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Abstract: Mycotoxin risk in the feed supply chain poses a concern to animal and human health,
economy, and international trade of agri-food commodities. Mycotoxin contamination in feed and
food is unavoidable and unpredictable. Therefore, monitoring and control are the critical points.
Effective and rapid methods for mycotoxin detection, at the levels set by the regulations, are needed
for an efficient mycotoxin management. This review provides an overview of the use of the electronic
nose (e-nose) as an effective tool for rapid mycotoxin detection and management of the mycotoxin
risk at feed business level. E-nose has a high discrimination accuracy between non-contaminated
and single-mycotoxin-contaminated grain. However, the predictive accuracy of e-nose is still limited
and unsuitable for in-field application, where mycotoxin co-contamination occurs. Further research
needs to be focused on the sensor materials, data analysis, pattern recognition systems, and a better
understanding of the needs of the feed industry for a safety and quality management of the feed
supply chain. A universal e-nose for mycotoxin detection is not realistic; a unique e-nose must be
designed for each specific application. Robust and suitable e-nose method and advancements in
signal processing algorithms must be validated for specific needs.

Keywords: feed safety; mycotoxins; electronic nose

Key Contribution: E-nose represents a powerful tool in the feed chain as a rapid and cost-effective di-
agnostic tool for a rapid detection of mycotoxin contamination. Before e-nose can move from research
into the feed industry, several challenges must be overcome to improve e-nose performance. Further
research is needed on e-nose technology, such as sensor materials, data analysis, pattern recognition
systems, and on the specific needs of the feed industry for a safety and quality management of the
feed supply chain.

1. Introduction

Mycotoxins are one of the largest safety risks for the feed/food chain, with a negative
impact on animal and human health, economy, and international trade of feed and food
commodities [1–6]. Despite the availability of several strategies for prevention and control
of fungal contamination, mycotoxin contamination in feed and food is unavoidable and
unpredictable [6–8]. The challenge is to minimize the effects. The global trade of agricultural
commodities, the climate change scenario, and the lack of harmonization in mycotoxin
regulation are the main topics underlying the need of tools for the feed industry to manage
the mycotoxin risk. It is undeniable that mycotoxin management demands an integrated
approach using proactive, innovative, and improved strategic actions all along the feed
chain [9]. Moving from science to practice, the first need is the availability of rapid and
on-site analytical methods. At the feed industry level, notwithstanding the availability
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of advanced methods, there is a need for effective and rapid analytical methods for feed
mycotoxin detection at the levels that are set by the regulations for an efficient mycotoxin
risk management. Mycotoxins are regulated worldwide, but the set maximum levels vary
greatly from country to country [10,11]. The European Union (EU) harmonized regulations
on maximum levels of mycotoxins in feed among its member states [12–14]. A rapid, low-
cost, high-throughput analytical approach for mycotoxin detection is a need at the industry
level to make rapid management decisions on the acceptance or rejection of a lot [6]. The
need for rapid methods and criteria to be considered for validation of methods to be used
for mycotoxin detection were topics discussed in a “Special Issue: Rapid methods for
mycotoxin detection” and “Special Issue: Rapid Detection of Mycotoxin Contamination”
published in World Mycotoxin Journal and Toxins, respectively [15,16]. Within rapid
methods, electronic nose (e-nose) may represent an attractive and promising method for
mycotoxin detection.

After a brief survey on mycotoxin contamination in animal feed, this review provides
an overview of the use of e-nose as an effective tool for rapid mycotoxin detection and
management of the mycotoxin risk at feed business level.

2. Mycotoxin Contamination

Mycotoxins are secondary fungal metabolites. Fusarium, Aspergillus, Penicillium, and
Claviceps spp. mycotoxins produced by represent the main contaminants of the feed supply
chain, with important impact on animal health, productivity, and feed/food safety [5]. Of
the more than 300 mycotoxins identified up to now, aflatoxins (AFs), aflatoxin B1 (AFB1),
deoxynivalenol (DON), zearalenone (ZEA), fumonisins B1 and B2 (FBs, FB1, and FB2),
ochratoxin A (OTA), T2, and H-T2 are regulated by EU legislation for animal feed [12–14].

Mycotoxin contamination occurs in feed all along the feed supply chain, including
production, processing, storage, and distribution. Extensive surveys were carried out on
mycotoxin occurrence in feed raw materials and complete feeds. However, forages must
also be monitored because of their significant contribution to total mycotoxin intake [17].
Feed contamination may also represent a safety risk for humans because of the possible
carry-over of mycotoxins into animal-derived food [18–21]. The main complete feed and
feed raw materials analysed worldwide for mycotoxin contamination were grains and grain
co-products (bran, corn gluten meal, dried distillers’ grains, and solubles). Less data are
available for other feed ingredients, such as soybean meal, cotton seed, sorghum, cassava,
peanut, and copra. [8,21–35].

Several important findings resulted from these multiannual mycotoxin surveys in
animal feed. The overall results confirm that AFs, DON, FBs, OTA, T-2, and HT-2 toxins
and ZEA are the main mycotoxins occurring in feed and are invariably found in cereal
grains. Moreover, although the incidence of samples contaminated with mycotoxins above
the EU legislative limit or recommended levels is low, there is a high variability, and several
samples can exceed the levels. This confirms the need for a continual monitoring activity to
check feed safety. Considerable differences in the mycotoxin profile (type and prevalence
of mycotoxin contamination) in different geographic regions of the world and year by year
variations have been reported [6,26,27,29–31]. Climatic and weather conditions (excessive
moisture, temperature extremes, humidity, and drought) during critical plant growing
stages, as well insect damage, crop systems, and some agronomic practices can cause
plant stress and determine the severity of mycotoxin contamination [5,36–38]. In this
scenario, climate change may have significant implications and effects on the distribution
and occurrence of mycotoxins in the agri-food chain [39–42].

The second finding is that co-occurrence of mycotoxins is the norm not the exception.
Multi-mycotoxin contamination was more prevalent in feed samples from Asia (82%)
than from Europe and America (40%) [6]. The most frequently co-occurring mycotoxin
combinations in compound feed were DON and ZEA; DON, T-2, and HT-2; ZEA, T-2, and
HT-2; and DON, T-2, HT-2, and ZEA. Quite high co-occurrence level was found for OTA in
combination with DON, T-2, and HT-2 [8,21,26,27,29,31,33,34].
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Concerns about the safety of contaminated products have been further heightened
by modified and emerging mycotoxin. As reported by several authors [43,44], the anal-
ysis of the mycotoxin content of samples containing these compounds can lead to their
underestimation. The same author highlighted that such bias in masked mycotoxin de-
tection might be due to several analytical issues. This implies that modified mycotoxins
are hardly detected by routine analysis. This emerging issue was accessed by EFSA in a
Scientific Opinion [45] on the risks for human and animal health related to the presence of
modified forms of certain mycotoxins in food and feed. In the present opinion, all modified
mycotoxins produced by plant or fungi metabolism, formed during feed/food process-
ing, and resulting from the carry-over from contaminated feed are considered. Despite
the increasing attention paid to modified mycotoxins, data on the formation, occurrence,
toxicity, metabolic dynamics, and specific analytical methods are still rather scarce. Results
from multiannual mycotoxin surveys in feed materials and complete feed indicate the
presence of non-regulated mycotoxins: co-contamination of modified and emerging myco-
toxins with regulated mycotoxins were reported [29,32]. Currently, worldwide legislation
considers only mycotoxin mono-exposure data and does not address relevant mycotoxin co-
contamination. Moreover, recently modified and emerging mycotoxins have been included
in the EFSA risk assessments [46]. The impact of relevant mycotoxin combinations, regu-
lated and not regulated mycotoxins, should be considered, and legislation must consider
this topic in the near future.

3. Mycotoxin Analysis

The starting point of an effective mycotoxin analysis is sampling. This is a critical issue
to obtain reliable results [47]. Research on this topic continues to evolve; however, sampling
and sampling procedure are not the topic of this paper. For those who are interested, several
papers are available for further and recent information [48–52]. Regarding sampling, recent
publications on sampling techniques for grain dust and for pooling samples for mycotoxin
screening could have a huge impact for the feed industry [53,54].

The official controls of feed and food are regulated by the Regulation (EU) 2017/625,
Commission Regulation (EC) 152/2009, and Commission Regulation (EC) No 401/2006,
laying down the methods of sampling and analysis for the official control of the levels
of mycotoxins in feed and food, respectively [55–57]. These Regulations provide precise
details regarding the methods of sampling, acceptance parameters, criteria for sample
preparation, analytical performance criteria of the methods of analysis, and criteria for
reporting and interpretation of the results. Identification criteria for mycotoxin limit
of quantification (LOQ) have been the focus of a guidance document released by the
European Commission [58]. At research levels, there is continual work to develop and
validate methods for mycotoxin determination. Chromatography with MS/MS is the
reference method for mycotoxin analysis in regulated matrices and is almost routinely
performed. Studies regarding the implementation of LC-MS/MS methods, application
of chromatography with targeted and non-targeted high-resolution mass spectrometry
(HRMS), and optimisation of sample preparation for multi-mycotoxin analysis, including
modified mycotoxins, have been reported in recent years [59,60].

At the feed industry level, the on-site quality and safety of products need to be
continually monitored, and the adoption of a rapid, low-cost, high-throughput screening
methods is a must for the management of mycotoxin risk [61]. Commercially available
enzyme-linked immunosorbent assays (ELISA) kits are widely used due to their relatively
low cost and easy application. ELISA assays meet the industrial needs in monitoring and
surveillance programs as a “fit-for-purpose” tool. The development and validation of new
ELISA and lateral flow immunoassays (LFIA) methods are still an area of great interest,
including research on miniaturisation and multiplex new biosensors [59,60]. Among
traditional method for mycotoxin detection, thin-layer chromatography (TLC) is considered
to be an effective screening method for mycotoxins [62]. This traditional method has gained
great significance as a simple, rapid, and economical method for quantitative detection,



Toxins 2023, 15, 146 4 of 17

but the poor accuracy and low sensitivity make quantification difficult. This method is
particularly effective in AFs and OTA determination [63].

In addition to conventional analytical methods, several authors recently evaluated
electrochemical aptasensors for mycotoxin detection. Ong and co-workers [64] summarized,
in a recent study, most recent advances in conventional methods and electrochemical
aptasensors for mycotoxin detection. Considering this innovative technology, its main
advantages are related to flexible modification of functional groups, high sensitivity, wide
detection range of mycotoxin types due to its flexibility in electrode surface modification,
simple operating procedure, and low cost of fabrication. The main disadvantage is the
need for surface modification and signal amplification for a high sensitivity.

It is well known that fungal spoilage is responsible of organoleptic deterioration
and off-flavour production associated with mycotoxins production [65,66]. Therefore,
within rapid methods, e-nose, capable of recognizing simple or complex odours, could
represent a fast and accurate tool in feed safety assessment by farmers and feed industry
for mycotoxin screening.

4. Electronic Nose

An e-nose consists of an array of non-specific chemical sensors with partial specificity
and an appropriate pattern-recognition system that can recognize simple or complex
odours [67]. Sensors interact with different volatile organic compounds (VOCs), providing
signals that can be utilized effectively as a unique flavour fingerprint of a product. The
application of a robust pattern recognition system makes possible the identification and/or
quantification of the odours [68,69]. The workflow of an e-nose analysis is reported in
Figure 1.
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Figure 1. Analytical workflow for e-nose analysis.

There are several sensor devices for e-nose using different types of detection: optical,
thermal, electrochemical, and gravimetric [70,71]. Within these types of sensors, the most
popular e-nose sensors are metal–oxide semiconductor (MOS), metal–oxide semiconductor
field-effect transistors (MOSFET), and conducting polymer (CP) and piezoelectric crystal
sensors. The different sensor technologies affect their performance, such as response
and recovery times, sensitivity, detection range, operating limitations, and inactivation
by poisoning agents. Gas molecules interact with sensors by absorption, adsorption, or
chemical reactions. According to the type of sensors, this reaction causes a modification
of the sensor resistance, electrical conductivity, or resonance frequency, and these changes
are measured as an electrical signal producing a fingerprint of VOCs. There was an
instrumental evolution, leading to a wide diffusion of commercially available e-noses,
automated, hybrid instruments with a combination of different sensor technologies, small
size, and portable e-noses [72,73]. A universal e-nose, coping with every odour profile,
is not realistic, and unique e-noses must be specifically designed and set up, and data
processing must be validated for specific research work. Despite their different mechanisms,
most of the sensors interact non-selectively with volatile molecules showing non-specific
recognition. The result is a “fingerprint” of the VOCs. An instrumental evolution of
e-nose is represented by a new generation of e-nose instruments based on ultra-fast gas
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chromatography. They share the fast-screening capability of other types of e-noses, while
allowing, at the same time, specific identification and quantification of the detected volatile
molecules. Applications of ultra-fast GC electronic nose are reported for food safety
authentication and adulteration analysis [74–76].

Data analysis and pattern recognition (PARC) are fundamental parts of the e-nose
analysis. E-nose analysis generates a great volume of data that requires the application of
multivariate methods for data analysis. There are a variety of PARC methods that can be
used depending on the type of data and the required results (Figure 2). For a comprehensive
description and discussion regarding analysis of e-nose data, readers are referred to the
literature [69,77–79].
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Applications of e-nose analysis range from the feed/food industry and medical in-
dustry to environmental monitoring and process control [80–83]. The first applications
of e-nose for food analysis date to the beginning of the 1990s [84,85]. At research and
feed/food industry levels, e-nose technology has been employed for quality control of
products: process, freshness, and maturity monitoring, shelf-life investigations, authentic-
ity assessments, food fermentation process, animal source food, microbial pathogen, and
pesticide detection [69,72,86–89]. From the first applications of the analysis with the e-nose,
there have been no major changes in the application fields, while many differences can be
found at the level of instrumental properties, data collection, and processing processes.

5. Volatilome: VOCs Associated with Fungal Metabolism

Volatile compounds are related to feed and food quality, aromatic attributes, and pleasant
or unpleasant smell. Volatile compounds are a group of carbon-based chemicals with low
molecular weight and high vapor pressure produced by bacteria and fungi as a result of their
metabolism, and numerous of VOCs can originate from contamination in the field and during
storage [90–92]. Volatile compounds can include alcohols, aldehydes, hydrocarbons, acids,
ethers, esters, ketones, terpenes, furans, sulfur, and nitrogen-containing compounds. Fungi can
produce similar VOCs, but the numbers and the amounts of individual VOCs vary. Differences
found in the global pattern of VOCs are strictly correlated with fungi species and strains and
growth conditions, such as substrate, nutrients, pH, humidity, and temperature. An on-line
VOC database (http://bioinformatics.charite.de/mvoc/index.php?site=home) (accessed on
4 February 2023) reports more than 1000 VOCs from microorganisms; more than 300 of them
are classified as fungal VOCs [91].

Several VOC markers differentiating grains were identified [93,94]. Volatile organic
compound profile can be used as a fingerprint of different fungal species and toxigenic
or non-toxigenic strains [93,95–104]. The main VOCs found in cultures of fungi grown
on cereals belong to different categories, such as alcohols, aldehydes and ketones, ben-

http://bioinformatics.charite.de/mvoc/index.php?site=home
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zene derivatives, hydrocarbons, and terpenes [66]. Magan and Evans (2000) conducted a
milestone review of key studies carried out on the use of VOCs as potential indicators of
fungal activity, giving evidence of relationships between the metabolic pathway leading to
the formation of various VOCs and mycotoxin formation [66]. Since this review, a great
number of new studies have been carried out to identify fungal VOCs in various cereal
grains—grown under natural conditions or naturally infected. The most recent findings on
VOCs in fungi contaminated grains are reported in Table 1.

Table 1. VOC profiling due to fungal contamination in cereals: most recent acquisitions (not exhaus-
tive list).

Samples
Fungal

Contamination
(*/**)

VOC Analysis VOCs References

Maize Aspergillus flavus
(*) GC-IMS

A total of 55 VOCs were identified.
Ethyl acetate-D and

3-hydroxybutan-2-one-D are
potential biomarkers specific to

A. flavus contamination.
Aflatoxin B1 is positively

correlated with the level of
(E)-2-octenal-M, benzene

acetaldehyde, (E)-hept-2-enal-M, 2-
heptanone-D, and 2-pentyl furan.

[105]

Jasmine brown
rice

Aspergillus oryzae
(*) SPME/GC-MSD

A total of 11 VOCs were identified.
Octane,

2,2,4,6,6-pentamethylheptane,
decane, dodecane, toluene,

ethanol, 1-pentanol, 1-hexanol,
1-octen-3-ol, 2-heptanone, and
2-pentylfuran could be used as
volatile markers for A. oryzae

contamination.

[106]

Rice
Aspergillus strains (A. candidus,
A. fumigatus, and A. clavatus)

(*)
HS-GC-MSD

A total of 25 VOCs were identified.
Decanal, 1-octanol, 1-tridecanol,

nonanal, diethyl phthalate,
α-cedrene, cyclododecene, and

cis-thujopsene can be considered
as markers of infected rice

samples, with changes during the
storage period.

[107]

Wheat

Ten fungal species, Alternaria (4),
Cladosporium (3), Penicillium (2),

Aureobasidium (1), and
Fusarium graminearum (1)

(*)

GC-FID, GC-MSD

A total of 57 VOCs were identified.
Cyclooctasiloxane and

hexadecamethyl combination and
pentadecane can be considered as

markers of early detection of
postharvest fungi in grain for

A. alternata and A. infectori,
respectively.

Naphthalene was identified only
in the headspace of C. herbarum

[100]
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Table 1. Cont.

Samples
Fungal

Contamination
(*/**)

VOC Analysis VOCs References

Hybrid and
dwarf maize

Fusarium graminearum and
F. verticillioides

(*)
SPME/GC-MSD

A total of 23 VOCs were identified
(12 from dwarf and 15 from

hybrid maize).
Both varieties shared six common

markers: (+)-longifolene,
β-farnesene, β-macrocarpene, and

trichodiene.
Qualitative variability in VOCs
was observed upon infection of

different Fusarium species:
trichodiene was detected only

from F. graminearum.

[108]

Barley (malting
procedure)

Fusarium poae
(*) SPME/GC-MSD

A total of 46 VOCs.
Volatile aldehyde fractions were

influenced by F. poae
contamination during malting.

[109]

Maize
Fusarium graminearum,

F. verticillioides, and
F. subglutinans

SPME/GC-MSD
OLS/GC-MSD

A total of 22 VOCs were identified.
3-hexen-1-ol, heptan-2-ol,
1-octen-3-ol, octan-3-one,

octan-3-ol, β-selinene, α-selinene,
β-macrocarpene, and

β-bisabolene: markers for the early
detection of Fusarium infection.

[110]

Durum wheat Fusarium poae (*) SHS-SPME/GC-
MSD

A total of 29 VOCs were identified.
Levels of ethyl acetate, ethanol,

3-methylbutanol ethyl decanoate,
ethyl decenoate, 2-phenylethyl

acetate, 3-methylbutanal, hexanal,
phenylethyl alcohol,

3-hydroxy-2-butanone, and acetic
acid changed as a function of time

after inoculation.

[111]

Durum wheat

(**)
DON < 1000 mg/kg;
1000 mg/kg ≤ DON

≤ 2500 mg/kg;
DON > 2500 mg/kg.

HS-SPME/GC-MSD

A total of 70 VOCs were identified.
Trichodiene, longifolene, 3-methyl
butanal, tridecane, g-caprolactone,

and 6,10,14-trimethyl-2-
pentadecanone: positively

associated with DON; Hexadecane,
2,3,7-trimethyl-decane, and

4,6-dimethyl-dodecane:
negatively associated with DON

[112]

Barley,
Oats, and rye

(**) analysis for trichothecenes A
and B GC/MSD

A total of 46 VOCs were identified.
The most significant VOCs to

differentiate infected from
non-infected cereals: [E, E]-3,5

octadien 2-one, 1-heptanol,
naphthalene, p-xylene and

dimethyl sulphone, and
trichodiene.

[100]
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Table 1. Cont.

Samples
Fungal

Contamination
(*/**)

VOC Analysis VOCs References

Soft wheat

Fusarium graminearum,
F. culmorum, F. cerealis, and

F. redolens
(*)

SPME/GC-MSD

A total of 16 VOCs were identified.
2-methyl-1-propanol,

3-methylbutanol, 1-octen-3-ol, and
3-octanone were infection-specific.

[113]

*: artificially inoculated; **: naturally contaminated; GC-IMS: Gas Chromatography–Ion Mobility Spectrometry;
SPME/GC-MSD: Solid-phase Microextraction/Gas Chromatography–Mass Spectrometry; HS-GC-MSD: Headspace-
Gas Chromatography–Mass Spectrometry; GC-FID: Gas Chromatography–Flame-ionization detection; GC-MSD: Gas
Chromatography–Mass Spectrometry; OLS/GC-MSD: Open-loop stripping/Gas Chromatography–Mass Spectrome-
try; SHS-SPME/GC-MSD: Static headspace–Solid-phase Microextraction/Gas Chromatography–Mass Spectrometry;
HS-SPME/GC-MSD: Headspace–Solid-phase Microextraction/Gas Chromatography–Mass Spectrometry.

Overall results indicate that (1) there is a wide range of fungal VOCs produced by
spoilage fungi; (2) VOCs can be used as taxonomic markers of fungal species; (3) the pres-
ence of VOCs in naturally contaminated grain can be used as an early indicator of spoilage;
and (4) more than single VOCs, the analysis of the VOC profile, by using multivariate
analysis techniques, represents a powerful tool for the early detection and time evolution
of fungal spoilage.

Gas chromatography (GC)-based techniques have been used for the specific and sensi-
tive analysis of VOCs and the volatilome profile. These techniques are reliable, specific, and
sensitive, but expensive, time-consuming, and labor-intensive. In this scenario, according
to the need of the feed industry, e-nose may represent a powerful tool for a rapid and on-site
analysis of VOC profiles for identification of fungi contamination in agricultural commodi-
ties. Rapid analysis of mouldy and mycotoxin-contaminated agricultural commodities can
reduce the risk of human/animal exposure to mycotoxins. Electronic nose was success-
fully used for VOC analysis and the early detection and differentiation between spoilage
fungi and mycological quality grading of barley grains [65,114]. The study of Keshri and
Magan [67] was the first one that showed that e-nose was able to differentiate between
mycotoxigenic and non-mycotoxigenic strains of Fusarium moniliforme and F. proliferatum
on the basis of their VOC production patterns [115]. From these studies, research on this
topic has developed and increased. E-nose showed a very good discrimination capability
for grain quality discrimination and detection of fungal contamination of cereal grain by
discriminating contaminated and non-contaminated grains by Penicillium and Fusarium
spp. and changes during the crucial stages of fungal growth [65–123].

By using an e-nose, the volatile compounds released by four Fusarium species were
studied, and infected and non-infected wheat grains in the post-harvest chain were differ-
entiated [113]. E-nose, combined with GC-MS, was able to identify the changes of volatile
profile due to Aspergillus spp. growth in rice kernels [122]. Visualization of VOCs profiles
of Aspergillus oryzae contaminated brown rice was possible and useful for early detection of
fungal infection [106]. A systematic review on detection and identification of fungal species
by e-nose technology in various fields of application beyond that of food safety has been
recently published [83].

In addition to research on fungal VOCs as indirect indicators of fungal growth, in
recent years, studies on fungal VOC production explored new topics: role in ecosystems
(many ecological interactions among fungi and plants, arthropods, bacteria, and other fungi
are mediated by VOCs), development of environmentally friendly biopesticides, and use
in biotechnological applications (biofuel, biocontrol, and mycofumigation) [10,123–125].
Moreover, there is increasing experimental evidence that some fungal VOCs may be toxic.
Bennett and Inamdar (2015) proposed the term “volatoxin” to describe VOCs with toxigenic
properties [89].
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6. E-Nose for Mycotoxin Detection

Rapid evaluation of feed quality and safety represents a challenge for the feed industry
for mycotoxin risk management. As previously discussed, the potential for using sensor
arrays to discriminate between toxigenic and non-toxigenic fungi exists [96]. Detection
of mycotoxin contamination by e-nose is based on the detection of changes in the compo-
sition of VOCs produced by mycotoxigenic fungi during their growth and biochemical
processes. Terpene production has been found to correlated to the production of AFB1 [104].
The volatile terpene trichodiene is the first metabolite in the trichothecene biosynthesis
pathway [126]. The production of volatile terpenes relates to the formation of Fusarium
trichothecene mycotoxins [127–129]. Volatile sesquiterpene hydrocarbon has been found
to be a marker for Penicillium roqueforti strains, producing PR toxin [130]. No volatile
compound uniquely related to OTA formation has been found [131]. The content of DON
in durum wheat has been found to be positively (trichodiene, longifolene, 3-methyl bu-
tanal, tridecane, g-caprolactone, and 6,10,14-trimethyl-2-pentadecanone) and negatively
(hexadecane, 2,3,7-trimethyl-decane, and 4,6-dimethyl-dodecane) correlated to the pattern
of VOCs [112].

Recent applications reporting specific applications of e-nose for mycotoxin detection
are reported in Table 2.

Table 2. Application of e-nose for mycotoxin detection in cereals.

Mycotoxins Sample
(*/**)

E-Nose/Sensor
Array Data Analysis Tested Hypothesis References

AFs Maize (*)

Fox 3000/(6 SnO2
and 6 CTO);

Cyranose 320; and
DiagNose/12 MOS

SVM, k-NN
Aflatoxins—two classes:

below and above
10 µg/kg (ppb)

[132]

DON Wheat (**) AIR PEN 3/10
MOS CART

Discrimination among four
DON contamination

thresholds: 1750, 1250, 750,
and 500 µg/kg

[133]

AFB1, FUM Maize (**) AIR PEN 3/10
MOS ANN, LR¸ DA Discrimination at levels above

or below the legal EU limits # [134]

Afs, FBs Maize (**) AIR PEN3/10
MOS DFA

Three classes of
contamination: below the EU

regulatory limits ##,
single-contaminated, and

co-contaminated

[135]

DON Wheat bran (**) AOS-ISE Nose
2000/12 MOS DFA

Two contamination classes:
A: DON ≤ 400 µg/kg and B:

DON > 400 µg/kg
[136]

DON Durum wheat (**) AOS- ISE Nose
2000/12 MOS DFA

Three contamination classes:
A: DON ≤ 1000 mg/kg; B:

1000 < DON ≤ 2500 mg/kg;
and C: DON > 2500 mg/kg.

[112]

DON Durum wheat (**) AIR-PEN2/10
MOS PCA, CART

Three clusters based on the
DON content proposed by the

European legislation: A:
non-contaminated; B:

contaminated below the limit
(DON ≤ 1750 µg/kg); and C:
contaminated above the limit

(DON > 1750 µg/kg)

[137]
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Table 2. Cont.

Mycotoxins Sample
(*/**)

E-Nose/Sensor
Array Data Analysis Tested Hypothesis References

FBs Maize (*) EOS835/6 MOX PCA, PLS

FBs: low content below
1.6 mg/kg (average

1.0 mg/kg) vs. high content
above 1000 mg/kg

[138]

AFs Maize (**) AIRSENSE
PEN2/10 MOS PCA, LDA Aflatoxin-containing samples

and aflatoxin-free samples [139]

OTA, citrinin Durum wheat (**)
FOX 3000,

Alpha-MOS/12
sensors

CORR OTA, citrinin time changing
during storage (25 weeks) [140]

DON Durum wheat (**) PEN2/10 MOS PCA, MR DON-containing samples and
DON-free samples [141]

DON, OTA Barley (**)
VCM 422/10

MOSFET, 6 SnO2,
and 1 Gascard CO2

PCA, PLS

The OTA level varied between
0 and 934 mg/kg; the DON

content varied between 0 and
857 mg/kg

[142]

AFs: aflatoxins; DON: deoxynivalenol; FBs: fumonisins; OTA: ochratoxin; DFA: discriminant function analysis;
PCA: principal component analysis; CART: classification and regression tree analysis; PLS: partial least squares
analysis; LDA: linear discriminant analysis; CORR: correlation analysis; SIMCA: soft independent modelling of
class analogy; * artificially inoculated; ** naturally contaminated; SnO2: oxide sensors; CTO: chromium titanium
oxide sensors; MOS: metal–oxide sensors; MOSFET: metal–oxide semi-conductor field-effect transistor sensors;
SVM: support vector machine; k-NN: k-nearest neighbour; ANN: artificial neural network; LR: logistic regression;
DA: discriminant analysis; DFA: discriminant function analysis; MR: multiple regression analysis; # AFB1:5 µg/kg,
FBs: 4000 µg/kg; and ##: AFs < 5 ppb, FBs FM < 4 ppm.

E-nose can be a powerful tool for quantitative/semiquantitative prediction of my-
cotoxin levels in grains. To move e-nose analysis from research to the industrial level,
there are several questions that need answers. The main points that must be considered
are: (1) the presence of maximum levels for mycotoxins in feed for practical enabling of
rapid decision-making regarding the acceptance or rejection of lots of cereal and ensuring
safety standards; (2) mycotoxin co-contamination; and (3) the classification and prediction
accuracy of the e-nose-based model.

Regarding the first point, e-nose was able to predict the FB content of maize cul-
tures for high and low contamination levels [138]. E-nose was able to discriminate
DON-contaminated and non-contaminated wheat and aflatoxin-contaminated and non-
contaminated maize [139,141]. E-nose analysis was able to discriminate durum wheat
samples at contamination levels close to that of the DON maximum limit set by the EU
regulations [111,136]. E-nose was able to detect OTA and to predict whether the OTA level
was below or above 5 ug/kg, representing the maximum level for OTA in cereals for food
by EU regulations [140].

Mycotoxin co-contamination is the rule. E-nose analysis has been proposed to de-
tect aflatoxin and fumonisin co-contamination in maize [134]. E-nose was effective in
detecting co-contaminated samples, but with a low classification accuracy of 61% and 67%,
respectively, of samples correctly classified for co-contamination using LDA.

The type and percentage of misclassified samples are important and are critical issues
in determining the performance and accuracy of e-nose analysis. Olsson et al. (2002)
investigated the possibility of using fungal VOCs as indicators of two mycotoxins (OTA
and DON) in barley, using both e-nose and GC/MSD [140]. In that study, the authors
reported that the e-nose misclassified less than 20% of samples in the case of OTA. The
DON level could be estimated using a partial least square (PLS) model constructed using
the sensor signals from the e-nose. The detection of co-contamination was not the aim of
this study, although several samples were found to be contaminated by both OTA and
DON. Overall results indicate that, for single mycotoxin contamination, high discrimination
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accuracy between contaminated and non-contaminated grain has been reported. However,
when mycotoxin co-contamination occurs, the predictive accuracy of e-nose is still limited
and unsuitable for industrial applications in a real context.

Finally, several e-noses are available on the market, and they can be customised accord-
ing to the need. The very recent study of Machungo et al. (2022) compared the performance
of three e-nose instruments for the detection of VOCs in maize contaminated with aflatoxins
(Table 2) [132]. One of the three tested instruments (DiagNose) was more effective than the
other two (Fox 3000 and Cyranose) for the detection of aflatoxin contamination of maize,
with a cross-validated classification accuracy for the different sample classes ranging from
81% to 94%.

7. Conclusions

E-nose represents a powerful tool in the feed chain for quality and safety control
and monitoring. E-nose offers potential as a rapid and cost-effective diagnostic tool for
mycotoxin contamination screening at the market entry level. However, before e-nose
laboratory-based assays can move from research into the feed industry and become a reality,
we must face and overcome several challenges to improve e-nose performance.

The future challenges are: the sensor materials, data analysis, pattern recognition
systems, and a better understanding of the industrial needs related to safety and quality
control of the feed supply chain. A universal e-nose for mycotoxin detection is not realistic;
a unique e-nose must be designed for each specific application. Limitations still exist
regarding sensitivity and selectivity of sensors. The major drawback is represented by
sensors’ sensitivity to environmental conditions, particularly humidity and temperature.
Improved modelling, correlation between chemical markers and sensor responses, and
robust and suitable e-nose methods and advancements in signal processing algorithms
must be validated for specific needs. In the field of mycotoxin co-contamination detection,
the predictive accuracy of the e-nose models is still limited for industrial applications in
a real context. Last, but not least, specific sampling models must be carefully selected to
enhance the accuracy of e-nose analysis.

Supplementary Information could be found in Figure S1.

Supplementary Materials: The following supporting information can be downloaded at: https://
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