are
closely related to cartilage, such as miR-410-3a, miR-18a-3p, miR-369-3p, and miR-206 that
were involved in cartilage lesions. It had been reported that miR-410-3p was significantly
downregulated in the articular cartilage of mice osteoarthritis and regulated apoptosis and
inflammation of chondrocytes through the NF-«B signal pathway [30]. miR-18a-3p was
upregulated in chondrocytes treated with IL-13 and caused apoptosis. After knocking
down miR-18a-3p, the degree of cell apoptosis was reduced [31]. The expression of miR-
369-3p was significantly increased in cartilage tissues, targeting JAK2 to induce apoptosis
of chondrocytes [32]. The level of miR-206 was significantly increased in human chondro-
cytes, which inhibited chondrocyte proliferation and promoted apoptosis [33]. However,
articular cartilage lesions induced by the T-2 toxin has not yet been fully understood, and
few investigations have been conducted on the miRNA expression patterns of articular
cartilage lesions induced by T-2 toxin. The objective of this study was to identify the
differentially expressed miRNAs (DE-miRNAs) in articular cartilage lesions induced by the
T-2 toxin, as well as the alteration of miRNAs after SeMet supplementation, and provided a
theoretical basis for understanding the role of miRNA in the action of T-2 toxin and SeMet
in articular cartilage.

2. Results
2.1. Toluidine Blue Staining

The toluidine blue staining of articular cartilage among different groups was shown in
Figure 1. In the control group, the cartilage matrix was deep-purple and the chondrocytes
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were closely arranged. The cartilage matrix in the T-2 group was less colored and the
number of chondrocytes was less than that in the control group. Compared with the T-2
group, the cartilage matrix in the T-2 + SeMet group was more stained, and the number of
chondrocytes increased. These results suggested that the T-2 toxin degraded the cartilage
matrix and reduced the number of chondrocytes, causing articular cartilage lesions, and
SeMet effectively alleviated articular cartilage lesions.

Control group T-2 group T-2+SeMet group

20um

Figure 1. Toluidine blue staining among different groups. The nucleus of the chondrocytes was deep-
blue and the cartilage matrix was purple. The black dashed box represents partially enlarged area.

2.2. Sequencing Quality Analysis

The Sequencing data quality was assessed using FastQC software. Quality control
standard was Q30% > 85% and CG% in the range of 40-60%. As shown in Table 1, the
Q30% ranged from 96.4% to 97.5%, and the CG% ranged from 46.1% to 48.0%, indicating
the sequencing quality was good. Small RNA fragments were mainly in the length range
of 18-26 nucleotides, with a peak of 22 nucleotides (Figure S1). This was consistent with
the characteristics of miRINA length distribution and indicated the quality of sequencing
data was reliable.

Table 1. The results of sequencing data quality control.

Sample Read Sum Base Sum Q20 (%) Q30 (%) CG (%)
T-21 10,127,903 217,651,459 99.3% 97.5% 48.0%
T-2_2 10,686,280 229,331,997 98.9% 96.4% 46.1%
T-2_3 10,613,925 227,436,532 99.3% 97.4% 47.3%

T-2 + SeMet_1 10,634,792 229,547,141 99.3% 97.3% 46.5%
T-2 + SeMet_2 11,988,000 258,576,545 99.3% 97.3% 46.8%
T-2 + SeMet_3 10,488,874 225,625,339 99.2% 97.0% 46.8%
Control_1 13,241,530 284,432,884 99.3% 97.3% 47.7%
Control_2 10,752,588 234,037,192 99.2% 97.0% 46.2%
Control_3 10,914,184 235,810,258 99.3% 97.2% 47.0%

2.3. Screening for DE-miRNAs

A total of 2605 miRNAs (763 known miRNAs and 1842 novel miRNAs) were determined
in the constructed small RNA library. Compared with the control group, 50 DE-miRNAs were
identified in the T-2 group (28 upregulated and 22 downregulated), and 18 miRNAs were
differentially expressed (6 upregulated and 12 downregulated) in the T-2 + SeMet group.
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Compared with the T-2 group, 25 miRNAs were differentially expressed (5 upregulated
and 20 downregulated) in the T-2 + SeMet group. In the volcano plot (Figure 2A-C), the
red and green dots represent upregulated and downregulated miRNAs, respectively. The
black dots represent miRNAs with non-significant differential expression. In Figure 2D-F,
the heatmap shows the DE-miRNAs between-group variation and within-group variation.
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Figure 2. The differentially expressed miRNAs (DE-miRNAs) in articular cartilage of rats. Volcano
plots of DE-miRNAs are compared between the T-2 group and the control group (A), between the
T-2 + SeMet group and the control group (B), and between the T-2 + SeMet group and the T-2 group
(C). Heatmap of DE-miRNAs in the T-2 group vs. the control group (D), the T-2 + SeMet group vs.
the control group (E) and the T-2 + SeMet group vs. the T-2 group (F). The color scale-bar from green to
red indicates increased expression levels of miRNA. The threshold of significance was p < 0.05, n = 3.

2.4. Functional Enrichment Analysis of Target Genes

A total of 870, 170, and 595 target genes were predicted in the T-2 group vs. the control
group, the T-2 + SeMet group vs. the control group, and the T-2 + SeMet group vs. the T-2
group, respectively. The Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis were performed on the predicted target genes.
In the T-2 group vs. the control group, GO analysis indicated the biological process mainly
included the negative regulation of T cell proliferation and intrinsic apoptotic signaling
pathway in response to DNA damage. The cellular component included membrane and
nuclear. Furthermore, the molecular function was related to mitogen-activated protein
kinase binding, Ral GTPase binding, and cyclin-dependent protein kinase activity. In the
T-2 + SeMet group vs. the control group, the biological process included G1 DNA damage
checkpoint and glomerular epithelial cell differentiation. The cellular component included
the intracellular component and the membrane, and the molecular function mainly included
extracellular matrix binding and Hsp90 protein binding. In the T-2 + SeMet group vs. the
T-2 group, the biological process included the negative regulation of cellular catabolic
process, the cellular component included the extracellular matrix and the membrane, and
the molecular function mainly included complement binding and core promoter sequence
specific DNA binding (Figure 3).
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Figure 3. GO analysis of target genes. The top 30 GO terms of target genes in the T-2 group vs. the
control group (A), the T-2 + SeMet group vs. the control group (B) and the T-2 + SeMet group vs.
the T-2 group (C). The BP represents biological process, CC represents cellular component, and MF
represents molecular function. The threshold of significance was p < 0.05, n = 3.

KEGG enrichment analysis identified pathways that were significantly enriched in
apoptosis, and the MAPK and TGF-f signaling pathway in the T-2 group vs. the control
group, of which the apoptosis pathway was the most significant (Figure 4A). The chemokine
signaling pathway, growth hormone synthesis, and secretion and action pathway were
enriched in the T-2 + SeMet group vs. the control group, but no apoptosis pathway was
observed (Figure 4B). The apoptosis and autophagy pathway appeared simultaneously in
the T-2 + SeMet group vs. the T-2 group (Figure 4C).
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Figure 4. KEGG enrichment analysis of target genes. (A—C) indicate the top 20 enriched KEGG
pathways of target genes in the T-2 group vs. the control group, the T-2 + SeMet group vs. the control
group, and the T-2 + SeMet group vs. the T-2 group, respectively. The blue boxes represent apoptosis
and autophagy pathways. The threshold of significance was p < 0.05, n = 3.

2.5. Apoptosis-Related Target Genes and miRNAs

The target genes enriched in the apoptosis pathway and their corresponding miRNAs
were shown in Tables 2 and 3. The overlapping target genes and DE-miRNAs associated
with apoptosis were shown in Figure 5A,B. To understand the target genes (Rela, Bbc3 and
Mapkl) corresponding to miR-133a-3p, miR-675-5p, and miR-667-3p, the expression of
three target genes was identified, and their localization in cells was positioned according to
the Human Protein Atlas (HPA) database. Immunohistochemistry analysis showed that
the protein expression level of Rela in skeletal muscle was lower than that in bone marrow,
the level of Mapk1 in skeletal muscle was higher than that in bone marrow, and the level of
Bbc3 in bone marrow was similar to that in skeletal muscle. The subcellular map showed
that Rela and Bbc3 were located in the cytosol. Mapkl was mostly localized in the cytosol,
and additional locations were found in nuclear speckles (Figure 5C).

Table 2. The apoptosis pathway enriched target genes and corresponding differentially expressed
miRNAs in the T-2 group vs. the control group.

Gene Symbol miRNA Log,FC p Type
Lmnb2 miR-489-3p —1.54 4.90 x 1072 Down
Dffa miR-466¢-3p ~1.08 3.60 x 1072 Down
Trafl miR-3577 —3.96 3.09 x 1072 Down
Jun miR-3577 —3.96 3.09 x 1072 Down
Birc5 miR-3577 —3.96 3.09 x 1072 Down
Bcl2111 miR-466b-2-3p -1.02 8.36 x 1073 Down
Bcl2111 miR-466b-4-3p -1.02 8.36 x 1073 Down
Bbc3 miR-331-3p -1.03 3.80 x 10~* Down
Bbc3 miR-675-5p 1.84 1.68 x 1073 Up
Ntrk1 miR-133a-3p 1.11 3.45 x 1072 Up
Ntrk1 miR-133b-3p 1.21 1.49 x 1072 Up
Rela miR-133a-3p 1.11 3.45 x 1072 Up
Rela miR-133b-3p 1.21 1.49 x 1072 Up
Mapkl miR-667-3p 1.29 1.98 x 102 Up
Gadd45b miR-483-3p 1.68 143 x 1072 Up
Htra2 miR-483-3p 1.68 1.43 x 1072 Up
Bad miR-540-5p 1.15 3.82 x 1073 Up
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Table 3. The apoptosis pathway enriched target genes and corresponding differentially expressed
miRNAs in the T-2 + SeMet group vs. the T-2 group.

Gene Symbol miRNA Log2FC P Type
Ntrk1 miR-133a-3p —1.36 1.09 x 102 Down
Rela miR-133a-3p —1.36 1.09 x 1072 Down
Map3k14 miR-134-5p —1.00 1.01 x 1073 Down
Pik3r2 miR-134-5p —1.00 1.01 x 1073 Down
Ctsh miR-204-5p —-1.30 7.31 x 10714 Down
Bak1 miR-204-3p —2.23 2.36 x 1073 Down
Nras miR-204-3p —2.23 2.36 x 1073 Down
Htra2 miR-668 —1.29 4.62 x 1072 Down
Bbc3 miR-675-5p —1.34 1.39 x 1072 Down
Mapk1 miR-667-3p —1.69 1.44 x 1072 Down
Ctsb miR-3099 —1.48 440 x 1072 Down
T-2 vs Control T-2+SeMet vs T-2 C Rela Bbe3 Mapk1
8 5 6
Genes Bone marrow
Bbc3
Rela
Mapk1
Ntrk1
Htra2
Skeletal muscle
T-2 vs Control T-2+SeMet vs T-2
9 3 5
miRNAs
U208
miR-133a-3p
miR-675-5p
miR-667-3p

Figure 5. The Venn diagram displays the overlapping target genes and DE-miRNAs associated with
apoptosis in the T-2 group vs. the control group (A) and the T-2 + SeMet group vs. the T-2 group
(B). The threshold of significance was p < 0.05, n = 3. The immunohistochemical map shows the
expression of proteins in the bone marrow and skeletal muscle, and the subcellular map shows the
specific location of the proteins in U20S cells (C).

2.6. Regulatory Network of miRNA and Its Target Genes

To reveal the relationship between DE-miRNAs and target genes, the miRNA-mRNA
integrated analysis was carried out. In this analysis, we selected nine differentially co-
expressed miRNAs associated with apoptosis in the T-2 group vs. the control group and the
T-2 + SeMet group vs. the T-2 group, with 203 target genes (Figure 6). Most DE-miRNAs
had more than five target genes. For example, rno-miR-18a-3p was correlated with 78 target
genes, of which one target gene was associated with other DE-miRNAs.

2.7. miRNA Expression Profiles Related to KBD

To demonstrate that the sequencing results of this study were reliable, the Gene Ex-
pression Omnibus (GEO) dataset related to KBD was retrieved. A total of 1550 DE-miRNAs
were identified in the GSE186593 dataset, and 868 of these were upregulated, whereas 682
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were downregulated. The DE-miRNAs of the GSE186593 dataset were compared with the
DE-miRNAs of this study, and 15 overlapping DE-miRNAs were identified (Table 4). As
shown in Figure 7, miR-133a-3p was co-expressed in the T-2 group vs. the control group,
the T-2 + SeMet group vs. the T-2 group, and the KBD vs. the normal group, and was also
related to the apoptosis pathway.
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Table 4. Overlapping differentially expressed miRNAs between this study and the GSE186593 dataset.
RNA T-2 vs. Control T-2 + SeMet vs. Control T-2 + SeMet vs. T-2 KBD vs. Normal
mi S
p Log,FC P Log,FC p Log,FC 4 Log,FC
miR-539-3p 6.08 x 107° 1.94 392 x 1072 -1.23 6.59 x 10710 4.62
miR-1-3p 2.64 x 1073 1.84 8.55 x 1073 —2.03 8.59 x 1032 4.63
miR-433-3p 2.60 x 10723 1.30 496 x 1073 -1.19 1.43 x 10726 6.49
miR-133a-3p  3.45 x 1072 1.11 1.09 x 1072 -1.36 1.31 x 107° 2.93
miR-410-3p 1.59 x 1073 1.03 1.78 x 1073 -1.07 123 x 107° 291
miR-18a-3p 2.06 x 1072 -121 2.40 x 1072 1.09 1.75 x 10~%° —2.74
miR-483-3p 1.44 x 1072 1.68 1.68 x 1073 —6.10
miR-493-5p 437 x 107* 1.14 418 x 1072 5.94
miR-369-3p 1.92 x 1073 1.05 3.59 x 107¢ 3.05
miR-296-5p 1.37 x 1072 1.26 5.05 x 10717 —491
miR-204-5p 418 x 1073 —1.14 731 x 10714 —1.30 1.46 x 10717 4.81
miR-376¢-5p 420 x 1072 —-1.63 2.81 x 1074 —2.61 7.62 x 1073 4.94
miR-32-3p 427 x 1072 1.46 248 x 1072 293
miR-204-3p 236 x 10728 —2.23 1.54 x 1072 4.68
miR-134-5p 1.01 x 1073 ~1.00 428 x 1071 3.75
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Figure 7. The Venn diagram displays the overlapping DE-miRNAs in the T-2 group vs. the
control group, the T-2 + SeMet group vs. the T-2 group, and the KBD vs. the normal and vs.
the apoptosis-related.

2.8. Validation of DE-miRNAs

To validate the reliability of RNA sequencing, three DE-miRNAs were randomly
selected from the T-2 group vs. the control group (miR-206-3p) and the T-2 + SeMet
group vs. the T-2 group (miR-204-5p, miR-376¢-5p) for real-time quantitative PCR (RT-
qPCR) verification. The trends of variation in DE-miRNAs were consistent with RNA
sequencing (Figure 8).
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Figure 8. The expression of the three DE-miRNAs identified by RNA sequencing was analyzed using
RT-gPCR. Mean + SEM, n = 3, normalized to U6. The x-axis represents the miRNAs and the y-axis
represents the log, (fold change).

3. Discussion

T-2 toxin and Se deficiency have been widely studied as the two main causes of
KBD [8]. Emerging evidence has shown the important function of miRNAs in osteoarticular
diseases, and how miRNAs can be used as important biomarkers for early diagnosis and
potential molecular targets for treatment [34]. However, few studies have focused on
miRNA expression analysis of articular cartilage lesions induced by the T-2 toxin and
treated with SeMet supplementation. A study found that miR-140 deficiency aggravated
T-2 toxin-induced knee cartilage injury in mice, which may be involved in extracellular
matrix degradation [35]. However, more research is needed on the specific mechanism of
miRNA in T-2 toxin-induced cartilage lesions and the role of selenium supplements.

We identified 50, 18, and 25 DE-miRNAs in the T-2 group vs. the control group,
the T-2 + SeMet group vs. the control group, and the T-2 + SeMet group vs. the T-2
group, respectively. These DE-miRNAs may reflect the degree of articular cartilage lesion,
indirectly indicating that the articular cartilage was seriously damaged when the rats were
treated with the T-2 toxin alone, and that this was alleviated with SeMet supplementation.
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In addition, we found that the expression of miRNAs with significant differences in the
T-2 group vs. the control group was the opposite of those in the T-2 + SeMet group vs. the
T-2 group. This evidence suggested that miRNA expression participated in the formation
and resolution of lesions in articular cartilage. To understand the role of DE-miRNAs
in articular cartilage with the T-2 toxin and SeMet, functional enrichment analysis was
performed. KEGG pathway enrichment analysis demonstrated that DE-miRNAs were
mainly enriched in the apoptosis pathway and the MAPK and TGF-f3 signaling pathways
in the T-2 group compared with the control group. Apoptosis occurred in chondrocytes
exposed to the T-2 toxin, which was consistent with previous studies [36,37]. T-2 toxin
induced cartilage lesions in rats, and the levels of caspase-3, p53, Bax protein, and mRNA
were higher than those in the control group, while the Bcl-2 level was lower, indicating
that the T-2 toxin induced chondrocyte apoptosis [38]. As we all know, apoptosis is a
type of programmed cell death, that is important in the growth and development of
the organism to maintain its metabolism and remove abnormal cells [39]. The T-2 toxin
inhibited protein synthesis, caused oxidative stress, and induced chondrocyte apoptosis
through mitochondrial-mediated pathways [40]. Furthermore, the T-2 toxin indirectly
activated several signal pathways and led to apoptosis of chondrocytes. MAPK is a
member of the serine/threonine protein kinase family that can regulate the expression
of various genes [41]. The MAPK signaling pathway has been widely confirmed to be
involved in chondrocyte-related processes, including apoptosis, cell differentiation, and
inflammation [42]. In particular, the T-2 toxin induced apoptosis of human neuronal cells
through the P38 MAPK pathway [43]. Additionally, the TGF- signaling pathway regulates
the proliferation, differentiation, and apoptosis of chondrocytes [44]. TGF-1 is a member
of TGF-3 superfamily, and its overexpression alleviated the inhibitory effect of miR-296-5p
on chondrocyte apoptosis suggested that TGF-31 involved chondrocyte apoptosis [45].

However, the apoptosis pathway was not significantly enriched in the T-2 + SeMet
group vs. the control group. Combined with the KEGG enrichment analysis results of the
T-2 group vs. the control group, it was shown that the T-2 toxin could induce apoptosis,
whereas SeMet indirectly antagonized apoptosis. Oxidative stress and apoptosis have
been shown to occur in mice exposed to the T-2 toxin, and apoptosis was alleviated after
treatment with Se [46]. Moreover, the apoptosis pathway was significantly enriched in the
T-2 + SeMet group vs. the T-2 group, and the autophagy pathway appeared simultaneously.
Autophagy is a process of cell self-degradation that plays an important role in intracellular
environmental stability and protects chondrocytes [47]. Although significant differences
in metabolism and morphology were observed between apoptosis and autophagy, accu-
mulating evidence shows that they are closely related to the occurrence and reaction of
chondrocyte lesions. Moderate autophagy has been reported to inhibit apoptosis [48].
By contrast, overactivated autophagy can cause cell death by activating pre-apoptotic
factors in mitochondria [49]. The cytoprotective function of autophagy is regulated by the
negative regulation of apoptosis, and apoptosis signal transduction subsequently inhibits
autophagy [50]. Therefore, we consider that autophagy played a certain role in the process
of SeMet alleviation of apoptosis in this study. However, the effect of SeMet did not com-
pletely inhibit the occurrence of apoptosis. Overall, our results demonstrated that the T-2
toxin induced cartilage apoptosis, whereas SeMet antagonized apoptosis.

The five overlapping target genes (Bbc3, Rela, Mapk1, Ntrk1l, and Htra2) and three
overlapping miRNAs (miR-133a-3p, miR-675-5p, and miR-667-3p) were identified in the
two apoptosis pathways. It was suggested these DE-miRNAs may be involved in the
process of cartilage apoptosis. The expression level of the 3 DE-miRNAs were upregulated
in the T-2 group vs. the control group, and these were downregulated in the T-2 + SeMet
group vs. the T-2 group, so it was probable that their abnormal expression was involved in
the occurrence of apoptosis. The expression of miR-675-5p was inhibited after strontium
ranelate treatment in mice, and the overexpression of miR-675-5p decreased the prolifera-
tion of skeletal muscle cells and promoted cell apoptosis [51]. miR-133a-3p inhibited cell
proliferation, invasion, and migration by targeting COL1A1, and promoted apoptosis of
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Esophageal Squamous Cell Carcinoma [52]. Moreover, long noncoding RNA LINC01278
could inhibit miRNA-133a-3p and promote the proliferation of osteosarcoma cells and
inhibit apoptosis [53]. These previous reports were consistent with our study, where over-
expression of miR-133a-3p and miR-675-5p promoted apoptosis, but where apoptosis was
inhibited when the expression of these miRNAs were downregulated. By comparing it
with the GSE186593 dataset, only miR-133a-3p was associated with apoptosis, indicating
that this was the most likely miRNA to participate in the apoptosis of articular cartilage.

However, this study has limited information on the molecular mechanisms involving
miRNAs in the induction of articular cartilage by the T-2 toxin and SeMet supplementation.
To evaluate the role of specific DE-miRNAs in the induction of articular cartilage by the
T-2 toxin, we intend to explore the potential molecular mechanisms of articular cartilage
induced by the T-2 toxin and SeMet in future experiments.

4. Conclusions

Apoptosis was involved in the process of articular cartilage lesions induced by the
T-2 toxin, and that apoptosis was antagonized by SeMet supplementation. Moreover,
miR-133a-3p, miR-675-5p, and miR-667-3p may play an important role in apoptosis. In
particular, the evidence for miR-133a-3p involvement in this process is stronger. These
results suggested a miRNA-related mechanism of articular cartilage lesions induced by the
T-2 toxin and the mitigation by SeMet.

5. Materials and Methods
5.1. Experimental Animal and Tissue Extraction

Thirty-six healthy male, specific-pathogen-free (SPF), Sprague Dawley rats (4 weeks
old, weighing 60-80 g) were selected and purchased from the Henan provincial laboratory
animal center. The rats were acclimatized and fed for 1 week, then randomly divided
into 3 groups (control group, T-2 group, and T-2 + SeMet group). The rats in the con-
trol group were given 4% anhydrous ethanol by gavage, the rats in the T-2 group were
given 100 ng/g-bw/day T-2 toxin, and the rats in the T-2 + SeMet group were given
100 ng/g-bw/day T-2 toxin and 0.5 mg/kg-bw/day SeMet. The intervention doses were
chosen based on previous studies [54,55]. After 4 weeks continuous administration, three
rats in each group were randomly selected, and the articular cartilage was taken after
anesthesia with 7% chloral hydrate. All animal studies were reviewed and approved by
the animal ethics research committee of Zhengzhou University.

5.2. Toluidine Blue Staining

Articular cartilage was decalcified, embedded in paraffin wax, sliced, dewaxed with
xylene twice, and dewaxed with gradient ethanol. The sections were stained with toluidine
blue for 30 min, and then washed with tap water. Using acetone differentiation section, the
chondrocytes were deep-blue and clearly visible and then dehydrated in graded ethanol.
Xylene was dropped on the slice to make the slice transparent, and rhamsan gum was
finally added for sealing. The cartilage lesions of articular cartilage in the rats in each group
were observed by microscope.

5.3. RNA Extraction

The total RNA of articular cartilage was extracted using Trizol (Thermo Fisher Scien-
tific, Waltham, MA, USA). The concentration of the extracted RNA sample was quantified
using Qubit (sample concentration > 200 ng/uL, total > 2 ug), and the RNA purity was
measured using a Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA). The 260/280 value was 1.8-2.2, the 260/230 value was > 2.0. The RNA degrada-
tion and contamination were analyzed by agarose gel electrophoresis, and then the integrity
of the RNA (RNA integrity number > 7) was measured using the Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA).
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5.4. Library Construction and RNA Sequencing

The library construction and high-throughput sequencing were performed by Shang-
hai Tianhao Biotechnology Co. Total RNA was used for the splice ligation reaction, and one
strand of cDNA was synthesized by reverse transcription using SuperScript IV reverse tran-
scriptase. A double-stranded library of miRNA was synthesized and amplified using PCR,
and polyacrylamide gel electrophoresis was used to recover and purify the approximately
140-160 bp bands. Finally, the Agilent 2100 Bioanalyzer was used to control the quality of
the library and sequenced using Illumina Hiseq2500 (Illumina, San Diego, CA, USA).

5.5. Quality Assessment of Raw Sequencing Data

Raw reads obtained from sequencing contained some low-quality and junctional reads.
To ensure the quality of information analysis, the raw reads were filtered using FastQC
software (http:/ /www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 13
August 2022)), to obtain clean reads for subsequent analysis. The filtering steps used were
as follows: (1) removing the splice sequences and sequences without a 3’ splice and insert
fragment; (2) removing sequences with Q20 ratios < 60%; (3) removing sequences with
length ranges outside the 18-36 bp range.

5.6. Identification of DE-miRNAs

The small RNA sequences were compared with the miRBase database (https://
www.mirbase.org/ (accessed on 13 August 2022)) to identify both known miRNAs and
novel miRNAs. The DE-miRNAs were analyzed using Deseq?2 software (https://support.
bioconductor.org/ (accessed on 13 August 2022)). The screening threshold of p < 0.05
and |logy(fold change)| > 1 were considered as DE-miRNAs, where logy(fold change) > 1
was marked as upregulated DE-miRNAs and logy(fold change) < —1 was marked as
downregulated DE-miRNAs.

5.7. miRNA Target Gene Prediction and Functional Enrichment Analysis

The miRNA regulates the expression of target genes by specifically binding to their
mRNA. To improve the accuracy of the results, miRanda and RNAhybrid software
(http:/ /www.microrna.org/microrna/home.do (accessed on 13 August 2022), http://
bibiserv.techfak.uni-bielefeld.de/rnahybrid/ (accessed on 13 August 2022)) were used to
predict the target genes of identified miRNA, and the intersection of the two methods was
the target of DE-miRNAs. The biological functions and pathways involved in DE-miRNAs
were predicted using Gene ontology (GO) analysis and Kyoto encyclopedia of genes and
genomes (KEGG) analysis.

5.8. Regulatory Network of miRNAs-Target Genes

According to the targeting-binding relationship between miRNAs and target genes,
a regulatory network was constructed and visualized using Cytoscape software (https://
cytoscape.org/ (accessed on 20 May 2023)).

5.9. Database Verification of DE-miRNAs

The Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/ (accessed
on 20 May 2023)) database is the largest fully open high-throughput molecular information
database under the platform of the National Biotechnology Information Center (NCBI).
The dataset GSE186593 of miRNA expression profiling related to KBD was downloaded
from the GEO database. GSE186593 gene chip data detection platform was GPL16791
INTuminaHiSeq2500 (Homo sapiens). The subjects of the dataset were five healthy individuals
and five patients with KBD with sampling of elbow venous blood.

5.10. Verification of miRNAs and Target Gene Analysis

Total RNA was extracted from the articular cartilage of each group (1 = 3) using Trizol
reagent (Invitrogen, Waltham, MA, USA) according to manufacturer’s protocol and reverse
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transcribed into cDNA using TransScript FirstStrand cDNA Synthesis Kit following the
manufacturers’ instructions. The relative miRNA expression levels were determined using
real-time quantitative polymerase chain reaction (RT-qPCR) The relative expression levels
of miRNA were calculated using the 2~ 24t method (U6 was selected as internal reference).
The primers used qPCR analysis were shown in Table S1. The Human Protein Atlas
(HPA, https:/ /www.proteinatlas.org/ (accessed on 20 May 2023)) database is dedicated to
providing tissue and cell distribution information of all 24,000 human proteins, which is
available to the public free of charge. The proteins expression levels and location of the
target genes in the cells were obtained from the HPA database.

Supplementary Materials: The following supporting information can be downloaded at: https:/ /www.
mdpi.com/article/10.3390/toxins15080496/s1, Figure S1: The length of the small RNA; Table S1: The
primer sequences used for RT-qPCR.
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