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Abstract: AF-X1 is a commercial aflatoxin biocontrol product containing the non-aflatoxigenic (AF-)
strain of Aspergillus flavus MUCL54911 (VCG IT006), endemic to Italy, as an active ingredient. The
present study aimed to evaluate the long-term persistence of VCG IT006 in the treated fields, and
the multi-year influence of the biocontrol application on the A. flavus population. Soil samples were
collected in 2020 and 2021 from 28 fields located in four provinces in north Italy. A vegetative compati-
bility analysis was conducted to monitor the occurrence of VCG IT006 on the total of the 399 isolates of
A. flavus that were collected. IT006 was present in all the fields, mainly in the fields treated for 1 yr or 2
consecutive yrs (58% and 63%, respectively). The densities of the toxigenic isolates, detected using the
aflR gene, were 45% vs. 22% in the untreated and treated fields, respectively. After displacement via
the AF- deployment, a variability from 7% to 32% was noticed in the toxigenic isolates. The current
findings support the long-term durability of the biocontrol application benefits without deleterious
effects on each fungal population. Nevertheless, based on the current results, as well as on previous
studies, the yearly applications of AF-X1 to Italian commercial maize fields should continue.

Keywords: biocontrol; vegetative compatibility group; carry-over; non-aflatoxigenic; aflatoxins

Key Contribution: The biocontrol of Aspergillus flavus is the best preventive action to reduce aflatoxin
contamination. AF-X1, with strain MUCL54911 (VCG IT006) as its active ingredient, is the commercial
product available in Europe that is annually applied to maize fields. To reduce the frequency of
the treatments, it is crucial to understand the persistence of VCG IT006 in soil. The beneficial effect
of treatments is a switch in the A. flavus community structure towards the increased incidences of
non-aflatoxigenic A. flavus. The findings support the long-term persistence of applied biocontrol.
However, due to the variability observed between the sample sites over time, annual treatment is
still recommended.

1. Introduction

Aspergillus flavus Link is one of the most important filamentous fungi worldwide
because it can produce aflatoxins in various crops of economic importance. This species
is widely distributed in temperate, tropical, and subtropical zones [1], including various
regions in Europe [2,3], and thrives in many agro-ecosystems and diverse natural habitats.
The competitive advantages of A. flavus increase under several abiotic stresses, including its
high temperature and salinity [4,5]. However, it is as a causal agent of aflatoxin contamina-
tion that A. flavus is most frequently distinguished. The International Agency for Research
on Cancer [6] classifies aflatoxin B1 (AFB1) as a Group 1 compound because it is known to
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be carcinogenic to humans [7]. As a result, the maximum levels (MLs) for aflatoxins in food
and feed have been established in most countries, to prevent the commercialization and
consumption of unsafe commodities [8–10].

The life cycle of A. flavus is divided into an opportunistic phase, during which plants,
animals, and humans are infected, and a saprophytic phase, where detritus is produced
from excrement and through the decay of plant and insect parts and other organic
matter [1]. Mycelia, conidia, and sclerotia are produced during both phases, providing
for reproduction and survival in the absence of the nutrients and/or environments
conducive to growth [11–14]. Many A. flavus genotypes produce AFB1 and AFB2, but
other genotypes lack the abilities to produce aflatoxins [15]. Based on the morphology of
sclerotia, two morphotypes of A. flavus have been characterized: S morphotype, known
for the production of copious small sclerotia (<400 µm in diameter), and L morphotype,
characterized by sclerotia that are fewer in numbers but larger (>400 µm) [16]. Almost
all S morphotype strains produce aflatoxin at high concentrations, while the aflatoxin-
producing potentials of L morphotype strains vary widely, ranging from highly toxigenic
to non-aflatoxigenic (AF−). Genotypes that produce no aflatoxins are termed as non-
aflatoxigenic (AF−). The presence of AF- strains has been reported in most studies that
evaluate A. flavus diversity [16–20].

There are many A. flavus genetic groups, called Vegetative Compatibility Groups
(VCGs), which are delimited by a self/non-self-recognition system [17,18]. VCGs that are
composed entirely of AF- members reflect the stable retention of this phenotype during
clonal evolution [19]. A lack of aflatoxins production does not affect the ability of A. flavus
to infect and decay crops. In fact, the aggressiveness of some AF- strains lets them be tested
as biocontrol agents with the potential to competitively exclude aflatoxin producers [16]. In
1989, the AF- strain AF36 was applied for the first time to a field in Yuma, Arizona, after
being tested at laboratory scale, and it significantly reduced the aflatoxin contamination in
cottonseed [16].

The displacement of aflatoxin producers is one possible mechanism by which the
applied AF- strains reduce aflatoxin contamination [1,20]. From the initial commercial field
evaluations of the AF36 strain in 1996, it became evident that AF- biocontrol products shift
the A. flavus population structure in treated fields, and these changes to the population
structure may be retained, in part, over multiple years [21,22]. Similar results also occur
in small-scale field studies [23] and in multi-year evaluations of the biocontrol product
Aflasafe used in commercial maize fields in Kaduna State, Nigeria [24].

There are currently over 50 AF- strains of A. flavus that are registered for use as active
ingredients in the aflatoxin biocontrol products used in various countries [25,26]. However,
AF-X1 is the only product currently available in the EU. AF-X1 has been used in Italy since
2015. Its active ingredient is A. flavus MUCL 54911, which is endemic to Italy and belongs
to VCG IT006 [27]. All members of this VCG lack the entire aflatoxin biosynthesis gene
cluster, as a result of a large insertion/deletion event shared in common with a number of
other AF- genotypes of A. flavus [19,28].

In 2003, there was an aflatoxin outbreak in the maize grown in North Italy [2], which
was ingested by dairy livestock. This resulted in large quantities of milk being destroyed,
thereby having a significant impact on the regions’ signature cheese production by the con-
sortia of Parmigiano Reggiano and Grana Padano. Since 2003, North Italy has experienced
additional aflatoxin contamination events, as have many temperate regions in southeastern
Europe [3,29], causing significant problems for both the maize and dairy industries [30].
Furthermore, climate change is predicted to worsen the maize contamination in Europe [31].
The use of different compounds able to bind AFB1 to reduce its bioavailability was pur-
posed, but this approach is not totally effective and implies side effects [32,33]. A biocontrol
formulation comprised on an AF- A. flavus strain, AF-X1, was successfully developed to
address the contamination in commercially grown maize in Italy. The use of AF-X1 has
resulted in substantial relief for the maize industry in Italy, with aflatoxin contamination
reduced more than 90% compared to untreated maize [28,34,35]. As the only biocontrol for-
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mulation currently available in the EU, AF-X1 has been commercialized with a temporary
authorization since 2015, while the final registration work is still ongoing.

There are several possible mechanisms through which the AF- strains of A. flavus
may impact aflatoxin contamination, such as competitive exclusion [21], nutrient seques-
tration [36], touch inhibition, or chemosensing (extrolites or VOCs) [37,38]. However, the
predominant mechanism reported in agricultural fields is the modification of Aspergillus
populations through the displacement of aflatoxin-producing potential [39–41]. The AF-
strains displace the toxigenic strains and thereby reduce the aflatoxin content in many of
the crops grown commercially in the United States, Nigeria, Kenya, Senegal, The Gambia,
Ghana, and Italy [28,40,42–45].

Aflatoxin concentration is influenced by a high temperature, low humidity, and
precipitation. Moreover, crop rotation and the timing of planting and harvest have strong
effects on contamination. These factors make it difficult to determine the multi-year
efficacy of biocontrol applications based on the aflatoxin concentrations alone [31,46,47].
In some regions, biocontrol strains have been shown to persist beyond a single growing
season and expand their range beyond the treated fields [22,23,44,46,48]. However, the
extents of such influences are dependent on both the AF- genotypes employed and the
agro-ecosystem in which the product is used [49]. The residual influences of biocontrol
products can be assessed by the multi-year monitoring of the AF- active ingredients in
agricultural soils. This can be done by examining individual genotypes within the resi-
dent fungal population and characterizing those individuals with either culture-based
(i.e., a vegetative compatibility analysis (VCAs) [20,50] or molecular tools, such as mi-
crosatellite analyses or SNP monitoring with pyrosequencing [51–53]. Moreover, several
studies have previously identified the role of some aflatoxin biosynthesis pathway genes,
such as omt-A and aflR, to develop new approaches to estimate the aflatoxin-producing
capacity of Aspergillus spp., such as the use of real-time PCR [54–56]. In fact, qPCR was
previously used to detect AF36 during pistachio production [57]. In addition, Cluster
Amplification Pattern (CAP) is a multiplex PCR method used to monitor the stability of
the AF- strains of A. flavus [58].

Currently, there are no studies on either the long-term efficacy of AF-X1 or the influ-
ences of the maize-based agro-ecosystem of northern and central Italy on AF-X1 persistence.
Therefore, our study sought to assess the long-term effects of the commercial applications
of the biocontrol product AF-X1 on the structure of the A. flavus communities’ resident in
fields that are frequently cropped to maize in north Italy. The residual influences of these
applications may provide cumulative benefits over multiple seasons and may, in part, ex-
plain the reduced frequencies of aflatoxin contamination in regions where the applications
of AF-X1 were previously employed.

2. Results
2.1. Cropping Systems of the Surveyed Fields

Most of the fields (70%) included in the current study contained predominantly silt
soil (Table 1). In total, six (21%) fields were predominantly clay, and three (11%) were
sandy. Several of the sampled fields (25%) were planted with maize repeatedly, without
rotation. However, some of the fields were rotated between maize and either wheat,
soybean, tomato (rarely), or pea. Conventional tillage was commonly applied, with
conservative approaches (no tillage) reported only for three fields in area 2 of Rovigo.
In addition, stalk burial was performed in ~50% of the fields, and all four of the fields
sampled in area 6 (Table 1).
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Table 1. List of maize fields sampled in this study. Location (district and municipality), sampling year, geographic coordinates (latitude and longitude), AF-X1
treatment regimen (untreated, treated n-2, treated n-2&n-1, and treated n-1; n is the sampling year), soil texture, crop rotation (one or two years before sampling),
and stalk burial were reported.

Sampling Year Area N 1 District 2 Municipality 3 Latitude Longitude Treatment 4 Soil Type Rotation 1 5 Rotation 2 6 Tillage Stalk Burial

2020 1 Rovigo Occhiobello 44.9297388 11.62801768 Untreated Silt Maize Tomato Till No
2020 1 Rovigo Occhiobello 44.943139 11.567212 n-2 Sand Maize Maize Till No
2020 1 Rovigo Occhiobello 44.951586 11.547809 n-1&n-2 Silt Maize Maize Till No
2020 1 Rovigo Occhiobello 44.955789 11.554532 n-1 Silt Maize Tomato Till No
2020 2 Rovigo Occhiobello 44.969438 11.70443 Untreated Silt Wheat Pea No till No
2020 2 Rovigo Occhiobello 44.93645466 11.62733917 n-2 Clay Wheat Maize No till No
2020 2 Rovigo Fiesso Umbertino 44.955438 11.589537 n-1&n-2 Silt Maize Maize No till Yes
2020 2 Rovigo Occhiobello 44.94879764 11.60269669 n-1 Silt Maize Wheat Till Yes
2020 3 Rovigo Occhiobello 44.94469842 11.49092054 Untreated Clay Wheat Wheat Till No
2020 3 Rovigo Occhiobello 44.94834217 11.59027712 n-2 Sand Wheat Maize Till Yes
2020 3 Rovigo Fiesso Umbertino 44.973695 11.630536 n-1&n-2 Silt Maize Maize Till Yes
2020 3 Rovigo Occhiobello 44.96235125 11.6690985 n-1 Silt Maize Soybean Till Yes
2021 4 Modena Finale Emilia 44.81483 11.217337 Untreated Clay Wheat Maize Till No
2021 4 Modena Finale Emilia 44.829477 11.094888 n-2 Silt Wheat Maize Till No
2021 4 Modena Finale Emilia 44.835933 11.27449 n-1&n-2 Sand Maize Maize Till No
2021 4 Modena Finale Emilia 44.86689 11.174496 n-1 Silt Maize Wheat Till No
2021 5 Rovigo Occhiobello 44.98778 11.698756 Untreated Clay Soybean Wheat Till No
2021 5 Rovigo Occhiobello 44.931735 11.629024 n-2 Silt Soybean Maize Till No
2021 5 Rovigo Occhiobello 44.958125 11.627436 n-1&n-2 Silt Maize Maize Till Yes
2021 5 Rovigo Occhiobello 44.971765 11.721178 n-1 Silt Maize Wheat Till Yes
2021 6 Padova Noale 45.54925 12.052739 Untreated Silt Soybean Soybean Till Yes
2021 6 Padova Noale 45.549233 12.05297 n-2 Silt Soybean Maize Till Yes
2021 6 Padova Noale 45.553166 12.045033 n-1&n-2 Clay Maize Maize Till Yes
2021 6 Padova Noale 45.552759 12.048152 n-1 Clay Maize Soybean Till Yes
2021 7 Venezia Scorzè 45.563136 12.10695 Untreated Silt Soybean Soybean Till Yes
2021 7 Venezia Scorzè 45.569842 12.099649 n-2 Silt Soybean Maize Till Yes
2021 7 Venezia Scorzè 45.565978 12.09769 n-1&n-2 Silt Maize Maize Till No
2021 7 Venezia Scorzè 45.56353 12.10323 n-1 Silt Maize Soybean Till No

1 Number of areas, 3 areas in 2020 and 4 areas in 2021. 2 4 provinces in which sampled fields were located. 3 Different areas where the soil samples were collected from the surveyed
fields. 4 Prior AF-X1 treatment and n refer to the sampling year. 5,6 Crop rotation for one and two years prior to sampling, respectively.
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2.2. Soil Fungal Populations

The total fungal community (Table 2) in the soil sampled in 2020 was significantly
(p < 0.01) influenced by the AF-X1 application schedule; however, no significant influence
was observed in the soils sampled in 2021. Furthermore, the interaction between the
treatment and location was significant (p < 0.01).

Table 2. Results of ANOVA run for colony-forming units (CFU/g) of total fungal community and of
A. flavus resident in the soil samples collected from 3 areas in 2020 and 4 areas in 2021. The 7 different
areas belong to 4 districts: Modena, Rovigo, Padova, and Venezia. Per each area, 4 different AF-X1
treatment regimens were considered: untreated, treated n-2, treated n-2&n-1, and treated n-1; n is
the sampling year. Percentage of AF- strains on all A. flavus isolated was also reported, so was the
percentage of the VCG IT006 on total A. flavus strains and on the AF- strains.

Sample
Year

Treatment
Year

N. of
Isolates Replicates 1 Total Fungi

(CFU/g)
A. flavus
(CFU/g) % AF- 2

IT006 on
A. flavus

% 3

IT006 on A.
flavus Atox

% 3

2020 * * NS NS NS
Untreated 39 3 702 b 51 c 77 37 48

2018 44 3 704 b 163 ab 75 41 56
2018 + 2019 42 3 778 b 190 a 93 72 77

2019 44 3 2688 a 86 b 86 77 88
2021 NS NS NS ** **

Untreated 60 4 1229 96 38 12 b 23 b
2019 54 4 964 63 75 62 a 86 a

2019 + 2020 60 4 863 84 68 57 a 79 a
2020 56 4 943 138 72 54 a 74 ab

2020, 2021
Combined NS * * ** **

Untreated 99 7 1003 77 b 55 b 23 b 34 b
Treated 1 yr 198 14 1271 111 a 77 ab 58 a 76 a
Treated 2 yrs 102 7 826 130 a 79 a 63 a 78 a

1 Each replicate is a separate commercial field. 2 The % of AF- was calculated based on the total number of isolates
of A. flavus p (120 and 279 isolates of A. flavus recovered in 2020 and 2021, respectively). ** (p < 0.01), * (p < 0.05);
NS= not significant; different letters indicate significant difference according to Tukey’s HSD test. 3 Percentages
were calculated based on the total number of isolates collected for each treatment.

The incidences of the total fungal occurrence (CFU/g) were calculated for each field
sampling site (Figure 1), and the distribution of the total fungal population varied among
them. The highest fungal occurrence was noted in area 4 with 3443 CFU/g, and the lowest
in area 7 with 112 CFU/g (Figure 1b). Additionally, a CFU/g increase of 47% was noted
in all the fields treated n-1 compared to the untreated fields. The distribution of the total
fungal population varied within the areas. The highest fungal concentrations occurred in a
field treated n-1 in area 1 (6027 CFU/g).

The occurrence of A. flavus in each field site also varied with treatment (p < 0.01), being
inconsistent and ranging from 51 to 190 CFU/g (Table 2). Overall, the results from both
sampling years indicated that the lowest average recovery of A. flavus (51 CFU/g) occurred
in an untreated field in 2020 with 51 CFU/g (Figure 1c). The concentrations of A. flavus
were elevated in both the fields treated in a single year and the fields treated over two
years (2020–2021; Table 1). There was a significant interaction between the treatments and
locations, but only for the data collected in 2021 (p < 0.01).

The only time an untreated field site had a greater abundance of A. flavus than the
treated neighbor fields was in the Noale municipality (sampling year 2021), whereby the
untreated field had the greatest A. flavus concentrations (99 CFU/g), and all of the three
treated sites were ≤50 CFU/g (Figure 1d).
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Figure 1. Colony-forming unit (CFU/g + confidence interval) of total fungal community resident
in the soil samples collected from 3 areas in 2020 (a); 4 areas in 2021 (b); of A. flavus in the same soil
sample collected in 2020 (c); and in 2021 (d). The 7 sampling areas belong to 4 districts: 1 (Rovigo), 2
(Rovigo), and 3 (Rovigo) in 2020, and 4 (Modena), 5 (Rovigo), 6 (Padova), and 7 (Venezia) in 2021. In
each area 4 different treatment regimens were applied: untreated, treated n-2, treated n-2&n-1, and
treated n-1; n is the sampling year.

2.3. Frequency of Non-Alfatoxigenic and Toxigenic A. flavus

Overall, 399 A. flavus isolates were collected from the soil samples. The frequency
of isolates lacking the aflR gene was determined using a qPCR method and found to be 287
(72%) (Table 2). As expected, the occurrence of the AF- isolates lacking the aflR gene was
significantly influenced by AF-X1 treatment (p < 0.05), but only when the two sampling
years were combined; the fields treated for two years had significantly more AF- isolates
compared to the untreated fields.

The highest occurrence of isolates lacking aflR was noted in all the treated fields and
ranged from 68% to 93% among the examined communities of A. flavus (Table 2). However,
a lower overall occurrence of toxigenic isolates was sampled in the untreated fields during
2020 compared to the untreated fields sampled in 2021 (Figure 2).

2.4. Frequency of Isolates Belonging to VCG IT006

The 399 A. flavus isolates recovered from the soil samples were subjected to classical
VCG testing. A total of two hundreds of the isolates shared VCG IT006 with MUCL-54911.
A subsequent analysis revealed that they all lacked aflR, as expected. The remaining
199 isolates did not belong to IT006, and 84 (42%) of those also did not have aflR. The
abundance of VCG IT006 isolates was significantly influenced by the AF-X1 treatment
regimen (p < 0.01), but only in the fields sampled in 2021. VCG IT006 was significantly
lower in the untreated fields, both when the incidence was computed for the total A. flavus
or AF- isolates (Table 2). When the counts for both the sampling years were combined, the
significantly lower incidence of VCG IT006 in the untreated fields was confirmed. Similar
ranges of IT006 frequency were observed in the fields treated two years prior (20% to
83% IT006) and one year prior to sampling (40% to 93% IT006) (Figure 3). However, the
frequencies of IT006 in the untreated field areas 1 and 3 (2020) were more than double the
amounts recovered in any other untreated field, as well as in those treated in 2018 (+29%
vs. +17%) (Figure 3a).
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regimens were applied: untreated, treated n-2, treated n-2&n-1, and treated n-1; n is the sampling year.
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samples were collected from 3 areas in 2020 (a), and 4 areas in 2021 (b), belonging to 4 districts:
1 (Rovigo), 2 (Rovigo), and 3 (Rovigo) in 2020, and 4 (Modena), 5 (Rovigo), 6 (Padova), and 7 (Venezia)
in 2021. In each area, 4 different treatment regimens were applied: untreated, treated n-2, treated
n-2&n-1, and treated n-1; n is the sampling year.

2.5. Impact of Cropping System on the Soil Fungal Population

The cropping conditions that were available and collected from farmers were crop
rotation, the soil type, tillage (most of the fields were under conventional tillage), and
stalk burial, which in all studied fields was not applied. Crop rotation was the only factor
among the cropping system that significantly influenced the fungal population isolated
from the soil, with a significantly higher CFU/g and wheat grown before maize compared
to soybean. The incidence of the AF- isolates, just as the incidence of IT006, was the highest
with maize as the preceding crop (data not shown).

3. Discussion

Farmers, industries, and regulatory authorities have questioned if the applications of
the aflatoxins biocontrol product might have long-term benefits [34,35]. The current study
provides observations that suggest that the applications of AF-X1 have influences that
extend to the next season and the season after, and even to nearby neighboring untreated
fields. The soils collected in 2020 and 2021 from the fields located in northern Italian maize
production areas, where AF-X1 was previously applied, contained significant frequencies
of the VCG, to which MUCL 54911, the active ingredient of AF-X1, belongs. The results
(Table 2) indicate that: (I) the use of AF-X1 has a residual effect that improves the structure
of the A. flavus resident in both the treated fields and in the neighboring untreated fields,
so that the AF- active ingredient is more common and the frequency of the aflatoxin
producers is reduced; and (II) the application of AF-X1 promotes the creation of these safer
Aspergillus populations, with no significant effects on the total fungal communities. These
results suggest that follow-up studies should be used to determine the frequencies and
distributions of the AF-X1 applications required for the levels of cost-effective aflatoxin
management required by north Italy’s maize industry, to provide grain that is consistently
safe for the region’s vital dairy industry. To assess the residual effects of AF-X1 applications,
VCA was undertaken to assess the abundance of its active ingredient, MUCL 54911, in
the current study, despite being a labor-intensive, time-consuming technique; this has
been judged the most reliable and accurate method available, and the only method which
has been successfully applied to identifying MUCL 54911 in field samples [51,59]. A
significant occurrence of MUCL 54911 in all the treated areas was reported. Similarly, the
application of single AF- A. flavus isolates of the aflatoxin biocontrol products, Afla-Guard®

and AF36, resulted in persistence overtime. In addition, the most extensive carry-over
studies, involving thousands of isolates, were carried out in the U.S. with AF36 [23,60,61]. A
similar carry-over was observed on African small holder farms with Aflasafe, a biocontrol
product containing four AF- strains as its active ingredients [24].

Several studies have shown not only the survival, but also an increased frequency of
AF- biocontrol product VCGs beyond the treatment season [44,60,62]. On the other hand,
the studies of Weaver and Abbas [23] and Atehnkeng et al. [24] showed a decline in the
frequencies of biocontrol VCGs when follow-up treatments were delayed by one or two
years. This suggests that the biocontrol carry-over effects may change from area to area,
and the carry-over effects must continue to be investigated.

The current study revealed some unexpected results. In two areas (Figure 2), the
prevalence of VCG IT006 in the untreated fields was comparable with the fields treated two
years prior. The field-to-field variation in the microenvironment, agronomic practice, or
predation by insects may have contributed to these observations [63].

The isolate of A. flavus MUCL 54911, belonging to VCG IT006, was identified and
validated as the most efficient AF- strain among those included in the Italian fungal
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collection by Mauro and coworkers in 2013 and 2018 [28,59]. The study of Mauro et al. [28]
highlighted the benefits of MUCL 54911, an active ingredient of AF-X1, in reducing the
aflatoxin in maize. Mauro and colleagues showed that IT006 is the largest VCG in the
Italian population, from which the active ingredient was chosen and was found in four
out of five of the northern Italian regions where our current study was conducted. Areas
1 and 3 belong to the district of Rovigo, where 40% of the fields had been treated with
AF-X1. The examined samples from Rovigo had larger proportions of IT006, suggesting that
aerially dispersed and insect-transmitted conidia may be factors that facilitate the active
ingredient movement [4,13]. The recovery of VCG IT006 in relatively high proportions
in the untreated fields supports the approach of selecting VCGs native and well-adapted
to the target regions for use as the active ingredients of biocontrol formulations for an
improved persistence. Their adaptation to target areas plus their dispersal from treated to
untreated fields are useful characteristics for biocontrol strains.

Data on cropping systems, such as rotation, soil texture, and other agricultural prac-
tices, might be relevant in explaining the observed variability among the fields. Several stud-
ies have examined the link between the previous crop and the A. flavus population [64–66].
In the prior studies, the highest densities of A. flavus were found in the soil after maize,
followed by wheat, cotton, and sorghum. The results from the current study agree with
these prior studies. One field treated two years prior to sampling with a prior crop of wheat
had the lowest A. flavus density observed. Furthermore, soil texture is associated with
the variability in A. flavus communities. Clay soil and A. flavus are positively correlated,
while sandy soil is negatively correlated [65]. Even if not statistically significant, the lowest
incidence of AF- isolates and those belonging to IT006 were detected in sandy soil. In area
1, in the current study, a field with sandy soil that had been treated with AF-X1 two years
prior had a low incidence (35%) of IT006, with 84 CFU/g of the total A. flavus population
(Figure 2a).

Conservation tillage combined with stalk burial, which increases the organic matter in
the soil, were highly correlated with the A. flavus density and contributed to the maintaining
of a reservoir of A. flavus [67,68]. In this study, significant differences were not detected,
probably because so few (3 out of 28) fields had undergone conservation tillage, but
the results from area 2 were in agreement with this statement; the density of A. flavus
(251 CFU/g) was greater under no tillage with stalk burial than under tillage (109 CFU/g)
in area 2 (Figure 1c).

In the present study, the sampling sites were chosen randomly to obtain diverse condi-
tions. Therefore, a large variation in the cropping system may be a barrier to establishing
a link between the cropping system and A. flavus density, as well as the occurrence of
IT006. As expected, the carry-over experiment had no significant effect on the global fungal
communities, other than on the proportions of the toxigenic and AF- A. flavus residing in
the soil. Bhandari et al. [69] found that the application of the commercial biocontrol prod-
uct FourSure™ had no overall impact on the microbiome composition of the treated and
untreated crops. The aflatoxin biocontrol application has been reported to have no increase
in Aspergillus density [24,39] and no influence on the composition of other mycotoxigenic
fungal species such as Fusarium, and contamination with fumonisins [28,70].

The tracking of biocontrol active ingredients has been carried out by first classifying
the A. flavus isolates by morphotype (L strain and S strain), and then conducting VCA in the
L morphotype isolates with tester pairs specific to the VCGs of the active ingredients [16,26].
A qPCR technique has resulted in useful information on hazelnuts and pistachios because
of its specificity, sensitivity, and accurate detection properties in accordance with the
international EPPO standard (PM7/98) [54,57]. The usefulness of a qPCR in detecting AF-
isolates based on lack of the aflR gene in the aflatoxin biosynthesis cluster was confirmed
by the current study. This is the first study to track the abundance of biocontrol isolates in
maize fields based on a qPCR of the mechanism underscoring one AF- genotype. However,
non-aflatoxigenic strains exist with partial gene clusters that also lack aflR, so we cannot
be certain that all the aflR-lacking strains detected during our qPCR were MUCL 54911.
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The current work found a predominance of AF- fungi in all the surveyed areas and at
higher incidences in most fields in which a prior year biocontrol application was made.
Similar results have been reported by Atehnkeng and coworkers [24] with other biocontrol
fungi on small-holder farms in Africa. Our results show shifts in the A. flavus population
following the application of the AF- A. flavus biocontrol product, AF-X1. Previously, this
was demonstrated under various conditions, in both small-scale and large commercial-
scale agriculture [23,24,26,71]. Nevertheless, a wide variability was observed among the
studied fields.

Examining the proportion of the biocontrol active ingredients post-application, over
multiple years, is an important criterion to evaluate the success of A.flavus AF- strain-based
biocontrol application. This study provides valuable data regarding the performance
and stability of the active ingredient of AF-X1 in Italian agro-ecosystems for sustainable
aflatoxin management. Additionally, this study confirms that post-application movement
can occur to neighboring (untreated) fields and provide them with some level of protection
from aflatoxin contamination. The proximity of neighboring fields, the area size, and the
amount of the biocontrol applied are highly correlated with dispersal to untreated fields, as
well as the persistence of the active ingredient over the time [24,72].

In conclusion, the use of aflatoxin biological control products with AF- A. flavus as
their active ingredients is the most successful technique for aflatoxin management so far,
demonstrating a considerable adaptability in the field with the strains native to the target
regions. The current findings support the long-term durability of the application benefits.
The primary detected influence of the AF-X1 applications is a switch in the A. flavus
community structure towards increased incidences of AF- A. flavus. Based on our findings,
as well as those from previous studies, the annual application of AF-X1 to commercial
maize fields should be maintained, until more data are available that show the optimal
timing and distribution of the applications that provide the most cost-effective treatments.

4. Material and Methods
4.1. Soil Sampling and Filed Data Collection

Soil was sampled in north Italy during April 2020 and 2021 in seven sampling areas,
distributed across the provinces Rovigo, Modena, Padova, and Venezia. In each area, 4 fields
(28 fields total) were chosen based on different time points involving AF-X1 application:
once the previous year to sampling (treated n-1), once two years prior to sampling (treated
n-2), both the previous year and two years prior to sampling (treated n-1 and n-2), or not at
all (untreated). All the applications were made according to the label instructions of the
farmers. For each treatment year, the crops were treated once at 25 kg/ha between the
BBCH phenological growth stages 33–39 [73]. In each region, the approximate percentages
of the maize farms where AF-X1 had been applied varied, with 40% in Rovigo, 35% in
Padova, 30% in Venezia, and 25% in Modena.

In total, ten soil samples of ~50 g were collected with a surface-disinfected trowel,
from the top 2 cm at 4 to 10 m intervals across diagonal transects of each of the 28 fields. The
distances between the sampled fields exceeded 5 km [74,75]. The soil samples were taken
to the laboratory, dried in forced air (40 to 45 ◦C, 48 h), and stored in plastic bags at 4 ◦C
until processed. Additionally, information regarding the cropping system (e.g., the crop
rotation, tillage system, stalk burial, and soil texture, provided by the farmers/extension
agents) was collected for each the sampled fields.

4.2. Aspergillus flavus Isolation

The isolation of A. flavus from the soil samples was performed aseptically, following
the protocols previously reported [65]. Briefly, 10 g of soil per sample was mixed with
50 mL of double distilled sterile water and stirred for 20 min at 300 rpm A 100 µL aliquot
of the soil suspension was transferred onto MRBA [76] and incubated at 31 ◦C for 3 d.
The colonies of A. flavus were identified based on their morphology [77] and quantified as
colony-forming units per g of soil (CFU/g). From each field, 10 to 15 discrete colonies of
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A. flavus were transferred to the low nutrient agar medium 5/2 (5% V-8 vegetable juice,
2% agar, pH 5.2) [78] and incubated (5–7 d, in the dark, 31 ◦C). The cultures were saved in
sterile water vials at 4 ◦C containing five plugs (3 mm dia) of sporulating agar in 1 mL of
sterile distilled water [78].

In total, 399 isolates (range = 10–15 per field) were used to quantify the persistence
of the active ingredient of the biocontrol product AF-X1, MUCL 54911, using Vegetative
Compatibility Analysis (VCA). The isolates were single spored (i.e., monosporic) through
serial dilution on Malt Extract Agar (MEA) [59]. After 2 d of incubation at 31 ◦C, one
colony per isolate was transferred to 5/2 agar. The single-spore transfers were performed in
triplicate to ensure the culture purity. A total of five agar plugs from pure mature cultures
were saved as above.

4.3. DNA Extraction

Monosporic A. flavus isolates (399 total) were used to evaluate the presence or absence
of a section of the aflR gene, using a TaqMan qPCR assay developed for A. flavus [54].
In addition, all the isolates were subjected to a qPCR assay to evaluate the presence or
absence of a section of the aflR gene. This gene is required for aflatoxin production. Positive
(isolate FS7; aflatoxin producer) and negative controls (isolates FS3, FS5, FS6, and FV9;
non-aflatoxin producers) were included. The 399 monosporic isolates were grown on Yeast
Extract Sucrose Agar (YES agar) for 7 d at room temperature [79]. Fresh mycelium from the
edges of the colonies were used to extract genomic DNA with the E.Z.N.A. fungal DNA
mini kit (Omega Bio-Tek, Norcross, GA, USA), according to the manufacturer’s instructions.
The DNA concentrations were measured with NanoDrop 2.0 (ThermoFisher, Wilmington,
DE, USA) and adjusted to be less than 100 ng/µL [54].

4.4. qPCR Conditions

The two primers, AflF and AflR [54], were used at a concentration of 0.3 µmol, the
TaqMan probe concentration was 0.1 µmol, with 1 × of TaqMan universal PCR MasterMix
(Applied Biosystems, Loughborough, UK) and 1 µL of DNA (100 ng/µL) of the isolate being
assayed. A StepOne thermal cycler instrument (Applied Biosystems, Loughborough, UK) was
used to perform the reaction with the following cycle: an initial denaturation at 95 ◦C for 4.5
min, 40 cycles of 15 s at 95 ◦C, and 15 s at 60 ◦C. Each reaction was run in triplicate; positive
and negative controls were included in each run. The standard curve utilized the DNA of
A. flavus FS7 with serial dilution to test the qPCR sensitivity [54]. The AF- genotype of each
isolate was assumed based on the CT value generated from the amplification curve of aflR
gene and ranged from 20 to 47.61 (CT ≤ 35 = toxigenic; CT > 35 AF-).

4.5. Vegetative Compatibility Analysis (VCA)

To determine the distribution and frequencies of the AF-X1 active ingredient (MUCL
54911), all 399 monosporic isolates were subjected to VCA with the tester pairs of VCG
IT006 [59], the VCG to which MUCL 54911 belongs, following the previously published
protocols of Bayman and Cotty, [80] and Cotty [71].To obtain the nitrate non-utilizing
(nit-) mutants, 10 µL of the spore suspension of each isolate was seeded into a well (3 mm
diameter) in the center of SEL plates [71]. Sectors that were auxotrophic for nitrate were
visible after 10 to 30 d of incubation at 31 ◦C. The auxotrophs were transferred to MIT,
incubated for 3 d at 31 ◦C [51], transferred to 5/2 agar, and stored in water vials, as
described above. Complementation tests with the tester pair of VCG IT006 were performed
on starch medium [81]. In total, three wells (3 mm in diameter), 1 cm apart, were made
in a triangular pattern in the center. A total of two wells were seeded with 10 µL of the
spore suspension of each of the testers, and the third one was seeded with 10 µL of the
spore suspension of the nit- mutant of the isolate being analyzed. The compatibility was
assessed after 7 d of incubation at 31 ◦C. Wildtype growth at the zone of mycelial interaction
indicated that the isolate belonged to VCG IT006 [80].
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4.6. Data Analysis

Data on the CFU/g of the total fungi and A. flavus in the soil samples were ln trans-
formed and data on the percentage of the AF- isolates and those belonging to IT006, both
computed on all the 399 recovered A. flavus isolates and on the aflatoxin-free A. flavus, were
arcsin transformed before a statistical analysis was performed to reduce the heterogeneity in
the variance. All data obtained were subjected to a univariate analysis of variance (ANOVA)
using the generalized linear model (GLM) procedure, and significant differences between
the means were determined using Tukey’s HSD test (α = 0.05). The statistical package IBM
SPSS statistics 27 (IBM Corp., Armonk, NY, USA) was used for the data analysis.
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