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Abstract: Aculeate hymenopterans use their venom for a variety of different purposes. The venom of
solitary aculeates paralyze and preserve prey without killing it, whereas social aculeates utilize their
venom in defence of their colony. These distinct applications of venom suggest that its components
and their functions are also likely to differ. This study investigates a range of solitary and social species
across Aculeata. We combined electrophoretic, mass spectrometric, and transcriptomic techniques
to characterize the compositions of venoms from an incredibly diverse taxon. In addition, in vitro
assays shed light on their biological activities. Although there were many common components
identified in the venoms of species with different social behavior, there were also significant variations
in the presence and activity of enzymes such as phospholipase A2s and serine proteases and the
cytotoxicity of the venoms. Social aculeate venom showed higher presence of peptides that cause
damage and pain in victims. The venom-gland transcriptome from the European honeybee (Apis
mellifera) contained highly conserved toxins which match those identified by previous investigations.
In contrast, venoms from less-studied taxa returned limited results from our proteomic databases,
suggesting that they contain unique toxins.

Keywords: Aculeata; venom; sociality; proteomics; cytotoxicity

Key Contribution: This paper provides the broadest examination of aculeate venoms to date and
compares their compositions and biochemical activities. The sampling included both social and soli-
tary species, which gave an unprecedented opportunity to examine whether the evolution of eusocial
lifestyle had a consistent influence on venom evolution. We found that, while social hymenopterans
largely employ their venoms for similar purposes, different lineages make use of different toxins
and mechanisms.

1. Introduction

The order Hymenoptera is hyperdiverse and contains a significant plurality—perhaps
even a majority—of all extant venomous species [1–5]. These insects play a major role
in almost every terrestrial ecosystem but are also significant in terms of purely human
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concerns because of their capabilities as pests [6–9], biocontrol agents [10–12], agricultural
pollinators [13,14], and even threats to human life[15–18].

Within Hymenoptera, the subclade Aculeata could be said to contain the most diverse
array of life histories and social behaviors (including predatory, parasitic, and pollinivorous
taxa). Eusociality has arisen multiple times in insects and is another major axis of variation
among aculeate lifestyles [19]. Many aspects of sociality—including the underlying genetic
systems and selection pressures which lead to it [20,21], and its consequences on life
span, resistance, and senescence—in eusocial and solitary species [22], have been studied.
Since venom composition often correlates with the behavior of the organism, it would
seem likely that venom composition would also change with this evolutionary transition.
Solitary and parasitic aculeate wasps use their venoms in order to paralyze and preserve
their prey [23–26], whereas the venoms of bees (both solitary and social) and other social
aculeates are primarily deployed in defense of themselves or their colonies [27–30]. A
review of the toxins found in Vespid venoms concluded that the social and solitary species of
that family express very different toxins from each other [31]. However, it remains unclear
whether social lifestyles have had similar effects on the composition and biochemical
activities of the venoms from the various aculeate lineages which have independently
evolved towards eusociality. To begin to understand this phenomenon, it is necessary to
compare venom composition and activity in a wide range of species.

Aculeate venoms are mixtures of peptides, enzymes, biogenic amines, and other
organic compounds, such as formic acid [32–37]. Despite solitary species measurably
outnumbering their social counterparts [38–40], the majority of venom research has focused
on social species, in particular, the honeybee, Apis mellifera [1]. The venom from species
of Vespidae and Formicidae have also received attention, mostly due to their ability to
cause allergic reactions in humans [28,31,41,42]. Sensitivity to these venoms can arise
through IgE-mediated, non-IgE-mediated, or even nonimmunologic mechanisms; and
more than ten (enzymatic and non-enzymatic) allergens from A. mellifera venom alone
have been studied [43,44]. However, most research has focused on the characterization
and isolation of single molecules [22,45–52], thereby neglecting whole venom composition.
This approach can occasionally overlook evolutionarily relevant findings in cases where an
important venom function arises from the interaction or synergy between different toxins.

Many aculeate venoms cause generalized pain and inflammation, and occasionally,
they cause anaphylactic shock [53]. A recent review suggests that Phospholipase A2s
(PLA2s) are likely the main allergenic component of A. mellifera venom, but other toxins,
including serine protease enzymes and hyaluronidases, account for much of the allergenic-
ity as well [54]. Similar toxins have been found in both solitary and social venoms [31,55];
however, in many species, their functions have been implied rather than experimentally
tested. Recent studies have identified small linear peptidic toxins from a range of aculeates
that also disrupt cell membranes by forming amphipathic helices [56–62]. Experimentally
investigating these bioactivities will give a better understanding of species-specific venom
activity. Damage caused by aculeate venoms is often the result of cytotoxic components.
Such components have been reported to have potential anticancer effects, which have
been extensively explored in bee venom [63–67] but neglected in the majority of other
aculeate species, with few exceptions [58,68–70]. Further exploring the cytotoxic abilities
of venoms will be instrumental guiding translational research exploring the potential to
create anti-cancer drugs inspired by these venoms. Other toxins may also be involved in
similar lines of research investigating possible anti-inflammatory medications [71–77].

Modern technologies, especially transcriptomic and proteomic techniques, have made
it easier to begin to unravel the compositions of whole venoms. This study involved
a proteo-transcriptomic analysis of Apis mellifera venom and large-scale comparisons of
aculeate venom using a variety of -omic and bioactivity analyses to increase our under-
standing of these venoms and the broad patterns of venom variation in these insects
(Figure 1).
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Figure 1. Schematic overview of the key aculeate groups sampled in this study, the samples derived
from them, and the data generated. Photo species and credit (left to right): Vespa mandarinia (Asian
giant hornet) by Gregory Mihaich under CC-BY-NC-SA, Dasymutilla gloriosa (thistledown velvet
ant) by mrwood under CC-BY-NC, Scolia dubia (blue-winged flower wasp) by Thomas Shahan
under CC-BY-NC, Xylocopa californica (western carpenter bee) Arman Moreno under CC-BY-NC, Apis
mellifera (honeybee) Sandy Rae under CC-BY-SA, Paraponera clavata (bullet ant) by manimiranda
under CC-BY-NC. All images were retrieved from iNaturalist (https://www.inaturalist.org/).

https://www.inaturalist.org/
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2. Results
2.1. Transcriptome

After quality control and annotation, our Apis mellifera venom gland libraries yielded
transcripts whose translated sequences are almost identical to the protein sequences of
previously reported A. mellifera toxins (Figure 2). These final toxin transcripts included icara-
pins, phospholipase A2 (PLA2), anthophilins including apamin [78], and carboxylesterases.

A

B

C

D

E

Figure 2. (A–D) Alignment of translated toxin CDS sequences with the sites with UniProt references.
Residues identical to the reference are replaced by �, and amino acids are colored according to the
default settings of AliView [79]. Toxin families include: (A) icarapins, (B) phospholipase A2, (C) an-
thophilins such as apamin [78], (D) carboxylesterases. (E) Relative length-normalized expression of
these toxin families in the transcriptome, measured as total RPK for each family.

2.2. Proteomics

1D SDS-PAGE results suggested only small variances in the molecular masses or
toxins between species of the same genus, but much greater differences among genera
(Figures 3 and 4).
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A B

C D

E F

Figure 3. 1D SDS-PAGE (12% acrylamide with Coomassie brilliant blue staining) of venom from
bees and wasps: (A) social bees (reduced); 1 = Apis mellifera (European); 2 = A. mellifera (Africanised);
3 = A. andreniformis; 4 = A. cerana; 5 = A. dorsata; 6 = A. florea; 7 = A. koschevnikovi; 8 = Bombus huntii;
9 = B. impatiens. (B) Solitary bees (reduced); 1 = Centris aethycetra; 2 = C. rhodipus; 3 = Diadasia rinconis;
4 = Peponapis pruinosa; 5 = Xylocopa rufa; 6 = X. californica; 7 = Crawfordapis sp.; 8 = Lasioglossum kina-
balueuse; 9 = X. veripuncta. (C) Epiponini wasps (reduced); 1 = Agelaia myrmecophila; 2 = Brachygastra
mellifica; 3 = Polistes flavus; 4 = Polybia rejecta; 5 = Polybia sericea; 6 = Polybia simillima; 7 = Synoeca
septentrionalis. (D) Polistes, Ropalidini, and Mischocyttarini wasps (reduced); 1 = Belonogaser juncea
colonialis; 2 = Mischocyttarus flavitarsus; 3 = Polistes canadensis; 4 = Polistes comanchus navajoe; 5 = Polistes
dorsalis; 6 = Parachartergus fraternus; 7 = Polistes major castaneocolor. (E) Vespinae wasps (reduced);
1 = Dolichovespula arenaria; 2 = D. maculata; 3 = Vespula pensylvanica; 4 = Vespula vulgaris; 5 = Vespa
luctuosa; 6 = Vespa simillima; 7 = Vespa tropica. (F) Solitary wasps (reduced); 1 = Dasymutilla chiron;
2 = D. gloriosa; 3 = Scoliidae ; 4 = Stictia.



Toxins 2023, 15, 224 6 of 25

A B

C D

Figure 4. 1D SDS-PAGE (12% acrylamide with Coomassie brilliant blue staining) of venom from
ants (reduced): (A) 1 = Paraponera clavata; 2 = Diacamma; 3 = Euponera sennaaren; 4 = Leptogenys;
5 = Neoponera villosa; 6 = Odontomachus; 7 = Opthalmopone; 8 = Megaponera analis. (B) 1 = Pachycondyla
crassinoda; 2 = Paltothyreus tarsatus; 3 = Platythyrea lamellosa; 4 = P. strigulosa; 5 = Streblognathus
aethiopicus; 6 = Neoponera commutata; 7 = N. commutata (Queen); 8 = Odontoponera. (C) 1 = Ectatomma
tuberculatum; 2 = Ectatomma; 3 = Gnaptogenys; 4 = Rhytidoponera metallica; 5 = Pogonomyrmex maricopa;
6 = P. occidentalis; 7 = P. rugosus; 8 = Diacamma. (D) 1 = Tetraponera sp.; 2 = Myrmecia browningii;
3 = M. gulosa; 4 = M. nigripes; 5 = M. pilosula; 6 = M. rufinodis; 7 = M. simillima; 8 = M. tarsata.

2.3. LC-MS

Venoms were also profiled using LC-MS to examine the low-molecular-mass com-
ponents. All venoms showed a similar generalized elution profile, revealing venoms
rich in low-molecular-mass components (Figures 5–7). The components were distributed
over the molecular mass range of 500–14,000 Da. The lack of high-mass toxins in the
chromatographs does not indicate a true absence. It is more likely a result of ion sup-
pression, which is common in LC-MS analyses [80]. Social bee venoms showed similar
chromatograms with evidence of peptide variability among species. However, the chro-
matograms of solitary bee venoms had distinctly fewer peaks, despite their relatively
rich proteomic profiles (Figures 3B and 5F). Wasp venom composition showed significant
similarities across species in retention times and molecular masses (Figure 6A–D), as did
the ants (Figure 7).
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Figure 5. Representative LC-MS profiles of bee species: (A) Apis mellifera, (B) A. andreniformis,
(C) Bombus impatiens, (D) B. sonorus, (E) Xylocopa californica, (F) Peponapis pruinosa. The x-axis is time
(minutes); the y-axis is relative intensity (0–100%). Reconstructed mass in Daltons is shown above
each peak.
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Figure 6. Representative LC-MS profiles of wasp species. (A) Agelaia myrmecophila, (B) Polybia sericea,
(C) Polistes major castaneocolor, (D) Vespula vulgaris, (E) Stictia sp. , (F) Dasymutilla klugii. The x-axis
is time (minutes); the y-axis is relative intensity (0–100%). Reconstructed mass in Daltons is shown
above each peak.
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Figure 7. Representative LC-MS profiles of Formicidae species. (A) Dinoponera gigantea, (B) Myrmecia
rufinodis, (C) Pachycondyla crassinoda, (D) Platythyrea strigulosa, (E) Paltothyreus tarsatus, (F) Odon-
tomachus sp. The x-axis is time (minutes); the y-axis is relative intensity (0–100%). Reconstructed
mass in Daltons is shown above each peak.

2.4. LC-MS/MS

Despite the high diversity of toxins shown to be present in the gels (Figures 3 and 4)
and LC-MS chromatographs (Figures 5–7), shotgun-MS/MS analysis was only able to find
similar matches to a relative handful of toxins (Figure 8). This was especially pronounced
in the solitary wasps and was likely because there are relatively few published homologous
sequences available in public databases for us to search our mass spectra against.
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Figure 8. A phylogeny of venom samples which were analyzed though LC-MS/MS and the toxins in
the reference database which returned matches to peptides in those venoms. Phylogeny topology and
branch lengths from TimeTree (https://timetree.org/) and other previously published phylogenies
[81–89] were used to manually construct a combined phylogeny in Mesquite 3.7 [90].

2.5. Enzymatic Assays

High PLA2 activity was found in all social bee venoms (Figure 9) compared to the rest
of Aculeata. Statistical investigations provided support for social species being more likely
to have higher PLA2 activity (PGLS: t = 3.27, df = 1, p = 0.002). However, when looking
at the cleavage of serine protease specific substrate, some of the solitary bees, including
Xylocopa rufa, X. californica, and Peponapis pruinosa, were the most active, alongside some of
the Polistes species (Figure 9).

https://timetree.org/
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sp.

sp.

sp.

sp.

sp.
sp.

sp.

sp.

Peponapis

Figure 9. Ancestral state reconstructions of PLA2 activity (left) and serine protease activity (right).
Activity was measured as relative percentage absorbance, and warmer colors represent higher
activity. Grey boxes indicate social species. Phylogeny topologies and branch lengths from TimeTree
(https://timetree.org/) and other previously published phylogenies [81–89] were used to manually
construct a combined phylogeny in Mesquite 3.7 [90].

2.6. Cytotoxicity Assays

The cytotoxic effects of whole venom on one non-transformed and one cancerous cell
line were tested to ascertain generalized cytotoxicity (Figure 10). The results showed that
the majority of social bee venoms had strong cytotoxic tendencies against both cell lines, as
did ant venoms (particularly the genus Mymercia). Using statistical measures, we found
that the high cytotoxicity against both non-transformed and cancerous cell lines was related
to social aculeates: MM96L (PGLS: t = 3.22, df = 1, p = 0.002); NFF (PGLS: t = 2.87, df = 1,
p = 0.005). Further, this higher cytotoxicity against the non-transformed and cancerous cell
lines was also statistically significant (PGLS: t = 10.92, df = 1, p = 2 × 10−16).

https://timetree.org/


Toxins 2023, 15, 224 12 of 25

sp.

sp.

sp.

sp.

sp.
atum

sp.

sp.

sp.

sp.
sp.
sp.

sp.

sp.Ropalidia

(

Scoliidae
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Figure 10. Ancestral state reconstructions of the cytotoxic effects of aculeate venoms against
melanoma (MM96L) cancerous cells (left) and the non-transformed (NFF) cell line (right). Cy-
totoxicity was measured using the area under the curve of cell mortality over the course of the assay.
Warmer colors represent greater toxicity. Grey boxes indicate social species. Phylogeny topologies and
branch lengths from TimeTree (https://timetree.org/) and other previously published phylogenies
[81–89] were used to manually construct a combined phylogeny in Mesquite 3.7 [90].

3. Discussion

In order to fully characterize the venoms of aculeates, a comparative study of venom-
gland transcriptomes and proteomes is necessary. In recent years, the number of studies
that included these data for hymenopterans has increased, but in the face of the enormous
diversity of the order, it is clear that the research community has only started to scratch the
surface of what there is to be discovered [62,78,91–104]. One interesting aspect of our own
contribution to this enormous task is that the transcripts we identified from the venom
gland of A. mellifera were found to have nearly identical sequences to other A. mellifera
venom proteins which are available in the Uniprot database (Figure 2) and those identified
by Koludarov et al. [78]. This similarity could be due to reduced genetic diversity in this
species (perhaps as a result of domestication), or it could indicate an unusually strong
pattern of conservation in these genes. Studies of honeybees’ genetic diversity suggest
that there have been some declines, but that diversity remains reasonably high in this
species [105–110]. Therefore, a lack of underlying genetic diversity is unlikely to account
for the extreme conservation observed in these toxins. Defensive venoms have frequently
been noted to be less variable than predatory venoms, so the purpose of the venom may
help explain the extreme similarity of A. mellifera toxins [111–113]. More specifically, this
accords with the finding of Koludarov et al. [78] that the core hymenopteran venom

https://timetree.org/
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genes are strongly conserved throughout the evolutionary history of the order. Despite the
identification of most of the major venom toxins, some of the previously described venom
compounds were not able to be recovered. One of these was the antigen 5-like wasp venom
paralog, which was absent from the venom gland’s transcriptome. This venom protein is
known to be seasonally expressed, and this may have been the reason for its absence in the
transcriptome [114].

We also presented a broad functional overview of the venom of aculeate species from
the major Aculeata clades that include solitary and social species: Vespidae, Formicidae,
and Apoidea; and from two clades with solitary species only: Mutillidae and Scoliidae.
Proteomic analysis consisting of 1D SDS-PAGE and LC-MS, combined with shotgun-
MS/MS, revealed a diversity of toxins present in both solitary and social species. The 1D
SDS-PAGE and LC-MS results suggest a lack of systematic differences between the venoms
of social and solitary hymenopterans. Moreover, very similar profiles were observed
between congeneric samples (Figures 3–7). Despite the diversity of peptides revealed by
these methods, a negligible number of toxins in solitary species were similar enough to
any reference toxins to produce a hit using shotgun-MS/MS (Figure 8). Previous studies
have found solitary wasp venoms to mostly be rich in proteins that are used in order to kill
and immobilize prey [26,31,93,94,115,116], whereas solitary bee venoms often contain more
antimicrobial peptides [45–49,104,117–119]. Previous research has proposed the existence of
a hyperdiverse family of peptides from aculeate venoms known as aculeatoxins which tend
to form amphipathic helices [62]. The extreme variability in the sequences of the mature
toxins from this family would make it difficult to detect novel members using a library-
based approach such as shotgun-MS/MS. Overall, the small number of peptides identified
from solitary species is unlikely to stem from a genuine absence of toxins but is probably
a result of limitations of the proteomics reference database. There are scant sequences
available for use as reference material from much of the hymenopteran phylogeny.

LC-MS results revealed an abundance of low-mass molecules (Figures 5–7), which
is consistent with previous studies suggesting the prevalence of biogenic amines in bee
and wasp venoms [120], alkaloids in ant venoms [42], and widespread abundance of small
peptides, including allergens across the order [1,33]. Sequence similarities between some
of these small linear peptidic toxins—especially in the signal peptide region—formed the
basis for the aculeatoxin hypothesis, which suggests that these toxins are related to one
another and form a toxin superfamily [62].

PLA2s and serine proteases can be significant allergens in aculeate venoms [32,33,121].
PLA2s are known to be the main enzymes found in honeybee venoms, making up ap-
proximately 12% of the dry mass of venom [122,123]. Comparatively, wasp venoms have
been found to only have 0.1–1% of the protein present [51], and ants have been found to
have similarly low levels of PLA2s [124]. Concordantly, our results indicate that social bee
venoms have higher levels of PLA2 activity than most other hymenopterans, and elevated
activity in the venoms of Xylocopa rufa and Tetraponera sp. as well (Figure 9). This suggests
that toxins other than PLA2s are more likely to be responsible for allergic reactions to the
venoms of other taxa. This pattern is quite different to that of serine protease activity, which
was elevated in some but not all species of Xylocopa and Polistes, and in Peponapis pruinosa
(Figure 9). The molecular function of serine proteases in bee venom is still unknown.

Cytotoxicity is another well-documented activity in aculeate venoms [58,64,68,125],
and it has been hypothesized to serve the defensive function of inducing pain. Our re-
sults show that the venoms of social bees and some ants—particularly the subfamily
Myrmecinae—are more cytotoxic than other hymenopterans, and this pattern was accentu-
ated in the cancerous MM96L cells compared to the non-cancerous NFF cell. This pattern
suggests that cytotoxicity has indeed evolved independently in some social lineages, po-
tentially for the purpose of colony defense. The cytotoxic effects of the venom of Apis
species is mainly due to the peptide melittin via a membranolytic effect [126]; PLA2s have
also been shown to synergistically increase melittin’s cytotoxic effects [73]. The fact that
melittin is not present in solitary bee venom suggests that it is likely the primary driver of
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cytotoxicity in social bee venom. Pilosulin and other aculeatoxins from the Myrmecia genus
have been identified as potently cytotoxic molecules [58,62]. Cytotoxic molecules that
have been identified in social wasps include mastoparan, which targets the mitochondrial
membrane, resulting in tumor cell cytotoxicity [127], and a biologically active quinone
isolated from Vespa simillima venom which induces apoptosis [128]. Mastoparans have been
isolated from solitary Vespidae but no other species of solitary wasps [31], perhaps hinting
at their predominant role in causing the cytotoxic effects of these species. The use of venom
peptides for cancer-specific drugs is not a new idea, but no lead compound from a venom
has led to an approved anti-cancer drug for human use so far. This is mostly due to the
difficulty in isolating peptides that are able to discriminate between deleterious cells and
healthy cells. In this study, we found that a range of aculeate venoms are cytotoxic. While
many of them were equally damaging to both cell lines, some venoms—especially those of
several Myrmecia species—were notably more toxic to cancerous cells than non-cancerous.
Other studies have reported that specific peptides from aculeate venoms have various
anti-cancer and anti-tumour activities and thus are good potential candidates for these
therapeutic avenues [63,126,129,130], and our results suggest some further targets for this
sort of in-depth research.

While PGLS analyses indicate that venoms from social lineages display statistically
higher PLA2 activity and cytotoxicity (see Sections 2.5 and 2.6), these are due to elevated
levels in the social bees in the first instance and in social bees and some ants in the second.
There is no single activity that shows a strong sign of being upregulated in social species
from all clades and low levels in the solitary species. This suggests that, while sociality
clearly alters the selection pressures acting upon the venoms of these lineages, it does not
favor any one particular solution, and the actual toxins and mechanisms employed by
social and solitary hymenopteran venoms are often lineage-specific.

4. Conclusions

This study offered a broad investigation into venoms from aculeate hymenopterans
to help understand their compositions, functions, and evolution. We also sequenced the
venom-gland transcriptome of a honeybee, A. mellifera, which showed that the toxins are
extremely conserved across the species. Venom fingerprinting with 1D-SDS PAGE gels
and LC/MS suggests that venom composition is often similar within genera, but can vary
greatly even between closely related genera. Proteomics and mass spectrometry studies
revealed these venoms include a diversity of small peptides, but most were not able to be
identified. This suggests that they bear little resemblance to previously discovered toxins
which we were able to include in our reference databases.

Our PLA2 activity and cytotoxicity assays suggested significant differences between
the venoms of social and solitary species. In each of our assays, these results were driven by
particular groups of social aculeates—social bees showed high levels of PLA2 activity and
cytotoxicity, social wasps had elevated serine protease activity, and ants possessed all of
the most cytotoxic venoms we tested—rather than identifying a particular toxin family or
mechanism that showed a clear difference between all social and all solitary species. That
being said, these components are mainly pain and/or damage-inducing, and the social
lineages responsible for these significant signals upregulated these activities. This suggests
that the venoms of social species may have independently evolved to ward off predators
but that each lineage achieves this goal using different toxins.

These results add to a growing body of evidence suggesting that hymenopteran venoms
have a somewhat paradoxical nature. Many of the venom toxins are highly conserved
throughout the entire evolutionary history of the order [78], but others are so diverse that
they cannot be identified from mass spectra without highly-related reference sequences
to compare against. Many aculeate venoms serve highly similar functions (e.g., defensive
venoms in social taxa), but they appear to carry out these roles by employing different toxins
and biochemical mechanisms. Findings of incredibly conserved core venom genes or strong
negative selection on toxin sequences might be taken to mean that investigating a handful of
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aculeate venoms would tell us most of what there is to know about the venoms from other
members of the clade, but our results suggest that there remains an incredible diversity of
toxins and mechanisms to be discovered in the venoms of unstudied aculeate taxa. This
diversity will prove useful to future researchers interested in the lives and ecology of these
insects and provides a wealth of leads for those looking for new investigational ligands or
scaffolds for drug design and development in animal venoms.

5. Materials and Methods
5.1. Taxonomic Selection

The species included in this study (Table 1) were selected in order to provide phylo-
genetically diverse coverage of aculeate clades that have both solitary and social species
(Apoidea, Vespidae, Formicidae) and some that are purely solitary (Mutillidae, Scoliidae).

Table 1. Taxonomic sampling of species investigated.

Group Family Subfamily Species

Social Bees Apidae Apinae Apis andreniformis
Apidae Apinae Apis cerana
Apidae Apinae Apis dorsata
Apidae Apinae Apis florea
Apidae Apinae Apis mellifera ligustica (European)
Apidae Apinae Apis mellifera scutellata (Africanised)
Apidae Apinae Bombus huntii
Apidae Apinae Bombus sonorus

Solitary Bees Apidae Apinae Centris aethyctera
Apidae Apinae Diadasia rinconis
Apidae Apinae Xenoglossa angustior
Apidae Xylocopinae Xylocopa rufa
Apidae Xylocopinae Xylocopa californica
Apidae Xylocopinae Xylocopa varipuncta
Colletidae Diphaglossinae Crawfordapis sp.
Halictidae Halictinae Lasioglossum sp.

Social Wasps Vespidae Polistinae Agelaia myrmecophila
Vespidae Polistinae Belonogaster juncea colonialis
Vespidae Polistinae Brachygastra mellifica
Vespidae Polistinae Mischocyttarus flavitarsus
Vespidae Polistinae Parachartergus fraternus
Vespidae Polistinae Polistes canadensis
Vespidae Polistinae Polistes comanchus navajoe
Vespidae Polistinae Polistes dorsalis
Vespidae Polistinae Polistes flavus
Vespidae Polistinae Polistes major castaneocolor
Vespidae Polistinae Polybia rejecta
Vespidae Polistinae Polybia simillima
Vespidae Polistinae Ropalidia sp.
Vespidae Polistinae Synoeca septentrionalis
Vespidae Vespinae Dolichovespula arenaria
Vespidae Vespinae Vespa luctuosa
Vespidae Vespinae Vespa mandarinia
Vespidae Vespinae Vespa simillima
Vespidae Vespinae Vespa tropica
Vespidae Vespinae Vespula pensylvanica
Vespidae Vespinae Vespula vulgaris

Solitary Wasps Mutillidae Sphaeropthalminae Dasymutilla chiron
Mutillidae Sphaeropthalminae Dasymutilla gloriosa
Mutillidae Sphaeropthalminae Dasymutilla klugii
Scoliidae Scoliinae Scoliidae sp.
Crabronidae Bembicinae Stictia sp.

Ants Formicidae Ectatomminae Ectatomma tuberculatum
Formicidae Mymicinae Pogonomyrmex maricopa
Formicidae Mymicinae Pogonomyrmex occidentalis
Formicidae Mymicinae Pogonomyrmex rugosus
Formicidae Myrmeciinae Myrmecia browningi
Formicidae Myrmeciinae Myrmecia gulosa
Formicidae Myrmeciinae Myrmecia nigriceps
Formicidae Myrmeciinae Myrmecia pilosula
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Table 1. Cont.

Group Family Subfamily Species

Formicidae Myrmeciinae Myrmecia simillima
Formicidae Myrmeciinae Myrmecia tarsata
Formicidae Myrmicinae Daceton sp.
Formicidae Paraponerinae Paraponera clavata
Formicidae Ponerinae Brachyponera sennaarensis
Formicidae Ponerinae Diacamma sp.
Formicidae Ponerinae Leptogenys sp.
Formicidae Ponerinae Neoponera commutata
Formicidae Ponerinae Neoponera commutata (Queen)
Formicidae Ponerinae Neoponera villosa
Formicidae Ponerinae Odontomachus sp.
Formicidae Ponerinae Opthalmopone sp.
Formicidae Ponerinae Megaponera analis
Formicidae Ponerinae Pachycondyla crassinoda
Formicidae Ponerinae Paltothyreus tarsatus
Formicidae Ponerinae Platythyrea lamellosa
Formicidae Ponerinae Platythyrea strigulosa
Formicidae Ponerinae Streblognathus aethiopicus
Formicidae Ponerinae Tetraponera sp.

5.2. Venom Collection

For most species, the venom reservoirs were dissected from the body, rinsed in distilled
water, and torn open to let the venom drain out. The venom was then collected for study
and the empty reservoir discarded. However, social wasp venoms were collected as
described by Schmidt et al. [131]: the sting apparatus was pulled from the body of cold
anesthetized wasps, and then, the muscular venom sac was gently squeezed while holding
the sting tip to fine Dumont #5 forceps. This expressed the venom which flowed through
the stinger and by capillary action up the tines of the forceps.

Venoms were pooled from multiple individuals for each sample, and the number of
individuals varied based on venom yield and the ability to collect specimens.

5.3. Proteomics
5.3.1. SDS-PAGE

One-dimensional (1D) sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) was carried out as previously described [132–134]. Twelve-percent SDS-PAGE
gels were cast into 1 mm slabs with a resolving gel layer (3.3 mL Milli-Q H2O, 4 mL 30%
acrylamide mix, 2.5 mL 1.5 M Tris–HCl buffer, pH 8.8, 100 µL 10% SDS, 4 µL TEMED,
100 µL 10% APS); 20 µg venom sample per lane after dissolving in 3 µL of 4× sample
loading buffer (12 µL total volume) with DTT; reducing conditions were 3 min incubation
at 100 °C; gels were run at room temperature at 120 V for 20 min and then 140 V for 60 min;
runs were stopped when dye front was less than 10 mm from the base of the gel (Mini
Protean3, Bio-Rad Lab). Gels were stained with colloidal Coomassie brilliant blue G250
(34% methanol, 3% phosphoric acid, 170 g/L ammonium sulphate, 1 g/L Coomassie blue
G250) overnight and then destained in 1% acetic acid.

5.3.2. Liquid Chromatography–Mass Spectrometry (LC-MS)

LC-MS and HPLC analyses of 25 µg crude venom was performed on a Nexera system
(Shimadzu: Kyoto, Japan) using a Zorbax 300SB C18, 3.5 µm column (2.1 × 100 mM, Agilent)
at a flow rate of 300 µL/min. The gradient used was 2–40% Buffer B (90% acetonitrile) over
35 min, 40–98% Buffer B for 2 min, and then holding at 98% Buffer B for 2 min. Buffer A was
0.1% formic acid in water. The HPLC was directly connected to a 5600 TripleTOF equipped
with a DuoSpray™ ion source (SCIEX, Framingham, MA, USA), operated in positive-ion
acquisition mode. Data were acquired for 46 min over the m/z range 350–2000 Da with
a cycle time of 0.5 s. Raw results were analyzed in Analyst® (SCIEX, Framingham, MA,
USA).
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5.3.3. Tandem Mass Spectrometry (LC-MS/MS)

For liquid chromatography–tandem MS (LC-MS/MS), venom was centrifuged (10 min,
12,000 rcf, 4 °C) to remove particulate matter, and 5–50 µg of clarified venom was incu-
bated with 20 µL reduction/alkylation buffer (50 mM ammonium carbonate pH 11.0, 1%
iodoethanol, 0.025% triethylphosphine in 48.5% acetonitrile) for 2 h at 37 °C. The reduced
and alkylated sample was then lyophilized and resuspended in 10 µL digestion reagent
(20 ng/µL proteomics grade trypsin Sigma #T7575, in 40 mM ammonium bicarbonate pH
8.0, 5% acetonitrile) for 16 h at 37 °C. The reaction was then terminated by addition of
20 µL 5% formic acid, and the tryptic digest was lyophilized. Digests were resuspended in
1% formic acid and 2.5% acetonitrile and loaded onto a 150 × 0.1 mm Zorbax 300SB-C18
column (3.5 µm particle size, 300 Å pore size, Agilent catalog no. 5065-9910) on a Shimadzu
Nano LC system. The LC outflow was coupled to a SCIEX 5600 Triple TOF mass spectrom-
eter equipped with a Turbo V ion source. Peptides were eluted over a 70 min gradient
of 1–40% solvent B (90% acetonitrile, 0.1% formic acid) in solvent A (0.1% formic acid)
at a flow rate of 0.2 mL/min. MS1 scans were collected between 350 and 1800 m/z, and
precursor ions in the range m/z 350–1500 with charge +2 to +5 and signal >100 counts/s
were selected for analysis, excluding isotopes within 2 Da. MS/MS scans were acquired
with an accumulation time of 250 ms and a cycle time of 4 s. The "rolling collision energy"
option was selected, allowing collision energy to be varied dynamically based on m/z
and z of the precursor ion. Up to 20 similar MS/MS spectra were pooled from precursor
ions, differing by less than 0.1 Da. The resulting mass spectra in WIFF format were then
compared with a library of translated ORFs extracted from transcriptomes generated from
RNA-Seq experiments (together with a list of common MS contaminants) using a Paragon
4.0.0.0 algorithm implemented in ProteinPilot 4.0.8085 software (SCIEX). A mass tolerance
of 50 mDa was used for both precursor and MS/MS ions.

5.4. Transcriptomics
5.4.1. RNA Extraction and Library Preparation

Ten female Apis mellifera were collected from EcoSciences Precinct, University of
Queensland, Australia. The venom glands were isolated by dissection, and total RNA
was extracted from venom glands by standard TRIzol protocol (ThermoFisher, Waltham,
MA, USA). The RNA sample was submitted to the University of Queensland Institute
for Molecular Bioscience Sequencing Facility for library preparation and sequencing. A
paired-end library with 180 bp insert size was constructed using the Illumina TruSeq-3
Stranded mRNA kit and sequenced on an Illumina NextSeq using a 300-cycle (2 × 150 bp)
mid-output run. These reads are available at SRA SRR11349374.

5.4.2. Sequence Data Pre-Processing and Transcriptome Assembly

The resulting reads were trimmed using Trimmomatic v0.35 [135] to remove adapter
sequences and low-quality reads. Window-function-based quality trimming was performed
using a window size of 4 and a window quality of 20, and sequences with a resulting length
of <100 bp after trimming were removed. The trimmed reads were de novo assembled into
contigs by Trinity v2.4.0 [136] using default parameters.

5.4.3. Transcriptome Annotation

The de novo assemblies were concatenated and searched against reference toxin se-
quences obtained from UniProt using BLAST version 2.7.1 [137,138]. CD-HIT v4.7 was
used to cluster the sequences and remove duplicates [139,140]. The remaining contigs
that did not contain complete coding sequences were removed. Final toxin sequences
were visualized and aligned to homologues from the Uniprot database using AliView
v1.26 [79]. Annotated CDS sequences are available on GenBank under the accession num-
bers OM416840-OM416850 in the BioProject PRJNA613391.
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5.5. Bioactivity Activity Testing
5.5.1. Enzymatic Activity Studies

A Thermo Scientific™ Fluoroskan Ascent™ Microplate Fluorometer was employed
to test variation in enzymatic activity. A fluorescence substrate assay (E10217 EnzChek®
Phospholipase A2 Assay Kit, ThermoFisher Scientific) was used for assessing the PLA2
activity. Venom solution (0.1 µg in dry venom mass) was brought up to 12.5 µL in PLA2
reaction buffer (250 mM Tris–HCL, 500 mM NaCl, 5 mM CaCl2, pH 8.9) and plated out
in triplicate on a 384 well plate. Triplicates were measured by adding 12.5 µL quenched
1 mM EnzChek® Phospholipase A2 substrate per well (total volume 25 µL/well) over
100 cycles at an excitation of 485 nm and emission of 520 nm, using a Fluoroskan Ascent
(ThermoFisher Scientific). The negative control consisted of PLA2 reaction buffer and
substrate only.

For testing on Mca-PLGL-Dpa-AR-NH2 fluorogenic peptide substrate (Cat. # ES001,
R&D systems, Minneapolis, Minnesota), 10 µL of 0.05 µg/µL venom stock was plated in
triplicate on a 384-well black plate and measured by adding 90 µL quenched fluorescent
substrate per well. The substrate concentration of each substrate stock solution dissolved
into 4.990 mL of enzyme buffer (150 mM NaCl and 50 mM Tris-HCl pH 7.4) was 10 µL.
Fluorescence was monitored over 400 min or until activity ceased. Excitation was at
390 nm and emission was at 460 nm for substrate ES011. The machine was programmed
to shake the plate for three cbefore each reading to maintain homogeneity in the wells.
Relative enzymatic activity was calculated as an increase in absorbance corresponding
to the cleavage of the fluorescent group. Finally, the raw data were normalized to meet
analysis assumptions and processed with GraphPad Prism 7.0.

5.5.2. Cytotoxicity Studies

The effect of each venom was assessed on human neonatal foreskin fibroblast (NFF)
and malignant melanoma (MM96L) cell lines, supplied by QIMR Berghofer Medical Re-
search institute. Venom-mediated cytotoxicity is often responsible for the degradation and
destruction of skin and connective tissue. Therefore, the chosen cell lines were deemed
appropriate. Cell lines were maintained in RPMI medium supplemented with 1% penicillin
streptomycin and fetal calf serum (FCS), 10% FCS for NFF, and 5% FCS for MM96L. FCS
was heat inactivated at 56 °C for 20 min. Endotoxin was tested and accepted if ≤10 EU/mL.
Cells were split 24 h prior to the experiment (for up to 25 passages for MM96L and 10 pas-
sages for NFF) using 0.25% trypsin and seeded in 96 well flat-bottom plates at a density
of 5000 and 2500 cells/well for NFF and MM96L cells, respectively. Trypan blue was
used to accurately seed and plate an equal number of cells per treatment. Plates were
incubated overnight at 37 °C in a 5% CO2 95% humidified environment prior to treatment.
Cell viability was evaluated using colorimetric MTT (Thiazolyl Blue Tetrazolium Bromide;
Sigma Aldrich M5655, Sydney, NSW, Australia) assays. Venom was added to cells at 5 µg
and 0.5 µg protein amounts and followed by a 48 h incubation period. MTT was added at a
concentration of 5 mg/mL per well. An amount of 0.1% sodium dodecyl sulfate (SDS) was
used as a positive control to achieve 100% toxicity, and the protocol was followed according
to the manufacturer’s description. The absorbance was read at 570 nm on the PowerWave
XS2 plate reader (Bio Tek Instruments, Winooski, VT, USA), using Gen5 software. Two inde-
pendent experiments were conducted with a minimum of three replicates per treatment. Cell
viability readings were normalized as percentages of untreated control cells, and viability is
expressed as a percentage of toxicity ± standard error of the mean (SEM). The relationship
between venom dose and cytotoxic response was calculated via area under the curve (AUC)
analysis, using GraphPad Prism 7 (GraphPad Software, Inc., La Jolla, CA, USA).

5.6. Ancestral State Reconstruction

No single published phylogeny included all the species in our sample, so the topology
and branch lengths were manually assembled using a variety of different sources. TimeTree
was able to provide time-calibrated phylogenies for some species and subclades and

https://timetree.org/
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references to the original studies [83]. Other taxa and dates were added using data from
a range of previously published phylogenies [81,82,84–89]. The phylogeny was built and
edited using Mesquite 3.7 [90].

The resulting phylogeny was imported into the statistical software R (version 3.6.1)
using the APE package [141]. The contMAP function of the phytools package was used
to estimate ancestral states, using maximum likelihood, and to visually represent the
presented trait over the tree [142]. Four trees were produced: two for the enzymatic assays
measuring PLA2 and serine protease activity, and two for the assays measuring cytotoxicity
in melanoma and NFF cells. This protocol has been described previously [143].
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