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Abstract: Malaria is an infectious disease caused by Plasmodium spp. and it is mainly transmitted to
humans by female mosquitoes of the genus Anopheles. Malaria is an important global public health
problem due to its high rates of morbidity and mortality. At present, drug therapies and vector
control with insecticides are respectively the most commonly used methods for the treatment and
control of malaria. However, several studies have shown the resistance of Plasmodium to drugs that
are recommended for the treatment of malaria. In view of this, it is necessary to carry out studies
to discover new antimalarial molecules as lead compounds for the development of new medicines.
In this sense, in the last few decades, animal venoms have attracted attention as a potential source
for new antimalarial molecules. Therefore, the aim of this review was to summarize animal venom
toxins with antimalarial activity found in the literature. From this research, 50 isolated substances,
4 venom fractions and 7 venom extracts from animals such as anurans, spiders, scorpions, snakes,
and bees were identified. These toxins act as inhibitors at different key points in the biological cycle of
Plasmodium and may be important in the context of the resistance of Plasmodium to currently available
antimalarial drugs.

Keywords: malaria; Plasmodium; antimalarials; resistance to antimalarials; animal venom toxins

Key Contribution: Animal venom toxins can inhibit the growth of Plasmodium spp. and are promising
substances in biotechnological and medical fields.
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1. Introduction

Malaria remains a major public health problem [1]. In 2021, 247 million cases of
malaria were registered worldwide, an increase from 245 million in 2020, with an estimated
619,000 deaths, the most vulnerable groups being children under 5 years of age, pregnant
women and patients with HIV/AIDS. This increase was particularly evident in Africa
(95%) [1]. Malaria is a potentially dangerous acute febrile infectious disease caused by
Plasmodium spp. (species), which is transmitted to humans through the bite of an infected
female Anopheles mosquito [2]. Currently, seven species are known to cause malaria in
humans in different areas of the world (Table 1): Plasmodium falciparum, Plasmodium vivax,
Plasmodium knowlesi, Plasmodium ovale, Plasmodium malariae, Plasmodium cynomolgi and
Plasmodium simium.

P. falciparum malaria cases are most prevalent in the African region (mainly sub-
Saharan Africa), Southeast Asia, the Eastern Mediterranean, and the Western Pacific re-
gion [1]. P. vivax is the dominant malaria species in much of Asia-Pacific, the Horn of Africa,
and Central and South America, and caused 4.5 million cases worldwide in 2020 [3]. P.
ovale is usually described as being limited to tropical Africa, the Middle East, Papua New
Guinea, and Irian Jaya in Indonesia [4]. P. knowlesi has been reported in Malaysian Borneo;
though cases have also been reported in Thailand, Myanmar, China, the Philippines, and
Singapore [1]. P. malariae has been reported in Africa, the Southeastern Pacific and South
America, P. simium in South America, and Plasmodium cynomolgi in Peninsular Malaysia,
the Northern Sabah Kapit district in Sarawak and Malaysian Borneo (Table 1).

The containment of cases and progression towards the elimination of human malaria
is related to adequate and timely treatment, in addition to vector control, mainly using
insecticides [1,5]. Different antimalarials are currently available (Tables 1 and 2) and
are effective to some extent [1]. However, resistance to available antimalarials has been
increasingly reported, and has become an important barrier to malaria elimination [1,6–8].
The discovery of new molecules or toxins may lead to medicines with greater antimalarial
activity. As such, this review identifies and describes animal venom toxins with potential
antimalarial activity.

2. Plasmodium Species Causing Human Malaria

The etiological agents of malaria are the protozoans of the genus Plasmodium, which are
transmitted to the vertebrate host through the bite of infected Anopheles female mosquitoes [9].
More than 120 species of Plasmodium are known, but only 7 species of them are described
as being capable of infecting humans, and P. malariae, P. vivax, and P. falciparum are the
most common species [10,11]. P. falciparum is responsible for most of the severe cases
and about 99% of malaria-associated deaths worldwide [1]. P. vixax is a predominant
species in the Americas, causing 75% of malaria cases [1]; it can also cause severe cases,
similarly to P. falciparum [12]. P. knowlesi, P. simium and P. cynomolgi are transmitted from
primates to humans; however, the prevalence and clinical impact of these species are
unclear, although the first species can cause severe manifestations [13,14]. P. malariae and P.
ovale cause uncomplicated malaria, although they may sometimes be associated with other
complications [13].

Female mosquitoes of the genus Anopheles are the vectors of Plasmodium spp. [1].
Anopheles are insects of great epidemiological importance [15]. Approximately 3500 mosquito
species, grouped into 41 genera, are known. The genus Anopheles has a wide geographic
distribution, and Antarctica is the only place that it is not found. This genus consists of about
430 species and, of these, only about 70 species are natural transmitters of malaria [15–21].
The Plasmodium-vector interaction is complex and there are factors (invasion of the intestinal
cells of mosquitoes, ookinete escape, ookinete development time, vector immune response,
among others, for example) that determine the specificity in the ecological relationship
between vector-plasmodium and the geographical distribution of cases [22–24] (Table 1).



Toxins 2023, 15, 375 3 of 26

Table 1. Distribution of Plasmodium species on the continents of the globe, their respective vectors
and recommended treatments.

Parasite Vector Location, Continent Treatment Ref.

P. vivax

Anopheles albimanus
Anopheles albitarsis
Anopheles aquasalis
Anopheles darlingi
Anopheles freeborni
Anopheles marajoara

Anopheles nuneztovaris
Anopheles pseudopunctipennis

Anopheles quadrimaculatus
Anopheles cruzzi

Anopheles bellator
Anopheles brasiliensis
Anopheles calderoni

Anopheles triannulatus
Anopheles neivai

Anopheles deaneorum
Anopheles oswaldoi

Anopheles argyritarsis
Anopheles dunhami

Central and South America
CQ + PQ
AS + PQ
CQ + TQ

[1,15,25–29]

Anopheles annularis
Anopheles aconitus
Anopheles subpictus

South and Southeast Asia and
Asia-Pacific

CQ
AL

DHA + PPQ
AS + PY

[1,15,28]

Anopheles stephensi Africa CQ
DHA + PPQ [1,15,26,27]

P. falciparum

Anopheles arabiensis
Anopheles funestus
Anopheles gambae

Anopheles stephensi
Anopheles melas
Anopheles merus

Anopheles moucheti
Anopheles nili

Africa

AL
AS + AQ
AS + PY

DHA + PPQ

[1,15,20,30]

Anopheles farauti
Anopheles Kiliensis

Anopheles punctulatus
Anopheles dirus

Anopheles minimus
Anopheles lesteri

Anopheles sinensis
Anopheles balabacensis
Anopheles barbirostris

Asia

AL
AS + MQ
AS + PY
AS + SP
AS + SP

DHA + PPQ + PQ

[1,15,30]

Anopheles atroparvus
Anopheles labranchiae

Anopheles messeae
Anopheles sacharovi
Anopheles sergentii

Anopheles superpictus

Mediterranean
AL

AS + SP
DHA + PPQ

[1,15,31]

Anopheles flavirostris
Anopheles koliensis

Anopheles lesteri
Anopheles leucosphyrus

Anopheles maculatus
Anopheles punctulatus

Anopheles sinensis
Anopheles sundaicus

Western Pacific

AL
AS + PY

DHA + PPQ
AS + MQ [1,15,30]

Anopheles darlingi
Anopheles deaneorum Central and South America AL

AS + MQ
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Table 1. Cont.

Parasite Vector Location, Continent Treatment Ref.

P. malariae

Anopheles stephensi,
Anopheles gambiae Africa

CQ + PQ [1,15,29,32–34]Anopheles freeborni
Anopheles dirus Southeastern Pacific

Anopheles darlingi South America

P. ovale

Anopheles gambiae
Anopheles funestus Africa

CQ + PQ and/or ART [1,15,34]Anopheles flavirostris
Anopheles koliensis

Anopheles lesteri
Western Pacific

P. simium Anopheles nyssorhinchus
Anopheles Kerteszia South America CQ + PQ [1,11,15]

P. knowlesi

Anopheles hackeri
Anopheles latens

Anopheles sundaicus
Anopheles dirus
Anopheles hacker
Anopheles cracens

Anopheles introlatus

Malaysia CQ + PQ [1,15]

P. cynomolgi Anopheles balabacensis Malaysia CQ + PQ [1,14,35]

Abbreviations: CQ—chloroquine; PQ—primaquine; AS—artesunate; ART—artemisinin; MQ—mefloquine; AL—
artemether-lumefantrine; AQ—amodiaquine; DHA—dihydroartemisinin; PPQ—piperaquine; PY—pyronaridine;
SP—sulfadoxinepyrimethamine.

3. Plasmodium Life Cycle and Pathogenicity

The life cycle of Plasmodium is heteroxenous and occurs in the mosquito vector and
in vertebrates (e.g., humans) (Figure 1). The infection begins with the bite of a mosquito
infected with Plasmodium sporozoites (Figure 1A) [36]. The sporozoites are inoculated
during the blood meal (Figure 1A). They slip through the dermis and subsequently enter
the blood circulation and migrate to the hepatic sinusoids to invade the hepatocytes [37]
(Figure 1B). After the invasion, the sporozoites divide asexually by pre-erythrocytic schizo-
gony and form pre-erythrocytic trophozoites that multiply, giving rise to tissue schizonts
(Figure 1B) [25,37]. The duration of pre-erythrocytic schizogony varies according to the
infectious species (8 to 27 days for P. vivax, 8 to 25 days for P. falciparum, 9 to 17 days for
P. ovale, 15 to 30 days for P. malariae, 9 to 12 days for P. knowlesi and still unknown for P.
simium and P. cynomolgi) [38]. At this stage, P. vivax and P. ovale form hypnozoites, which
are latent forms of the parasite that are responsible for relapses of the disease months or
years later [36,37].

At the end of the first phase (Figure 1B), also called the exoerythrocytic or tissue
stage, each infected hepatocyte releases thousands of exoerythrocytic merozoites. The
number varies according to the species (about 2000 merozoites when the infection is by P.
malariae; 10,000 when due to P. vivax; 40,000 when due to P. falciparum and 15,000 when
due to P. ovale, though the quantity is still unknown for P. simium and P. cynomolgi) [39].
Merozoites released from hepatocytes invade red blood cells (Figure 1C), which initiates the
erythrocytic phase. P. vivax preferentially invades young erythrocytes, P. falciparum invades
erythrocytes in any evolutionary phase, while P. malariae invades old erythrocytes [39].
After invading the erythrocytes, merozoites divide asexually giving rise to ring forms,
trophozoites, and young and mature schizonts [36]. During a period that varies from 48
to 72 h, the parasite develops inside the erythrocytes until it causes their rupture, thus
releasing new merozoites that will invade new erythrocytes [39] (Figure 1C). The rupture
and consequent release of merozoites into the bloodstream is clinically translated by the
onset of the malarial paroxysm, which will be repeated at the end of the new cycle [39]. This
cycle of invasion-multiplication-release-invasion is repeated [36]. After a period of asexual
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replication, some merozoites differentiate into male and female gametocytes (Figure 1D),
which mature without cell division and become infectious to mosquitoes [39] (Figure 1E).
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Mosquitoes become infected with Plasmodium during a blood meal from an infected
host (Figure 1E). In the vector, the sexual reproduction (sporogony) of the malaria parasite
occurs in the mosquito’s stomach after the differentiation of gametocytes into gametes
and their fusion, with the formation of the zygote [39] (Figure 1E). The zygote transforms
into a mobile form (ookinete) that transposes the peritrophic matrix and then migrates
to the midgut wall of the insect and forms the oocyst, within which the sporozoites will
develop [36,39] (Figure 1E). The sporozoites produced in the oocysts are released into the
insect’s hemolymph and migrate to the salivary glands, from where they are transferred to
the blood of the human host during the blood meal [39] (Figure 1A). The time required for
completion of the sporogony cycle in insects varies depending on the Plasmodium species
and the temperature, though it generally takes around 10 to 20 days [36].

During the life cycle of Plasmodium, it can invade the red blood cells to feed on
hemoglobin. As it feeds, it ruptures the cells, releasing red blood cells and parasite debris, in-
cluding malarial pigment (hemozoin) and glycophosphatidylinositol, called malarial toxin,
thus causing the symptoms [40]. The more erythrocytes that are infected and rupture and
release putative malarial toxins, the greater the pathogenesis or severity of malaria [41,42].
Putative malarial toxins activate peripheral blood mononuclear cells and stimulate the
release of cytokines with a consequent systemic inflammatory response [41]. The balance
between pro-inflammatory and anti-inflammatory cytokines, chemokines, growth factors,
and effector systems determines the severity of the disease [41]. The pathogenicity of
malaria also depends on the individual’s immunological characteristics, the genetic aspects
of the parasite and host, previous exposure to infection, age, and nutritional, geographic
and socioeconomic factors [43]. Clinical complications of malaria include severe anemia,
acute renal failure, acute pulmonary edema, algid malaria, and cerebral malaria, and they
can be avoided through early diagnosis and treatment [1,42].
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4. Malaria Treatment

Antimalarial drugs can act by interrupting the multiplication of the parasite and,
consequently, the inhibition of malarial infection by affecting different stages of the parasite
throughout the cycle [44]. Antimalarial drugs target (a) the parasite asexual erythrocytic
stages, (b) tissue schizonticides by targeting hypnozoites and gametocytocides, which de-
stroys the sexual forms of the parasite in the bloodstream, thus preventing the transmission
of malaria to the mosquito, and (c) the sporontocides, which prevents or inhibits the for-
mation of oocysts and malaria sporozoites in the infected mosquito [45]. For the adequate
treatment of malaria, the following is necessary: identification of the infectious species;
identification of the susceptibility of the Plasmodium species to the drug; and the clinical
status of the patient [46]. The antimalarials in current use are summarized in Tables 1 and 2.

The available antimalarials are categorized into seven classes: (a) sesquiterpene lactone
endoperoxides compounds: artemisinin (ART), dihydroartemisinin (DHA), artesunate (AS)
and artemether (AR); (b) 4-aminoquinolines: chloroquine (CQ), amodiaquine (AQ), py-
ronaridine (PY), piperaquine (PPQ) and naphthoquine (NQ); (c) arylaminoalcohols: quinine
(QUIN), mefloquine (MQ), halofantrine (HF) and lumefantrine (LR); (d) 8-aminoquinolines:
primaquine (PQ) and tafenoquine (TQ); (e) antifolates: proguanil (PG), pyrimethamine
(PMT) and sulfadoxine (SULF); f) naphthoquinones: atovaquone (ATQ) and (g) antibiotics:
clindamycin (CLI), doxycycline (DOX) and tetracycline (TC) (Table 2, Figure 2). Their
mechanisms of action are summarized in Table 2.

However, in some regions, the first line of treatment is via artemisinin combination
therapies (ACTs) + PQ/TQ due to CQ resistance [47–50]. Treatment for P. falciparum
infections is performed by the combination of AR and LR or with MQ or QUIN, DOX and
PQ [25]. For mixed infections caused by P. falciparum and P. vivax (or P. ovale), treatment
should include a blood schizonticidal drug that is effective for P. falciparum, associated with
PQ (tissue schizonticidal). If the mixed infection is P. falciparum and P. malariae, treatment
should be directed towards P. falciparum only [25]. With regard to the treatment of severe
and complicated malaria, the aim is to prevent the patient from dying, so doctors must
follow a rigid treatment scheme that consists of modulating the dosage, and these schemes
are already defined in the strategic plan for the treatment of malaria in each country.
However, the WHO recommends the administration of injectable artesunate (intramuscular
or intravenous), followed by an ACT-based treatment as soon as the patient can take oral
medications. If injectable treatment is not possible, the patient should immediately be
given artesunate intrarectally and transferred as soon as possible to a suitable site for full
parenteral treatment [1,25] (Table 2).
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Table 2. Available drugs, their chemistry classes, origin, target species, points where it is active and mechanism of action.

Class Name Origin of the Drug Plasmodium spp. Active against Stages Mechanism of Action Ref.

Sesquiterpene lactone
endoperoxides

ART Artemisia annua L. P. falciparum and P. vivax All

Protein metabolism

[50–53]

AS

Semi-synthetic derivative of artemisinin

P. vivax All [50,54–56]

AR P. falciparum and P. vivax All [50,51,57]

DHA P. falciparum and P. vivax All Not very well known. Probably protein metabolism [46,51]

4-aminoquinolines

CQ

Synthetic analogue of quinine

P. vivax

Blood stages
(trophozoite and schizont)

Digestion of hemoglobin
[50,54–59]

AQ P. vivax [50,55,60,61]

PPQ P. falciparum and P. vivax
Not very well known. Probably digestion

of hemoglobin

[46,56,59,60]

PY P. falciparum and P. vivax [46,51,56,62]

NQ P. falciparum and P. vivax [46,63]

Arylaminoalcohols

QUIN Cinchona calisaya L. P. falciparum and P. vivax Blood stages
(trophozoite and gametocytes) Digestion of hemoglobin

[50,64]

MQ Synthetic derivative of quinoline P. falciparum and P. vivax

Blood stages
(trophozoite, schizont and

gametocytes)

[50,52,56]

LR Synthetic derivative of fluorene P. falciparum and P. vivax Not very well known. Probably digestion
of hemoglobin [50,64]

HF Synthetic derivative of fluorene P. falciparum Digestion of hemoglobin [65,66]

8-Aminoquinolines
PQ Synthetic, 8-aminoquinoline derivative P. vivax Forms quinoline-quinone metabolites that act

as oxidants [46,67]

TQ Synthetic analogue of primaquine P. vivax and P. falciparum Interferes with the polymerization of the heme group [46,60]

Antifolates

PMT
Synthetic derivative of ethyl-pyrimidine

P. falciparum and P. vivax Blood, liver (schizont) and
mosquito (oocysts) stage

Inhibits dihydrofolate reductase enzyme and blocks
plasmodium DNA synthesis [46,68]

SULF P. vivax Blood and liver (schizont) stage Inhibits parasite dihydropteroate synthetase [46,69]

PG Biguanide P. falciparum and P. vivax
Blood (gametocyte) and liver

(shizont) stages

Inhibits parasite dihydrofolate reductase [46,50]

Naphthoquinones ATQ Synthetic hydroxynaphthoquinone P. falciparum and P. vivax Inhibits electron transport in the mitochondria
of parasites [46,58]

Antibiotics

CLI Semisynthetic of lincomycin P. falciparum

All blood stages Inhibits protein synthesis in the
Plasmodium apicoplast

[46,70]

DOX Semi-synthetic of tetracycline P. falciparum [46,64,70]

TC Semi-synthetic of chlortetracycline P. falciparum [50,70]

Abbreviations: ART—artemisinin; DHA—dihydroartemisinin; AS—artesunate; AR—artemether; CQ—chloroquine; AQ—amodiaquine; PY—pyronaridine; PPQ—piperaquine;
NQ—naphthoquine; QUIN—quinine; MQ—mefloquine; HF—halofantrine; LR—lumefantrine; PQ—prima-quine; TQ—tafenoquine; PG—proguanil; PMT—pyrimethamine; SULF—
sulfadoxine; ATQ—atovaquone; CLI—clindamycin; DOX—doxycycline; TC—tetracycline.
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Resistance to Antimalarials

Drug resistance to antimalarials threatens the control and elimination of malaria [71].
P. falciparum has developed resistance to all currently used antimalarials, but there is a
variation in geographic distribution and degree of resistance (Table 3). The most resistant
parasites are found in Southeast Asia (Table 3). Resistance is lowest in P. vivax, although
resistance to CQ is found throughout Indonesia and Papua New Guinea [13]. CQ-resistance
has spread much more slowly in P. vivax populations when compared to P. falciparum [48].
Possible causes include a small parasite load in P. vivax infections, early gametocytogenesis
and transmission before resistant clones are selected in the host under drug pressure, and
the very high genetic diversity in natural populations of P. vivax [48].

The resistance of Plasmodium spp. to antimalarial drugs has been mainly associated
with genetic mechanisms (Table 3), thus several studies on molecular markers have identi-
fied and tracked genes expressed by the parasite, as well as key mutations [1]. Resistance
to CQ is associated with the development of a transporter for CQ encoded by the CQ
resistance transporter orthologue gene of P. vivax (pvcrt-o) or CQ resistance transporter gene
of P. falciparum (pfcrt), which prevents its absorption and metabolization in the parasite’s
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food vacuoles (Table 3). The P. vivax multidrug resistance gene 1 (pvmdr1) and P. falciparum
multidrug resistance gene 1 (pfmdr1) were also associated with resistance to CQ in P. vivax
and P. falciparum, respectively (Table 3). Resistance to MQ was identified by the amplifica-
tion of pvmdrl/pfmdr1 and over-expression of p-glycoprotein homologue 1 protein (pgh1)
for P. vivax and P. falciparum, and the same strategy regarding HF and QUIN is used for P.
falciparum (Table 3). In regard to resistance to AQ, P. vivax or P. falciparum reduce the affinity
of binding of the competitive inhibitor to dihydrofolate reductase (dhfr), and P. falciparum
uses the same strategy regarding PG and PMT (Table 3). In terms of resistance to ART,
AS, AR, and LR, although not very well known, it has been associated with phenotypes
expressed in trophozoite ring stages during the P. falciparum cycle and mutation of the
Kelch protein 13 (pfk13) in specific sequences of the domain-containing protein 1 (btb-poz)
and six kelch domains that somehow impede parasite protein metabolism (Table 3).

Table 3. Plasmodium drug resistance, the location where documented and its resistance mechanism.

Parasite Drug Resistance Location Where Plasmodium Resistance
Has Been Documented Resistance Mechanism Ref.

P. vivax

CQ

Asia and Oceanian (Papua New Guinea and
Indonesia), South America (Brazil) Africa

(Madasgascar and South and Southeast Asia
(India, Myanmar, Nepal, and Thailand)

Develops a transporter for
chloroquine, encoded pvcrt-o

Mutation of pvmdr1 and pvdhfr
[72–76]

MQ Southeast Asia (Western border of Thailand)
and South America (Brazil)

Amplification of pvmdrl and
over-expression of pghl [75,77]

AQ Southeast Asia (Western border of Thailand) Reduced dhfr affinity [75,76]

P. falciparum

ART
Southeast Asia and East Asia (Thailand,
Vietnam, Myanmar, Laos, China), and

Sub-Saharan Africa Not well known
Mutation of pfk13 in specific

sequences of the BTB-POZ domains
and six kelch domains (probably)

[78,79]

AS Southeast Asia (Western Cambodia) [78]

AR Southeast Asia and Sub-Saharan Africa [78,79]

LR Southeast Asia and Sub-Saharan Africa [77,78]

CQ
Southeast Asia (Western border of Thailand),

Africa (Sub-Saharan Africa), South
America (Brazil)

Develops a transporter for
chloroquine, encoded pfcrt;

Mutation of pfmdr1 and pfdhfr
[75,80]

AQ Western border of Thailand Reduced affinity for binding of the
DHFR competitive inhibitor [76]

QUIN Southeast Asia (Thailand, Thai Myanmar and
Thai-Cambodian borders)

Amplification of pfmdrl and
pghl overexpression [76,81,82]

PG Southeast Asia (Thailand, Thai Myanmar and
Thai-Cambodian borders)

Reduced affinity for binding of the
dhfr competitive inhibitor [76,81]

MQ
Southeast Asia (Western border of Thailand,

Thai-Myanmar and Thai-Cambodian
borders) South America (Brazil)

Amplification of pfmdrl and pghl
over-expression [75,76,81–84]

HF Southeast Asia (Thailand) Amplification of pfmdrl and pghl
over-expression [80,81]

SULF
Southeast Asia (Western border of Thailand,

Thai-Myanmar
and Thai-Cambodian borders)

dhps mutations [75,76,81]

PMT
Southeast Asia (Western border of Thailand,

Thai-Myanmar
and Thai-Cambodian borders)

Reduced affinity for binding of the
dhfr competitive inhibitor [75,76,81]

Abbreviations: CQ—chloroquine; MQ—mefloquine; AQ—amodiaquine; ART—artemisinin; AS—artesunate;
AR—artemether; LR—lumefantrine; QUIN—quinine; PG—proguanil; HF—halofantrine; SULF—sulfadoxine;
PMT—pyrimethamine; pvcrt-o—P. vivax chloroquine resistance transporter orthologue gene; pvdhfr—P. vivax
dihydropteroate reductase; pvmde1—P. vivax multidrug resistance gene 1; pgh1—P-glycoprotein homologue
1 protein; DHFR—dihydrofolate reductase; pfk13—P. falciparum Kelch protein 13; pfcrt—P. falciparum chloro-
quine resistance transporter gene; pfmdr1—P. falciparum multidrug resistance gene 1; pfdhfr—P. falciparum dihy-
dropteroate reductase; dhfr—competitive inhibitor to dihydro-folate reductase; dhps—deoxyhypusine synthase;
BTB-POZ—domain-containing protein 1.
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5. Antiplasmodial Toxins

In view of the morbidity and mortality rates associated with malaria, the high global
distribution of malaria, the resistance of Plasmodium to the drugs used in the treatment,
and the resistance of the vector (Anopheles spp.) to conventional insecticides, there is a need
to seek alternatives for the development of new drugs for combating and controlling the
transmission of malaria [85].

Animal venoms are a complex mixture that contains many proteins, enzymes, peptides,
and small molecules [86,87]. Depending on the taxonomic group, the toxins present in
venoms have different modes of action and can be used for defense against predators and
pathogens in the environment [88–90]. It is known that animal venoms have a range of
molecules with antimicrobial properties, thus making them an important resource for the
investigation of compounds with antimalarial potential [90].

Over the years, several studies have been carried out to demonstrate the antiplas-
modial effect of toxins from different taxonomic groups (Table 4). Snake toxins are much
more commonly studied for this purpose; however, there are studies for toxins from arach-
nids, scorpions and bees [91–94]. Although studies with toxins are mostly carried out
with venom from animals, there are records of antiplasmodial activity for the secretion
of some frog species, whose venom inoculation system is passive [95]. Among the toxins
that are active against Plasmodium, these are mainly peptides and enzymes [96,97]. Crude
extracts and fractions of venom extracts from some animals have also been tested and have
demonstrated antiplasmodial activity [98].

Table 4 summarizes the toxins from venomous animals that have shown activity
against Plasmodium spp. Isolated substances and total extracts and fractions of extracts that
have shown antiplasmodial activity in studies are evidenced. Figure 3 shows some of the
three-dimensional structures of molecules isolated from animal venoms and which have
antiplasmodial activity.
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5.1. Snake Toxins against Plasmodium

Snakes are animals that belong to the class Reptilia and the order Squamata, and
there are an estimated 3970 species around the world [99]. During foraging, some snake
species capture their prey and kill it by constriction, but others have venom-inoculating
structures [100]. The toxins present in snake venoms have a complex of substances with
neurotoxic, cardiotoxic and inflammatory capacity [101], and are efficient in killing certain
types of prey. Searches for bioactive substances in snake toxins are extensively carried out
for the formulation of new drugs, with captopril being known as a successful case. It is a
drug used to control blood pressure whose active ingredient was isolated from the venom
of the snake Bothrops jararaca [102]. It is known that several species present toxins that are
mainly derived from proteins that have antibacterial, antifungal, antiviral and antiparasitic
characteristics [90].

5.1.1. Crude Snake Venoms

Extracts, fractions, enzymes, and some peptides found in snake toxins have antiplas-
modial activity (Table 4). Terra et al. [103] showed that the crude venom extract of Micrurus
spixii (Squamata, Elapidae) has great P. falciparum inhibitory power against its intraerythro-
cytic development (IC50 = 0.78 µg/mL). Hajialiani et al. [104] and Hajialiani et al. [105]
tested Naja naja oxiana venom extracts against the parasites P. falciparum and P. berghei,
respectively. In both studies, fraction 4, which was obtained from the crude extract of the
venom of Naja naja oxiana, was used for anti-Plasmodium assays, and satisfactory inhibitory
results were found (IC50 = 3.2 µg/mL) [104], as well as the interruption of parasitemia in
70%, 50% and 30% with the different concentrations of the fraction, 5, 2.5 and 1 mg/kg,
respectively [105].

5.1.2. Peptides from Snake Venoms

The inhibitory activities of some peptides isolated from snake venoms were tested
against Plasmodium spp. [106,107]. Maluf et al. [106] isolated a cationic polypeptide
with 42 amino acid residues (YKQCHKKGGHCFPKEKICLPPSSDFGKMDCRWRWKCCK-
KGSG), called crotamine, from Crotalus durissus, and tested its activity against P. falciparum.
This substance inhibited the development of P. falciparum, presenting an IC50 of 1.87 µg/mL.
Similarly, Fang et al. [107] tested the LZ1 peptide (VKRWKKWWRKWKKWV-NH2 CAS
#) derived from the cathelicidin (polypeptide) of Bungarus fasciatus (Squamata, Elapidae)
against P. falciparum and P. berghei in in vitro and in vivo assays. In the in vitro antiplas-
modial assay, strong suppression was observed for P. falciparum (IC50 = 3.045 µM); and,
in the in vivo assay, it was possible to observe expressive antimalarial activity, with 39%
(4 mg/kg), 35% (8 mg/kg) and 24% (12 mg/kg).

5.1.3. Phospholipase A2 from Snake Toxins

Phospholipase A2 (PLA2) are a superfamily of enzymes known to have the ability
to catalyze the hydrolysis of fatty acids at the sn-2 position to produce free fatty acids
and lysophospholipids. They are small molecules of between 14 and 38 kDa that have
between 5 and 8 disulfide bridges. This superfamily comprises a number of proteins, which
are classified into 15 groups and 5 types: secreted, cytosolic, Ca2+ independent, acetyl
hydrolases and lysosomal [108]. PLA2s have been detected in venoms from many snakes
of the Elapidae and Viperidae families, and are mostly present in toxins from species of the
genera Bothrops and Crotalus (Table 4).

Of the total number of studies that provided evidence of the inhibitory activity of
snake venoms against Plasmodium, 68% corresponded to PLA2 (Table 4). The first study
to test the antiplasmodial activity of a PLA2 derived from snake toxins was carried out
by Zieler et al. [109]. The authors noted that PLA2 isolated from the venom of the eastern
diamondback rattlesnake (Crotalus adamanteus) inhibited Plasmodium gallinaceum oocyst
formation in Aedes aegypti. The reduction in the rate and intensity of infection was 29%
and 24%, respectively. Despite being a notable result, in this study neither the average
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inhibitory concentration nor the minimum lethal concentration of the molecule was evalu-
ated. Guillaume et al. [110] evaluated seven PLA2s from groups IA, IB, IIA and III against
in vitro intraerythrocytic development of P. falciparum. Anti-Plasmodium activity was tested
for toxins from the vipers Agkistrodon halys and Vipera ammodytes, which both have PLA2s
belonging to group IIA, and from the elapids Naja mossambica mossambica and Naja scuta-
tus scutatus, which have PLA2s from group IA. All PLA2s, from both groups, inhibited
Plasmodium development (IC50 = 0.023 nM for N. mossambica mossambica, 2.6 nM for N.
scutatus scutatus, 0.823 nM for A. halys and 2.8 nM for V. ammodytes). Castilho et al. [96]
tested Bothrops asper venom against P. falciparum using the whole venom, a catalytically
active PLA2 (fraction V) and a PLA2 homologue (fraction VI) due to its enzymatic activ-
ity. Fraction V had an IC50 of 1.42 µg/mL while fraction VI had an IC50 of 22.89 µg/mL
and the whole venom had an IC50 of 0.13 µg/mL, thus demonstrating high inhibitory
power. Quintana et al. [111] tested two fractions with PLA2s from the crotoxin complex
and PLA2 crotoxin B. Fractions 1 and 2 containing PLA2s from the crotoxin complex, as
well as crotoxin B, inhibited the intraerythrocytic development of P. falciparum (IC50 = 0.17,
0.76 and 0.6 µg/mL, respectively). PLA2 (BmajPLA2-II) isolated from Bothrops marajoensis
venom showed inhibition of P. falciparum development (IC50 = 6.41 µg/mL) [112]. PLA2s
isolated from the venom of another species of the Bothrops genus were also evaluated
against P. falciparum. PLA2s (BdTX-I and BdTX-II) and the BdTX-III analogue isolated from
B. diporus also showed inhibitory characteristics (IC50 = 2.44, 0.0153 and 0.5913 µg/mL,
respectively) [113].

Simões-Silva et al. [114] analyzed the venom of B. asper and isolated and character-
ized five new PLA2 isoforms, four of them acidic and one with the basic form, which
were grouped into two groups: Asp49-PLA and Lys49-PLA2-like, respectively. Two
PLA2s (BaspAc-II and BaspAc-IV) showed activity against P. falciparum (IC50 = 2.46 and
0.019 µg/mL, respectively). Furthermore, the mixture of the two PLA2s that were ac-
tive against Plasmodium (BaspAc-II and BaspAc-IV) showed activity that was ten times
greater than when tested individually, with a fractional inhibitory concentration (FIC) of
0.498 µg/mL, thus demonstrating a synergistic effect. Most of the tests used to evaluate the
effect of PLA2s used CQ-resistant strains of Plasmodium. The positive and significant results
regarding Plasmodium inhibition show that the molecule may be an important alternative
for disease control [114].

5.2. Toxins from Anurans against Plasmodium

The class Amphibia is divided into 3 orders, namely Gymnophiona (caecilians), Cau-
data (salamanders and newts) and Anura (toads, frogs, and tree frogs), the latter being
the most representative of the class with approximately 7500 described species [115,116].
Anurans have an integument that is devoid of hair, feathers, or scales for protection, and
have developed strategies to avoid water loss and infections by pathogens in the envi-
ronment [115]. They are highly predated by both vertebrates and invertebrates at all
stages of development and, therefore, have several characteristics that reduce the risk of
predation [117]. Anurans have a vast framework of substances in their skin and, due to
their integument being unprotected, these substances act not only to control infections
by pathogens, but are also used to protect against predators [88,118]. Several substances
have been tested against microorganisms and have shown antimicrobial characteristics [88];
however, studies that investigate antiplasmodial activity in anuran venoms are still scarce.

5.2.1. Crude Anuran Venom

Antimicrobial assays involving crude extracts of anuran venoms are commonly per-
formed [119]. Assays to assess antiplasmodial activities using crude extracts of anuran
venoms have already been performed for bufonids [98,120]. The crude extract of Rhinella
marina venom is active against P. falciparum (IC50 = 2.43 µg/mL) [120] and the venom of a
bufonid (unspecified) showed good control of parasitemia against P. berghei [98]. The crude
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extracts tested showed inhibition of the development of trophozoites of both Plasmodium
species [98,120].

5.2.2. Steroids from Anuran Venoms

The bufadienolide known as telocinobufagin is present in the secretion of the bufonids
Rhinella marina and Rhaebo guttatus [95]. Bufadienolides are steroids that are commonly
found in the secretion of bufonids, and are known to be associated with intoxication pro-
cesses in domestic animals, as well as being involved in chemical defense events [121]. The
steroid telocinobufagin, isolated from the secretions of both toad species, showed antiplas-
modial activity in vitro for P. falciparum by interfering with the development of trophozoites
(IC50 = 1280 µg/mL) [95]. Three other bufadienolides, marinobufotoxin, marinobufagin,
and bufalin, were isolated from the secretion of R. marina and showed antiplasmodial activ-
ity in vitro for P. falciparum by interrupting the development of trophozoites (IC50 = 5.31,
3.89 and 3.44 µg/mL, respectively) [122].

5.2.3. Peptides from Anuran Venoms

Peptides are commonly a major component in anuran venoms and may be involved
in communication [123] and defense events [124]. A large number of peptides present in
the integument of anurans have an antimicrobial character and, for this reason, a series of
studies have been carried out to test their activity against various microorganisms [125–127].
So far, only one peptide (phylloseptin-1), which was isolated from the tree frog Phyllomedusa
azurea (Hylidae, Phyllomedusinae), has been tested for its activity against P. falciparum [128]
and it showed the ability to inhibit the growth of trophozoites in in vivo experiments
(MIC = 128 g/mL). Phylloseptin-1 is a peptide with 19 amino acid residues and presents
an amidated C-terminal region (FLSLIPHAINAVSAIAKHN-NH2) [128]. Due to the high
number of peptides already known and isolated from anuran venoms, it is suggested that
more studies should be carried out to test their antiparasitic activity.

5.2.4. Alkaloids from Anuran Venoms

Anurans, for the most part, are not capable of synthesizing alkaloids in their bodies;
therefore, this metabolite is obtained from the ingestion of ants, termites and mites [124]
Like peptides, alkaloids are involved in chemical defense processes and, in tests, they
have demonstrated antiviral [129], antibacterial and antifungal activity [126]. Five fam-
ilies of anurans have alkaloids in their secretions. Dendrobatidae presents the largest
number of individuals known to have alkaloids in their toxins [86,118], the other families
being Mantellidae, Eleutherodactylidae, Bufonidae, and Myobatrachidae. The alkaloid
dehydrobufotenine, isolated from the secretion of the bufonid R. marina, was tested for
antiplasmodial activity and showed great inhibitory activity against the development of P.
falciparum trophozoites (IC50 = 19.11 µg/mL) [122].

5.3. Spider Venom Toxins against Plasmodium Species

Spiders belong to the class Arachnida, order Araneae, and there are approximately
50,000 species around the world [130]. Venom glands are present in most spiders, but they
are absent in the family Uloboridae [131]. The glands are located either in the chelicerae or
under the carapace [131]; however, the toxic potential of venoms varies according to the
species, since it is used not only as a defense mechanism, but also in hunting events [132].
They are venomous animals that can cause harm to humans, which is why some species
are considered a public health problem [133]. Their toxins have a range of substances that
present bioactive properties, some of which are used in the pharmaceutical industry to
produce drugs and even serums [134]. Some species have had their venoms tested and
have demonstrated a broad spectrum of antimicrobial activities [135]; however, studies
that evaluate their antiplasmodial potential are still scarce. The peptides psalmopeotoxin
I (PcFK1) and psalmopeotoxin II (PcFK2) were isolated from the venom of the tarantula
Psalmopeus cambridgei (Araneae, Theraphosidae) and were tested against Plasmodium sp.
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PcFK1 has 33 amino acid residues in its primary sequence (ACGILHDNCVYVPAQNPCCR-
GLQRYGKCLVQV), while PcFK2 has 28 amino acid residues (RCLPAGKTCVRGPMRVPC-
CGSCSQNKCT). Both peptides were tested in vitro against P. falciparum. It was observed
that both PcFK1 and PcFK2 showed antiplasmodial activity by inhibiting the development
of P. falciparum trophozoites (IC50 = 1.59 and 1.15 µg/mL, respectively) [136].

5.4. Scorpion Venom Toxins against Plasmodium Species

Like spiders, scorpions are arachnids and belong to the class Arachnida. They are
animals that have an elongated body and a venom inoculating device (telson) at the
tip of the tail [137]. Currently, approximately 2200 species are known [94,138]. Tox-
ins from some scorpion species have been tested against P. falciparum, P. berghei and P.
gallinaceum (Table 4). Scorpine, isolated from the venom of Pandinus imperator (Scor-
pionidae), was evaluated against P. berghei [97]. Scorpine is a peptide with 75 amino
acid residues (GWINEEKIQKKIDERMGNTVLGRMAKAIVHKMAKNEFQCMANMDML-
GNCEKHCQTSGEKGYCHGTKCKCGTPLSY), and presents inhibitory activity against
gametocytes and ookinetes of P. berghei, with a minimum inhibitory concentration (MIC) of
50 µM (gametocytes) and 30 µM (ookinetes). Meucin-24, isolated from Mesobuthus eupeus
(Buthidae), is a peptide that has 22 amino acid residues (GRGREFMSNLKEKLVKEKMKNS)
in its primary structure and presents antiplasmodial activity for P. berghei and P. falci-
parum [139]. Meucin-24 can inhibit the development (40% inhibition) of both parasites
at concentrations between 10 and 20 µM, while meucin-25, on the other hand, showed
inhibitory activity of 50% at the same concentrations. VmCT1-NH2 and its analogues
[Arg]3-VmCT1-NH2, [Arg]7-VmCT1-NH2 and [Arg]11-VmCT1-NH2 isolated from Vaejovis
mexicanus (Vaejovidae) venom were tested for activity against P. gallinaceum. VmCT1-NH2,
[Arg]3-VmCT1-NH2 and [Arg]7-VmCT1-NH2 showed inhibitory capacity in the sporozoite
phase (IC50 = 0.49, 0.57 and 0.51 µg/mL, respectively) [140].

5.5. Bee Venom Toxins against Plasmodium Species

Bees are insects that belong to the order Hymenoptera and the superfamily Apoidea.
They are eusocial and present an organization at a hierarchical level of castes. They are
highly appreciated not only for their ecological importance (they are excellent pollinators of
plants), but also for production of a highly appreciated wax [141]. They have a stinger and
are considered venomous [142]. In the study of antiplasmodial substances, bee venom tox-
ins have been analyzed and have shown promise, with the main activities being attributed
to substances that originate from proteins (Table 4).

5.5.1. Peptides from Bee Venoms

Melittin and apamin were tested for their antiplasmodial activities. Melittin is a pep-
tide that contains 26 amino acid residues in its primary structure (GIGAVLKVLTTGLPAL-
ISWIKRKRQQ) and is present in the venom of the bee Apis mellifera (Apidae) [94]. The
first study to use synthetic melittin against malaria was carried out by Boman et al. [94]
against P. falciparum and it was observed to inhibit the growth (in vitro) of the trophozoite
and schizont forms at very low concentrations (MIC = 2 to 20 µM). Methyllin inhibited
the intraerythrocytic growth of P. falciparum (IC50 = 10 µg/mL) [143], controlled para-
sitemia in vitro and in vivo of P. falciparum trophozoites at concentrations of 500, 250, and
125 µg/mL [144], and inhibited P. berghei ookinetes and gametocytes, in vitro, in Anopheles
stephensi with a minimum inhibitory concentration of 25 µM [145]. Apamin reduces young
P. falciparum trophozoites in vitro (MIC = 1 to 250 µg/mL). This peptide blocks potassium
receptor channels and causes the parasite to become unviable [146].

5.5.2. Phospholipase A from Bee Venoms

Phospholipase A was more related to antiplasmodial activity in bee venoms. PLA5
presented in vitro activity against P. knowlesi, with a significant reduction in intraery-
throcytic growth at concentrations of 2–4 µM [147]. PLA3 presented in vitro activity
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against P. falciparum and reduced the level of parasitemia due to it preventing the de-
velopment of the schizont [148]. Other PLA3s acted to inhibit parasite development,
especially by reducing oocyst development and being active against P. berghei and P. gal-
linaceum [149,150] and inhibiting intraerythrocytic growth of P. falciparum [110,151,152].
PLA4 reduced the development of P. falciparum schizonts and trophozoites in in vitro
tests [153]. PLA2 inhibited the development of young trophozoites in cells infected with P.
falciparum (IC50 = 1.1 × 106 µg/mL) [154].
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Table 4. Toxins from venomous animals that have shown activity against Plasmodium spp.

Taxon Family Species Chemical Class Substance Target Species Development Stage
Magnitude of Activity

Model Against Ref.
IC50 (µg/mL) MIC (g/mL)

Anurans

Bufonidae Rhinella marina Bufadienolide Telocinobufagin P. f. Trophozoites 1.28 ND In vitro CQ-resistant strain [95]

Bufonidae Rhaebo guttatus Bufadienolide Telocinobufagin P. f. Trophozoites 1.28 ND In vitro CQ-resistant strain [95]

Bufonidae Rhinella marina Alkaloid Dehydrobufotenine P. f. Trophozoites 19.11 ND In vitro CQ-resistant strain [122]

Bufonidae Rhinella marina Bufadienolide Marinobufotoxin P. f. Trophozoites 5.31 ND In vitro CQ-resistant strain [122]

Bufonidae Rhinella marina Bufadienolide Marinobufagin P. f. Trophozoites 3.89 ND In vitro CQ-resistant strain [122]

Bufonidae Rhinella marina Bufadienolide Bufalin P. f. Trophozoites 3.44 ND In vitro CQ-resistant strain [122]

Bufonidae Not specified Crude extract Crude extract P. berghei ND ND ND In vivo Parasitemia [98]

Hylidae Phyllomedusa
azurea Peptide Phylloseptin-1 P. f. Trophozoites ND 128 In vivo Parasite growth in

erythrocytes [128]

Leptodactylidae Leptodactylus
labyrinthicus Peptide Oc-P1 (ocellatins) P. f. Trophozoites 26.71 ND In vitro CQ-resistant strain [155]

Pipidae Xenopus laevis Peptide Magainin2 An. Gambiae Zygotes, ookinetes, and
merozoites ND 0.5–1 In vitro Parasite development

in the mosquito [156]

Bufonidae Rhinella marina Crude extract Crude extract P. f. Trophozoites 2.43 ND In vitro CQ-resistant strain [120]

Spiders

Theraphosidae Psalmopoeus
cambridgei Peptide Psalmopeotoxin I (PcFK1) P. f. Intraerythrocytic cycle 116 ND In vitro Artemisinin-resistant

strain [157]

Theraphosidae Psalmopoeus
cambridgei Peptide Psalmopeotoxin I (PcFK1) P. f. Trophozoites 1.59 ND In vitro Parasite growth in

erythrocytes [136]

Theraphosidae Psalmopoeus
cambridgei Peptide Psalmopeotoxin II (PcFK2) P. f. Trophozoites 1.15 ND In vitro Parasite growth in

erythrocytes [136]

Theraphosidae Psalmopoeus
cambridgei Peptide Psalmopeotoxin II’ (PcFK2’) P. f. Trophozoites 9.2 ND In vitro Parasite growth in

erythrocytes [158]

Theraphosidae Acanthoscurria
gomesiana Peptide Gomesin P. f. Intraerythrocytic cycle 75.8–86.6 ND In vitro Parasite growth in

erythrocytes [159]

Scorpions

Scorpionidae Pandinus imperator Peptide Scorpine P. berghei Ookinetes and gametes ND 50 µM (fertilization);
3 µM (ookinete) In vitro Development of the

para-site [97]

Buthidae Mesobuthus eupeus Peptide Meucin-24 P. f./P. berghei
Inhibi-ting the

erythrocyte
development

ND
40%;10 a 20 µM
(inhibiting the
development)

In vitro Parasite growth in
erythrocytes [139]

Buthidae Mesobuthus eupeus Peptide Meucin-25 P. f./P. berghei
Inhibiting the
erythrocyte

development
ND

50%;10 a 20 µM
(inhibiting the
development)

In vitro Parasite growth in
erythrocytes [139]

Vaejovidae Vaejovis mexicanus Peptide VmCT1-NH2 P. gallinaceum Sporozoites 0.49 ND In vitro Dead-cell staining [140]

Vaejovidae Vaejovis mexicanus Peptide [Arg]3-VmCT1-NH2 P. gallinaceum Sporozoites 0.57 ND In vitro Dead-cell staining [140]

Vaejovidae Vaejovis mexicanus Peptide [Arg]7-VmCT1-NH2 P. gallinaceum Sporozoites 0.51 ND In vitro Dead-cell staining [140]

Vaejovidae Vaejovis mexicanus Peptide [Arg]11-VmCT1-NH2 P. gallinaceum Sporozoites >1.6 ND In vitro Dead-cell staining [140]



Toxins 2023, 15, 375 17 of 26

Table 4. Cont.

Taxon Family Species Chemical Class Substance Target Species Development Stage
Magnitude of Activity

Model Against Ref.
IC50 (µg/mL) MIC (g/mL)

Snakes

Viperidae Bothrops asper Crude extract Crude extract P. f. Intra-erythrocytic cycle 0.13 ND In vitro CQ-resistant strain [96]

Viperidae Bothrops asper Enzyme Fração V (Phospholipase A2) P. f. Intra-erythrocytic cycle 1.42 ND In vitro CQ-resistant strain [96]

Viperidae Bothrops asper Homologous Fração VI (Homologo
Phospholipase A2) P. f. Intra-erythrocytic cycle 323.35 ND In vitro CQ-resistant strain [96]

Elapidae Bungarus fasciatus Peptide LZ1 P. f. Intra-erythrocytic cycle 3.045 ND In vitro CQ-resistant strain [107]

Elapidae Bungarus fasciatus Peptide LZ1 P. berghei Intra-erythrocytic cycle ND
39% (4 mg/kg), 35%

(8 mg/kg) e 24%
(12 mg/kg)

In vivo CQ-resistant strain [107]

Viperidae Bothrops
marajoensis Enzyme BmajPLA2-II P. f. Intra-erythrocytic cycle 6.41 ND In vitro CQ-resistant strain [112]

Viperidae Agkistrodon halys Enzyme Phospholipase A2 (IIA) P. f. Intraerythrocytic
development 82.3 ND In vitro Parasite growth in

erythrocytes [110]

Elapidae Naja mossambica
mossambica Enzyme Phospholipase A2 (IA) P. f. Intraerythrocytic

development 0.023 ND In vitro Parasite growth in
erythrocytes [110]

Elapidae Naja scutatus
scutatus Enzyme Phospholipase A2 (IA) P. f. Intraerythrocytic

development 2.6 ND In vitro Parasite growth in
erythrocytes [110]

Viperidae Vipera ammodytes Enzyme Phospholipase A2 (IIA) P. f. intraerythrocytic
development 2.8 ND In vitro Parasite growth in

erythrocytes [110]

Elapidae Naja naja oxiana Extract Fraction 4 P. f. Intraerythrocytic
development 0.368 ND In vitro Parasite growth in

erythrocytes [104]

Elapidae Naja naja oxiana Extract Fraction 4 P. berghei Intraerythrocytic
development ND

70%(5 mg/kg);
50%(2.5 mg/kg);
30%(1 mg/kg)

In vivo Parasite growth in
erythrocytes [105]

Viperidae Bothrops brazili Metalloproteinase BbMP-1 P. f. Intra-erythrocytic
development 3.2 ND In vitro Parasite growth in

erythrocytes [160]

Viperidae Crotalus durissus Peptide Crotamine P. f. Intra-erythrocytic
development 1.87 ND In vitro CQ-resistant strain [106]

Viperidae Crotalus durissus
cumanensis

Enzyma
(Fraction 1) Crotoxin (Phospholipase A2) P. f. Intra-erythrocytic

development 0.17 ND In vitro CQ-resistant strain [111]

Viperidae Crotalus durissus
cumanensis

Enzyme
(Fraction 2) Crotoxin (Phospholipase A2) P. f. Intra-erythrocytic

development 0.76 ND In vitro CQ-resistant strain [111]

Viperidae Crotalus durissus
cumanensis Enzyme Crotoxin B (Phospolipase A2) P. f. Intra-erythrocytic

development 0.6 ND In vitro CQ-resistant strain [111]

Viperidae Crotalus durissus
cumanensis Crude extract Crude extract P. f. Intra-erythrocytic

development 0.17 ND In vitro CQ-resistant strain [111]

Viperidae Bothrops asper Enzyme BaspAc-II P. f. Intra-erythrocytic
development 2.46 ND In vitro CQ-resistant strain [114]
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Table 4. Cont.

Taxon Family Species Chemical Class Substance Target Species Development Stage
Magnitude of Activity

Model Against Ref.
IC50 (µg/mL) MIC (g/mL)

Viperidae Bothrops asper Enzyme BaspAc-IV P. f. Intra-erythrocytic
development 0.019 ND In vitro CQ-resistant strain [114]

Elapidae Micrurus spixii Crude extract Crude extract P. f. Intra-erythrocytic
development ≤0.78 ND In vitro CQ-resistant strain [103]

Viperidae Bothrops diporus Enzyme BdTX-I (Phospholipase A2) P. f. Intra-erythrocytic
development 2.44 ND In vitro CQ-resistant strain [113]

Viperidae Bothrops diporus Enzyme BdTX-II (Phospholipase A2) P. f. Intra-erythrocytic
development 0.0153 ND In vitro CQ-resistant strain [113]

Viperidae Bothrops diporus Enzyme BdTX-III (Phospholipase A2)
Homologo P. f. Intra-erythrocytic

development 0.59 ND In vitro CQ-resistant strain [113]

Viperidae Crotalus
adamanteus Enzyme Phospholipase A2 P. gallinaceum Oocyst formation ND ND In vitro ND [109]

Bees

Not applicable Not applicable Enzyme Phospholipase A2 P. f. Young trophozoites 1.1 × 10−6 ND In vitro Intra-erythrocytic growth [154]

Not applicable Not applicable Enzyme Phospholipase A3 P. f. Tropho-zoites 1.69 × 10−5 ND In vitro Intraerythrocytic growth [110]

Not applicable Not applicable Enzyme Phospholipase A2 P. f. Mature trophozoites ND ND In vitro Intraerythrocytic growth [155]

Apidae Apis mellifera Enzyme Phospholipase A3 P. berghei Oocysts ND ND In vitro Development of the
parasite [149]

Not applicable Not described Enzyme Phospholipase A3 P. gallinaceum Oocysts ND ND In vitro Development of the
parasite [150]

Apidae Apis mellifera Peptide Melittin P. f. Not specified 10 ND In vitro Intraerythrocytic growth [143]

Not applicable Not applicable Enzyme Phospholipase A3 P. f. Not specified ND ND In vitro Intraerythrocytic growth [151]

Not applicable Not applicable Enzyme Phospholipase A3 P. f. Schizonts ND ND In vitro Parasitemia [148]

Not applicable Not applicable Enzyme Phospholipase A4 P. f. Trophozoites and
schizonts ND ND In vitro Parasitemia [153]

Not applicable Not applicable Peptide Melittin P. f. Trophozoites and
schizonts ND ND In vitro Development of the

parasite [94]

Not applicable Not applicable Peptide Melittin P. f. Trophozoites ND ND
In vitro

and
in vivo

Parasitemia [144]

Not applicable Not applicable Enzyme Phospholipase A5 P. knowlesi Trophozoites ND ND In vitro Intraerythrocytic growth [147]

Abbreviations: IC50—Half-maximal inhibitory concentration; MIC—Minimum inhibitory concentration; Not determined (ND); NMR 1H—Hydrogen-1 nuclear magnetic resonance; NMR
13C—Carbon-13 nuclear magnetic resonance; F-moc—Fluorenylmethoxycarbonyl protecting group; HPLC—High-performance liquid chromatography; MALDI-TOF—Matrix-assisted
laser desorption/ionization-time of flight; TOF MS—Time-of-flight mass spectrometry; RP-HPLC—Reversed-phase HPLC; SDS-PAGE—Sodium dodecyl sulfate-polyacrylamide gel
electrophoresis; Ref.—References; P. f.—Plasmodium falciparum; P. v.—Plasmodium vivax; CQ—chloroquine.
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6. Conclusions and Future Perspectives

Drug therapies and vector control via insecticides are respectively the most used
methods for the treatment and control of malaria; however, several studies have shown
resistance of some Plasmodium species to the drugs that are recommended for their treat-
ment. In view of this, it is necessary to carry out studies to discover new antimalarial
molecules as lead compounds for the development of medicines. As such, in the last
few decades, animal venoms have attracted attention for being a potential source for new
antimalarial molecules.

In this review, we evidenced 50 substances, 4 fractions and 7 toxins extracted from the
venoms of animals. Anurans, snakes, spiders, scorpions and bees have been studied, and all
of them have shown immeasurable antimalarial activities against Plasmodium spp., acting
in distinct phases of its biological cycle and with its consequent inhibition. However, it is
emphasized that more studies should be carried out in order to unravel the mechanism of
action of the toxins in the inhibition of Plasmodium spp., as they represent a major milestone
in the face of the resistance to current antimalarial drugs.
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