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Abstract: Neutrophil extracellular traps (NETs) are an important mechanism for defense against
pathogens. Their overproduction can be harmful since excessive NET formation promotes inflamma-
tion and tissue damage in several diseases. Nucleases are capable to degrade NET on basis of their
DNA hydrolysis activity, including the CdcPDE, a nuclease isolated from Crotalus durissus collilineatus
snake venom. Here, we report a new finding about CdcPDE activity, demonstrating its efficiency
in degrading cell-free DNA from NETs, being a potential candidate to assist in therapies targeting
inflammatory diseases.

Keywords: phosphodiesterase; snake venom; CdcPDE; svPDE

Key Contribution: NETs can be harmful during inflammatory diseases, albeit can be prevented by
nucleases. A nuclease from Crotalus durissus collilineatus snake venom, CdcPDE is capable of degrading
DNA-NETs and may be a drug candidate to control NET-associated inflammatory diseases.

1. Introduction

Among the mechanisms involved in the immune system defense, neutrophil-derived
extracellular traps (NETs) can be highlighted [1–4]. Indeed, NETs play an important role in
controlling infections promoted by viruses, fungi, and bacteria [5]. NETs are composed of
decondensed chromatin, and cytotoxic proteins, such as histones, neutrophil elastase, and
myeloperoxidase [6,7]. Although they represent an important defense mechanism, NETs
are highly encountered in the blood of patients during several inflammatory diseases, such
as rheumatoid arthritis, psoriasis, systemic lupus erythematosus (SLE), COVID-19, and
sepsis [8–13].

Venomous animal-derived toxins are known to display fabulous pharmacological prop-
erties, representing interesting lead compounds for the development of novel medicines.
Indeed, some venom-derived drugs are already in the market, and several are under clinical
trials [14]. The global pharmaceutical industry has benefited greatly from biodiversity-rich
countries stimulating the bioprospection of novel biomolecules derived from venoms for
novel drug design [15].

DNAses are potent agents capable of degrading NETs, being able to digest the DNA
present in the mesh [16]. CdcPDE, a phosphodiesterase, was recently (2021) isolated
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from the Crotalus durissus collilineatus rattlesnake venom, and was completely character-
ized. Moreover, functional previous studies demonstrated that the CdcPDE was able to
inhibit ADP-induced platelet aggregation and to cause a cytotoxic effect to human ker-
atinocytes [17]. Knowing that CdcPDE is classified as a nuclease, able to degrade DNA
(i.e., DNAse [18,19], this study aimed to verify if the rattlesnake-derived molecule could
degrade cell-free DNA from NETs (Figure 1).
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Figure 1. The mechanism of CdcPDE-induced NETs’ degradation. A representative figure is used to
illustrate the mechanism of NET degradation by a phosphodiesterase enzyme. The right panel shows
the CdcPDE degrading the presented DNA-free in the neutrophils’ mesh. The figure was created with
BioRender.com.

2. Results and Discussion

The isolation and characterization of CdcPDE was performed in our previous study,
showing its low recovery (0.71%) [17]. CdcPDE at 20 µg/mL (0.2 mM) exhibited signif-
icantly lower levels of cell-free-DNA in comparison with undigested groups (Figure 2),
indicating its ability of cell-free DNA degradation. Although the highest tested concen-
tration (20 µg/mL) inhibited ~38%, the amount of the used CdcPDE was 25-times lower
than the DNAse control (500 µg/mL). Unfortunately, we could not test CdcPDE using
higher concentration due to its very low recovery, making a dose-response curse unfeasible.
Indeed, to enable to carry out a dose-response curve, assays with inhibitors, and in vivo
tests, heterologous expression will be necessary.
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Figure 2. Cell-free DNA degradation assay. Isolated DNA were treated with PBS, DNase1
(500 µg/mL), or CdcPDE (10 or 20 µg/mL) for 30 min at 37 ◦C. Wells were stained with 0.2 µM
SYTOX Green for 10 min. Fluorescence emission intensities were determined using 488-nm excitation
and 525-nm emission. The results are presented as relative fluorescence units (RFU) and bars express
percentages relative to the PBS group. C (−): wells treated with PBS. C (+): wells treated with DNAse
(500 µg/mL). * p < 0.01 and ** p < 0.0001 when compared with C (−). Data (n = 3) are presented as
mean ± SD, which were analyzed by one-way ANOVA and Tukey’s post-hoc test using GraphPad
Prism 9 software.
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Others substrates were tested in PDEs studies to characterize their enzymatic activity,
such as bis (p-nitrophenyl) phosphate (0.4 mM [20], 1 mM [17] and 5 mM [21]), adenosine
triphosphate (ATP, 0.05 mM), nicotinamide adenine dinucleotide (NAD, 0.05 mM), adeno-
sine diphosphate (ADP, 0.05 mM), nicotinamide guanine dinucleotide (NGD, 0.05 mM),
and adenosine monophosphate (AMP, 0.05 mM) [22], among others [18,19]. Although
our study did not aim to characterize the enzymatic kinetics of CdcPDE, using λDNA as
substrate, we observed that the amount of substrate used in the cited studies is much
higher than in our study (6 × 10−13 mM), and even though the hydrolysis was observed.
Therefore, our study indicates that CdcPDE may present a high specificity/affinity for the
used substrate.

Only a few studies report that snake venoms can present DNAse activity [23,24]. Sitten-
feld and colleagues (1991) tested DNAse activity of Bothrops asper, B. godmani, B. schlegelii,
B. lateralis, B. nasutus, C. durissus, and Lachesis muta venoms, through radial diffusion in gel,
and observed that all of them demonstrated DNAse activity [23]. Sales and Santoro (2008)
have tested DNAse activity in 28 Brazilian venoms belonging to Bothrops, Crotalus, Lachesis,
and Micrurus genera, observing that B. brazili presented the highest DNAse activity [24].
In contrast, here we pioneer demonstrated the DNAse activity of an isolated phosphodi-
esterase from the C. d. collilineatus venom. Moreover, to the best of our knowledge, this is
the first study to test a snake venom-derived PDE using cell-free DNA from NETs.

Knowing that immune mechanisms participate on pathogenesis of several inflamma-
tory diseases [25], the impairment of NETs degradation may promote endothelial damage,
organ dysfunction, inflammation, and autoimmunity [26,27]. Supporting that, few studies
showed that exogenous DNAse can improve the outcome of some diseases, such as sepsis
and COVID-19 [28,29]. Therefore, attenuation of neutrophil-induced effects (i.e., NETs)
may be a potent target for controlling diseases characterized by an influx of granulocytes
and their activation, as was here demonstrated by CdcPDE biomolecule.

3. Conclusions

Our communication supports the use of NETs’ inhibitors by degrading DNA-free
from NETs, as a strategy to ameliorate multi-organ damage during the clinical course of
NETs-associated inflammatory diseases. Although further studies are needed, our study
pioneering shows that a snake-venom derived PDE can degrade cell-free DNA, which may
contribute to reduce the pathogenicity of inflammatory diseases.

4. Methods

CdcPDE was isolated from Crotalus durissus collilineatus in our previous study [17].
The DNAse activity was measured following the protocol of Colón and colleagues

(2019) [29] with some modifications. Briefly, we diluted λDNA from the Quant-iT™
PicoGreen™ dsDNA Assay Kit (Cat. P11496, Lot. 2313058, ThermoFisher Scientific,
Waltham, MA, USA) to a concentration of 20 µg/mL (1 µg = 0.03 pmol), the diluent
was the Roswell Park Memorial Institute Medium (Ref. 15-040-CV, Lot. 17921005, Corning
Inc., Corning, NY, USA). The λDNA solution was placed on a 96-well black plate with a
clear bottom (Ref. 3603, Corning Inc., Corning, NY, USA), and after this, samples were
treated with CdcPDE (10 or 20 µg/mL), Pulmozyme™ (500 µg/mL, Roche, Basel, Switzer-
land) that was the positive control of DNAse activity, and PBS (Cat. 14190144, Corning Inc.,
Corning, NY, USA) that was the negative control of DNAse activity. On the same plate, we
placed the samples, Pulmozyme, or PBS with RPMI medium without the λDNA solution,
this well was used to correct the amount of DNA contained in the samples. We incubated
the plate for 2 h at 37 ◦C and immediately after, we used the SYTOX Green™ (Cat. S7020,
ThermoFisher Scientific, Waltham, MA, USA) to stain the remaining DNA in the wells.
After incubation for 5 min protected from the light, we used the Flexstation 3 (Molecular
Devices, San Jose, CA, USA) to read the fluorescence at 488 nm and excitation at 525 nm.
Our results are shown as the percentage of fluorescence at each well. The average of the
wells containing only medium and the λDNA solution was considered 100% fluorescence.
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