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Abstract: The secondary contamination of microcystin disinfection by-products (MC-DBPs) is of
concern due to the residual structure similar to their original toxin. Based on identification and
preparation, the potential inhibition effect of typical MCLR-DBPs (associated with the oxidation of
Adda5) on PP2A was confirmed in the sequence of MCLR > P1 > P4 > P3≈ P2 > P7≈ P6≈ P5 > P8. To
elucidate the molecular mechanism underlying the inhibition effect, the interaction models for typical
MCLR-DBPs and PP2A were constructed using a modeling-based-on-ligand-similarity approach,
and the candidate interaction parameters between typical MCLR-DBPs and PP2A were obtained by
molecular docking. By analyzing the correlation between inhibition data and candidate interaction
parameters, the key interaction parameters were filtered as hydrogen bonds “Adda5”←Asn117,
“Adda5”←His118, MeAsp3←Arg89, Arg4←Arg214, Arg4→Pro213; ionic bonds Glu6-Arg89, Asp85-
Mn1

2+, Asp57-Mn2
2+; and metal bonds Glu6-Mn1

2+, Glu6-Mn2
2+. With the gradual intensification of

chlorination, Adda5 was destroyed to varying degrees. The key interactions changed correspondingly,
resulting in the discrepant inhibition effects of typical MCLR-DBPs on PP2A.

Keywords: microcystin-LR; disinfection by-products; protein phosphatase 2A; molecular docking;
molecular mechanism

Key Contribution: This manuscript established a feasible approach to evaluate the mechanism for
the potential inhibition effect of typical MCLR-DBPs on PP2A at the molecular level.

1. Introduction

Microcystin (MC) pollution related to eutrophication has become a widespread concern
of researchers around the world [1]. As the secondary metabolites from algal blooms, MCs
are released into the water after algae cells die and rupture. MCs not only affect water
quality, but also pose a serious threat to water ecosystems and public health and safety [2].
MCs are a class of cyclic heptapeptides that share the common structure cyclo-D-Ala1-
X2-D-isoAsp3-Z4-Adda5-D-isoGlu6-Mdha7 [3]. Due to variable amino acids at position
X2/Z4 and methylation of other residues, more than 100 different MC isomers have been
identified [4]. Among these MCs, MCLR is the most toxic and widespread isomer [5].

MCs have strong hepatotoxicity [6,7]. Acute poisoning is mainly manifested in liver
redness, swelling and bleeding, destruction of the hepatocyte skeleton, and so on [8].
The toxic mechanism of MCs involves the inhibition of protein phosphatases (PPs, the
main regulatory factors of protein dephosphorylation) [9]. Crystal structure analysis for
MCLR-PPs complexes revealed that MCs undergo a two-step interaction with PPs [10,11]:
in the first step, partial surface hydrophobic amino acid residues form a cage structure
by hydrophobic interaction and quickly envelop the side chain of Adda5; in the second
step, the C=C bond of Mdha7 is irreversibly bound to specific nucleophilic sites (typically
cysteine residues) by electrophilic addition reaction. Finally, the important interactions
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between the conserved domains of PPs (especially nine strictly conserved amino acids) and
metal ions interacting with the introduced phosphate group change accordingly, resulting in
the inhibition of PPs activity [12]. Consequently, the intracellular phosphorylated functional
protein is overexpressed [13,14], resulting in massive hemorrhage, swelling, and necrosis
of mammalian liver cells [15].

To control the environmental risks of MCs, disinfection technology has been widely
adopted to control MC-contaminated water and this exhibited obvious technical advan-
tages [16,17]. MCs can be decomposed into low-toxicity or non-toxic substances by disin-
fectants that destroy the critical structures [18,19]. However, these processes might produce
a variety of primary MC-related disinfection by-products (MC-DBPs) [19], which might
retain the original toxic groups and thus produce potential inhibition effects on PPs [20,21].

A ligand–receptor interaction model could help extract the interaction parameters and
explore the key interaction process. At present, information on the interactions between
MC-DBPs and PPs is limited and interaction models for MC-DBP-PP complexes are not
available. The relationship between the residual structure of MC-DBPs and biotoxicity
is therefore not clear, and the mechanism for the potential inhibition effect of MC-DBPs
on PPs is difficult to elucidate. The pioneering study of Xu et al. [22] provided a new
viewpoint on evaluating the interactions between structural analogues and proteins without
corresponding interaction models. They constructed interaction models for typical MC
and PP2A complexes based on modeling ligand similarity and explored the important
interactions based on molecular docking. The ligand-similarity approach not only helped
to fill the gaps in the interaction models of MC structural analogs and proteins, but also
explored the important interaction parameters, which was conducive to the study of the
molecular mechanism.

In view of this, the modeling-based-on-ligand-similarity strategy and molecular dock-
ing simulation were adopted and integrated herein to explore the molecular mechanism of
the potential inhibition effect of typical MCLR-DBPs on PP2As (the most important PPs
in eukaryotic cells). Based on typical MCLR-DBPs derived from chlorine disinfection in
the identification and preparation process, their inhibition effects on PP2A were evaluated
by a traditional PPs inhibition assay [19]. With the assistance of molecular simulation,
the interaction models for typical MCLR-DBPs and PP2A were constructed by modeling
ligand similarity based on the crystal structure of the MCLR-PP2A complex. Subsequently,
the candidate interaction parameters such as related areas, hydrogen bonds, metal bonds,
and ionic bonds between the toxins and PP2A were obtained based on molecular docking
simulation. By analyzing the correlation between inhibition data and candidate interaction
parameters, the key interaction parameters were filtered. Further 2D ligand interaction
analysis revealed the key sites and the key interactions between typical MCLR-DBPs and
PP2A. Taking the key interactions into consideration, the molecular mechanism for the
potential inhibition effect of typical MCLR-DBPs on PP2A was clarified in detail. Compared
with the study of Xu et al. [22], our study considered that the disinfection process might
affect the interactions between nine conserved amino acids of PP2A and Mn2+ions/the
introduced phosphate group, thus further explored the molecular mechanism for the po-
tential inhibition effect of typical MCLR-DBPs on PP2A. Additionally, the analysis of the
molecular mechanism was more comprehensive than that of Xu et al. [22]. We considered
that the changed interactions affected by the disinfection process might be divided into
multiple stages. Finally, the conditions and applications of the template docking mode
were emphasized in the study herein. The current study draws increased attention to
the secondary pollution caused by MC-DBPs. This study also contributes to develop-
ment of an MCs regulation strategy, and therefore has important theoretical and practical
application value.
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2. Results and Discussions
2.1. Typical MCLR-DBPs Identification Based on MS and HPLC Analysis

Subject to chlorination, MCLR might convert into multiple typical MCLR-DBPs with
different molecular weights that could be detected with a mass spectrometer (Figure 1). For
MCLR (C49H74N10O12), its major MS signals could be detected at m/z 995.5559 and 996.5593
(the chief isotopic peak), corresponding to the singles of protonated toxin (Figure 1A).
For the disinfection sample, five newly formed MS signals for single protonated typical
MCLR-DBPs could be detected at m/z 1047.5276, 1029.5616, 1099.4991, 1081.5331, and
795.3995 (Figure 1B). With the assistance of Compass Isotope Pattern software, the chemical
formulas for the above MCLR-DBPs could be identified as C49H75N10O13Cl (+OH, +Cl),
C49H76N10O14 (+2OH), C49H76N10O14Cl2 (+2OH, +2Cl), C49H77N10O15Cl (+3OH, +Cl),
and C34H54N10O12 (−15C, −20H).
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Figure 1. MS spectra for MCLR (A) and its disinfection sample (B) subject to chlorination for 40 min.

After solid-phase extraction, the preliminarily detected typical MCLR-DBPs in crude
extract were purified by preparative chromatography separation. Simultaneously, the
possible isomers for above MCLR-DBPs (with identical MS signals) could be separated
and identified according to their extract ion chromatogram (EIC) peaks (Figure 2) and
characteristic MS/MS fragments. For MCLR, it had a EIC peak around 18.25 min (Figure 2A)
and several corresponding MS/MS fragments at m/z 213.0834, 286.1479, 553.3072, 599.3546,
682.3959, and 866.5150. With the assistance of Compass Isotope Pattern software, the
typical MS/MS fragments could be identified as [Glu6-Mdha7 + H]+, [MeAsp3-Arg4 + H]+,
[Mdha7-Ala1-Leu2-MeAsp3-Arg4 + H]+, [MeAsp3-Arg4-Adda5 + H]+/[Arg4-Adda5-Glu6

+ H]+, [Arg4-Adda5-Glu6-Mdha7 + H]+, and [Mdha7-Ala1-Leu2-MeAsp3-Arg4-Adda5 +
H]+/[Arg4-Adda5-Glu6-Mdha7-Ala1-Leu2 + H]+ [20].

For typical MCLR-DBPs, eight EIC peaks were eluted between 16.82 min and 27.44 min
(Figure 2A–F). By comparing the MS/MS fragments related to the newly formed EIC peaks
with that of MCLR, it could be determined that Adda5 was the main reaction site (Table S1).
Combined with chemical formula analysis, the generative mechanisms for the typical
MCLR-DBPs were proposed: MCLR-DBP C49H75N10O13Cl had two isomers that were
eluted at 21.67 min (P1) and 22.29 min (P2) (Figure 2B). P1/P2 should be the addition
products of 1·Cl + 1·OH to the conjugated diene of Adda5. According to Markovnikov’s
rule, Cl should be added to the C atom with more H atoms, while ·OH should be added to
the C atom with less H atoms. On account of steric hindrance theory, the addition product
to the inner double bond should have a lower abundance than the addition product to the
external double bond. From this, P1 and P2 should be the addition product to the inner
double bond and the addition product to the external double bond, respectively. For MCLR-
DBP C49H76N10O14 with two EIC peaks at 17.44 min and 17.85 min (Figure 2C), it could
be formed by the addition of 2·OH to the conjugated diene of Adda5 or transformed by
substituting 1·Cl in the conjugated diene of P1/P2 with ·OH. Similarly, the addition product
of the inner double bond (P3) should have a lower abundance than the external double
bond (P4) on account of steric hindrance theory. For MCLR-DBP C49H76N10O14Cl2 with
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only one EIC peak at 27.44 min (Figure 2D), 2·Cl+2·OH should be successively added to the
two double bonds and thus formed P5. Likewise, P5 also could be transformed from P1/P2
by adding 1·Cl + 1·OH to another C=C bond in Adda5. For MCLR-DBP C49H77N10O15Cl
with two EIC peaks at 19.48 min and 20.09 min (Figure 2E), there should be two MCLR-
DBP isomers P6/P7, which should be the secondary products of P1/P2/P3/P4. Taking
the abundances of P1/P2/P3/P4 into account, P6 (the isomer with higher abundance)
should be the secondary product of P1 and P4, while P7 (the isomer with lower abundance)
should be the secondary product of P2 and P3. For MCLR-DBP C34H54N10O12 with only
one EIC peak at 16.82 min (Figure 2F), the decreased molecular weight meant 15C+20H
were removed from the side chain of Adda5 and 1C+1H+1O were left (P8). P8 could also
be transformed from MCLR/P1/P3/P5/P6/P7 by the oxidation of inner double bonds,
forming C=O bonds.
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Figure 2. Extract ion chromatograms of native MCLR and typical MCLR-DBPs from disinfection
sample (40 min, with their separate max. abundances fixed at 100%). Extract ion chromatograms of
native MCLR (A), P1 and P2 (B), P3 and P4 (C), P5 (D), P6 and P7 (E), P8 (F).

2.2. Potential Inhibition Effect for Typical MCLR-DBPs Target to PP2A

Eluted typical MCLR-DBPs were collected around their specific retention times. The
preparation and purification information for typical MCLR-DBPs was listed in Table S2.
Due to their higher purity (>98.6%), the prepared MCLR-DBP samples were directly used
in the PP2A inhibition assay. According to Figure 3, all of the typical MCLR-DBPs exhibited
inhibition effects on PP2A. Compared with MCLR, the inhibition effect of typical MCLR-
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DBPs decreased in different degrees. At 1 nM and 10 nM, the inhibition effect of toxins
could be divided into six categories (a MCLR; b P1; c P4; d P2, P3; e P5, P6, P7; and f
P8) according to ANOVA. At 100 nM, the inhibition effect of toxins could be divided into
seven categories according to ANOVA: (a) MCLR; (ab) P1; (b) P4; (c) P3; (d) P2; (e) P7;
(f) P6; and (g) P5, P8. To sum up, the inhibition sequence could be identified as MCLR >
P1 > P4 > P3 ≈ P2 > P7 ≈ P6 ≈ P5 > P8. Basically, the inhibition effect of MCLR-DBPs on
PP2A gradually decreased as the reaction progressed. What should be emphasized is the
considerable inhibition effect of MCLR-DBPs (especially P1, P4) on PP2A; their secondary
environmental risk could not be ignored.
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Figure 3. The inhibition effect of MCLR and typical MCLR-DBPs on PP2A. The error bar is the
standard error of three repeated analyses. A one-way analysis of variance (ANOVA) followed by LSD
post-hoc tests were used to verify significant differences among MCLR and MCLR-DBPs. Different
letters indicate significant differences between groups (p < 0.05) obtained using SPSS software [23].

2.3. Simulation for the Interactions between Typical MCLR-DBPs and PP2A Based on Ligand
Similarity Modeling and Molecular Docking

The potential inhibition effect of typical MCLR-DBPs on PP2A should be attributed to
their residual toxic groups derived from MCLR. As limited information was available for
the interactions between MCLR-DBPs and PP2A, it was difficult to evaluate the potential
inhibition effect of typical MCLR-DBPs on PP2A. Since MCLR and MCLR-DBPs were
considered to have a reasonable structural similarity, MCLR was an ideal template to
construct MCLR-DBPs. With the assistance of molecular simulation, the models for typical
MCLR-DBPs and PP2A were constructed by modeling based on ligand similarity (see
Figure 4). The model for MCLR-PP2A was obtained from the Protein Data Bank (PDB
code 2IE3) and preprocessed by “building missing loops” and adjusting the charges of
the whole system. Based on the revised model for MCLR-PP2A, the models for typical
MCLR-DBPs and PP2A complexes could be preliminarily constructed through “modeling
based on ligand similarity”: the original ligand MCLR in the revised model was replaced by
the identified MCLR-DBPs. Then, the models for MCLR-DBPs and PP2A complexes were
energy minimized and re-docked though “template dock” mode to ensure the reliability of
the models. On this basis, 80 candidate interaction parameters (combination areas, related
surface areas, related chemical bonds) between toxins and PP2A, the exposure areas of the
catalytic center, and related parameters for toxins were obtained with molecular docking
simulation (listed in Table S3).
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Figure 4. Illustration for interaction model construction for typical MCLR-DBP-PP2A complexes
(with no PDB models) based on the ligand-similarity-modeling strategy.

2.4. Pearson Correlation Analysis for the Candidate Interaction Parameters and Inhibition Data

Pearson correlation analysis was used to evaluate the correlation between inhibition
data and candidate interaction parameters. Regression analysis was not used to avoid
deleting valid parameters associated with a few limited amino acid residues. According to
Figures 5 and S1, the interaction parameters showed diversified correlation with inhibition
data: 43 interaction parameters were positively correlated with inhibition data at all or
partial concentrations, while 37 interaction parameters were negatively correlated with
inhibition data at all or partial concentrations; 12 interaction parameters were extremely
significantly correlated with inhibition data at all or partial concentrations (p < 0.01), while
24 interaction parameters were significantly correlated with inhibition data at all or partial
concentrations (p < 0.05). Among them, the interaction parameters that were significantly
or extremely significantly correlated with inhibition data (p < 0.05 or p < 0.01) were crucial
for the inhibition effect of MCLR and typical MCLR-DBPs on PP2A.

In view of this, Venn diagrams were further used to screen the key interaction pa-
rameters (Figure 6). At the level of p < 0.01, the catalytic center exposure area for Asp57
+ Mn2

2+, hydrogen bonds for Arg4←Arg214, “Adda5”←His118, and the combination area
for MeAsp3→PP2A were highly and significantly correlated with toxin toxicity at the
three test concentrations. Hydrogen bond for Arg4→Pro213, ionic bond for Glu6-Arg89,
the combination areas for Ala1→PP2A, Glu6→PP2A, the negative accessible surface area
for Ala1→PP2A, the positive accessible surface area for Glu6→PP2A, and the amino acid
associated with the binding of the phosphate group for Arg214 were highly and significantly
correlated with toxin toxicity at 1 nM and 10 nM. The combination area for “Adda5”→PP2A
was highly and significantly correlated with toxin toxicity at 10 nM and 100 nM. At the
level of p < 0.05, the combination area for Arg4→PP2A, the positive accessible surface
area for “Adda5”→PP2A, the hydrophobic surface area for “Adda5”→PP2A, and the
polar surface area for “Adda5”→PP2A were in highly significant correlation with toxin
toxicity at the three test concentrations. The metal bonds for Mn2+ ions to toxins, the
metal bond for Glu6-Mn1

2+, and the polar surface area for Leu2→PP2A were significantly
correlated with toxin toxicity at 1 nM and 10 nM. Hydrogen bonds for MeAsp3←Arg89,
“Adda5”←Asn117, ionic bonds for Arg85-Mn1

2+, Arg57-Mn2
2+, metal bond for Glu6-Mn2

2+,
and the combination area for Mdha7→PP2A were significantly correlated with toxin toxicity
at 10 nM and 100 nM. The combination area for “Adda5”→PP2A, the polar surface area for
MeAsp3→PP2A, and the hydrophobic surface area for Arg4→PP2A were significantly cor-
related with toxin toxicity at 1 nM. The positive accessible surface area for Ala1→PP2A and
the hydrophobic surface area for Leu2→PP2A were significantly correlated with toxin toxic-
ity at 10 nM. Hydrogen bond for Arg4→Pro213, ionic bond for Glu6-Arg89, the combination
areas for Ala1→PP2A, Glu6→PP2A, the negative accessible surface area for Ala1→PP2A,
and the positive accessible surface area for Glu6→PP2A were significantly correlated with
toxin toxicity at 100 nM. Obviously, the above interaction parameters (especially those
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highly related to toxin toxicity at two and three test concentrations) were important for the
inhibition effect of MCLR and typical MCLR-DBPs on PP2A.
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The statistical analysis was further adopted to classify the key interactions based
on the structural units of MCLR/MCLR-DBPs and catalytic center (Figure 7). Among
this, the metal bonds for Mn2+ ions to toxins should be related to Glu6, Mn1

2+ ion, and
Mn2

2+ ion. Statistical frequency analysis (Figure 7A) determined that six key interaction
parameters were related to “Adda5”/Glu6, four key interaction parameters were related
to Arg4/Mn2

2+, three key interaction parameters were related to Ala1/MeAsp3/Mn1
2+,

two key interaction parameters were related to Leu2, while one key interaction parame-
ter was related to the phosphate group/Mdha7. Combined with statistical analysis for
the total |R| values related to the above sites, “Adda5”, Glu6, Arg4, Mn2

2+ ion, Ala1,
MeAsp3, Mn1

2+ ion, Leu2, the phosphate group, and Mdha7 participated in the combina-
tion of MCLR/MCLR-DBPs to PP2A and their contributions exhibited a downward trend.
“Adda5”/Glu6 had a prominent influence on the combination of MCLR/MCLR-DBPs to
PP2A, Arg4/Mn2

2+/Ala1/MeAsp3/Mn1
2+ had a considerable influence on the combina-

tion of MCLR/MCLR-DBPs to PP2A, while Leu2/the phosphate group/Mdha7 had certain
influence on the combination of MCLR/MCLR-DBPs to PP2A (Figure 7B).
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2.5. Molecular Mechanism Analysis for the Potential Inhibition Effect of Typical MCLR-DBPs
Target to PP2A

The 2D ligand–receptor interaction diagram illustrated the key interactions, includ-
ing hydrogen bonds “Adda5”←Asn117, “Adda5”←His118, Arg4←Arg214, Arg4→Pro213,
MeAsp3←Arg89; ionic bonds Glu6-Arg89, Asp85-Mn1

2+, Asp57-Mn2
2+; and metal bonds

Glu6-Mn1
2+, Glu6-Mn2

2+ (Figure 8). The identified MCLR-DBPs retained all or part of the
key sites (key interactions), and thus exhibited potential inhibition effects on PP2A. With
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the progress of the chlorination, the structure of Adda5 was gradually destroyed and the
inhibition effect of typical MCLR-DBPs on PP2A basically decreased as well. Obviously,
structural differences changed the above key interactions and thus changed the inhibition
effects of typical MCLR-DBPs on PP2A.
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More specifically, the introduced polar groups ·Cl and ·OH firstly weakened the
hydrophobic and electropositive interactions between “Adda5” and PP2A (ASA-H and
ASA+ related to “Adda5” were positively correlated with toxicity), resulting in the atten-
uated combination of “Adda5” to PP2A. The progressive damage of “Adda5” directly
weakened hydrogen bonds “Adda5”←Asn117 and “Adda5”←His118 to larger degrees. The
progressive damage of “Adda5” also intervened in the combination of other structural units
of MCLR-DBPs to PP2A by weakening hydrogen bonds MeAsp3←Arg89, Arg4←Arg214,
Arg4→Pro213, and by strengthening ionic bond Glu6-Arg89. Correspondingly, the combi-
nation areas of MeAsp3 and Arg4 to PP2A were decreased. However, the combination
areas of Glu6 to PP2A did not show an increase trend. The abnormal phenomenon should
be attributed to the competitive effect of Mn2+ ions in the catalytic center. The two Mn2+

ions could form new metal bonds (Glu6-Mn1
2+, Glu6(C=O)-Mn2

2+, Glu6(OH)-Mn2
2+) with

the side chain of Glu6. The above modified interactions further affected the interactions
between the conserved domain of PP2A and Mn2+ ions (including the enhanced ionic bond
Asp85-Mn1

2+ and the weakened ionic bond Asp57-Mn2
2+) and promoted the exposure of
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Mn2+ ions. At the same time, weakening of the hydrogen bond Arg4←Arg214 promoted
the exposure areas of Arg214, and thus the linkage of the phosphate group to Arg214 was
facilitated. Both the exposure of Mn2+ ions and the combination of Arg214 to the phosphate
group increased, resulting in the restored catalytic activity of PP2A.

3. Conclusions

This research investigated the molecular mechanism for the potential inhibition effect
of typical MCLR-DBPs target to PP2A. Subject to disinfection, MCLR was oxidized into
five types of typical MCLR-DBP with different molecular weights. The isomers for typical
MCLR-DBPs with identical molecular weight were separated and identified as P1–P8
(mainly the ·OH/·Cl addition products related to the conjugated diene in Adda5). PP2A
inhibition assay showed that the potential inhibition effects of toxins were in the sequence
of MCLR > P1 > P4 > P3 ≈ P2 > P7 ≈ P6 ≈ P5 > P8. To elucidate the molecular mechanism
underlying the inhibition effect, the interaction models for typical MCLR-DBPs-PP2A
were preliminary constructed by a modeling-based-on-ligand-similarity strategy according
to the crystal structure of the MCLR-PP2A complex. With the assistance of molecular
docking simulation, the candidate interaction parameters between typical MCLR-DBPs
and PP2A were obtained. Taking the inhibition data and candidate interaction parameters
into consideration, Pearson correlation analysis filtered the key interaction parameters.
The progressive damage of “Adda5” directly resulted in the weakening of hydrogen
bonds “Adda5”←Asn117 and “Adda5”←His118, and indirectly resulted in the weakening
of hydrogen bonds MeAsp3←Arg89, Arg4←Arg214, Arg4→Pro213, and the strengthening
of ionic bond Glu6-Arg89. Changes in the above key interactions further affected the
interactions associated with Mn2+ ions (in the catalytic center) by strengthening ionic bond
Asp85-Mn1

2+, metal bonds Glu6-Mn1
2+, Glu6-Mn2

2+, and weakening ionic bond Asp57-
Mn2

2+. The typical MCLR-DBPs retained the above key interactions, and thus exhibited
potential inhibition effects on PP2A. Changes in the interactions associated with Mn2+ ions
increased the exposure areas of Mn2+ ions. Meanwhile, the weakened hydrogen bond
Arg4←Arg214 facilitated the linkage of the phosphate group to Arg214 (with increased
exposure). In this way, the catalytic activity of PP2A was restored.

4. Materials and Methods
4.1. Materials

Microcystin-LR was purchased from Sigma (Saint-Quentin Fallavier, France). PP2A
was obtained from New England Biolabs Inc. Na2S2O3, MgCl2, MnCl2, HCl, Ca(ClO)2,
high-purity CO2, p-Nitrophenyldisodium orthophorphate (p-NPP), tris(hydroxymethyl)
aminomethane (Tris), bovine serum albumin (BSA), dithiothreitol (DTT), neoprene rub-
ber, sodium nitrobenzene disodium, and ascorbic acid were purchased from Sinopharm
(Shanghai, China). HCOOH, CH3OH, CF3COOH, and HPLC acetonitrile were purchased
from Merck (Darmstadt, Germany).

4.2. Chlorination Treatment of MCLR

Chlorination treatment of MCLR was performed with HClO serving as the disinfectant.
HClO was prepared based on the precipitation reaction of Ca(ClO)2 and CO2 [24]. Amounts
of 250 mL MCLR (100 µg/L) and 250 mL HClO (about 4 mg/L) were mixed in a 1000 mL
brown reagent bottle and reacted in darkness at room temperature. At the fixed reaction
time, 50 mL disinfection sample was fetched out and mixed with 5 mL ascorbic acid (about
20 mg/L).

4.3. Purification and Preparation of Typical MCLR-DBPs
4.3.1. MS Analysis of the Disinfection Samples

The chlorination sample was mixed with the same volume of methanol (containing
0.1% formic acid) and was injected into a maXis UHR-TOF mass spectrometer for the
preliminary identification of typical MCLR-DBPs. Typical MS parameters were set as
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follows: positive ion spray ionization pattern, source voltage 4 kV, cone voltage 0.5 kV,
desolvation gas (N2) 0.4 bar, dry gas (N2) heater 180 ◦C, dry gas (N2) flow rate 4 L/min,
full scan m/z 750−1200.

4.3.2. Purification of Typical MCLR-DBPs

According to the traditional concentration and enrichment methods for MCs, typical
MCLR-DBPs were purified [25,26]. Disinfection samples (50 mL) were applied to the pre-
rinsed SepPakC18 SPE cartridges (1000 mg, Waters) with 10 mL methanol and 10 mL high
purity water. Impurities and typical MCLR-DBPs were eluted with 5 mL 10% methanol
and 5 mL 80% methanol, respectively. The crude extracts of typical MCLR-DBPs were
evaporated to dryness in N2 flow and resuspended in 200 µL 20% acetonitrile. Then the
crude extracts were separated using a Dionex Ultimate-3000 HPLC system equipped with
a C18 reversed-phase preparative column (25.4 mm × 450 mm, 5 µm, 120 Å) [21]. Water
(containing 0.1% formic acid) and acetonitrile (containing 0.1% formic acid) were used
as mobile phase A and mobile phase B, respectively. The elution conditions were: 20%
mobile phase B for 3 min; 20%→80% mobile phase B over 25 min; 80%→20% mobile phase
B within 0.1 min; 20% mobile phase B for 3 min. The column temperature and the flow rate
were set at 35 ◦C and 5 mL/min, respectively.

4.3.3. Preparation of Typical MCLR-DBPs

At the same time, partial chromatographic effluent was guided into the maXis UHR-
TOF mass spectrometer through a four-way valve with the assistance of an autosampler.
MS parameters were set as those of Section 4.3.1 except “full scan” mode was changed to
“selective ion scan” mode. The specific retention times for typical MCLR-DBPs (especially
for the isomers) could be obtained. Chromatography-separated typical MCLR-DBPs were
collected at their specific retention times and separately stored in brown reagent bottles [21].
Multi-collect pure samples for typical MCLR-DBPs were dried with N2 and dissolved in
200 µL methanol. Based on MS/MS analysis, the prepared MCLR-DBPs were identified by
comparing their secondary structures with that of MCLR (MS/MS parameters were set as
those of Section 4.3.1 except N2 collision gas energies were adjusted from 40 to 100 eV, and
full scan range was adjusted as m/z 100−1200).

4.4. PP2A Inhibition Assay for MCLR and Typical MCLR-DBPs

The inhibition effect of typical MCLR-DBPs on PP2A was evaluated with a typical
protein phosphatase inhibition assay [27]. First, PP2A was diluted to 5 U/mL with buffer
solution (50 mM Tris-HCl, 1.0 mM MnCl2, 2.0 mM dithiothreitol, pH 7.4) and 1.0 g/L
BSA. Afterwards, 10 µL PP2A and 100 µL samples were mixed into a 96-well polystyrene
microplate plate. After shaking slightly, the microplate was kept at 25.0 ◦C for 15 min and
90 µL p-NPP was added to the microtiter plate. After 60 min, absorbance ODS405 was
measured with a microplate reader. The PP2A relative activity percentage formula is as
follows: IPP2A (%) = (Atoxins − Ablank)/(Acontrol − Ablank) × 100%. In the control group,
toxins were replaced by distilled water, and in the blank group MCLR/MCLR-DBPs and
PP2A were replaced by distilled water.

4.5. Molecular Simulation for the Interactions between MCLR/MCLR-DBPs and PP2A

Molecular simulation was performed with Molecular Operating Environment software
(MOE, version 20.09). The experimental steps were as follows: The model for MCLR-
PP2A was obtained from Protein Data Bank (PDB code 2IE3). When the model for the
MCLR-PP2A complex was introduced into MOE, MCLR and PP2A were preprocessed
by “building missing loops” and adjusting the charges of the whole system [28]. The
models for MCLR-DBPs-PP2A were preliminarily constructed by modeling based on
ligand similarity: the original ligand MCLR in the optimized model of MCLR-PP2A was
replaced by different MCLR-DBPs [22,28]. The models for MCLR-DBPs-PP2A complexes
were energy-minimized to determine the optimal interaction geometry and associated
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energy between MCLR-DBPs and PP2A and to check the rationality of crystal structures.
Subsequently, the optimized models for MCLR-DBPs-PP2A complexes were re-docked
though “template dock” mode and then the interactions between MCLR/MCLR-DBPs
and PP2A were simulated. The “template dock” mode developed by MOE software
was suitable for binding sites whose locations are known but information about specific
ligand interactions is lacking, which ensured the comparability of MCLR-DBPs with their
original toxin [22]. Docking parameters were set as follows: amber 10 EHT, solvation
r-field, temperature 25.0 ◦C, pH 7.4, salinity 0.05 M. The candidate interaction parameters
(combination areas, related surface areas, hydrogen bonds, metal bonds, ionic bonds,
exposure areas of the catalytic center) related to the combination of toxins to PP2A could
be obtained.

4.6. Statistical Analysis

Pearson correlation analysis was used to analyze the correlations between inhibition
data and candidate interaction parameters with IBM SPSS Statistics software (version 26.0,
Chicago, IL, USA). Hypothesis testing of Pearson correlation coefficient was performed
with Student’s t-test. Significance levels are reported to be highly significant (p < 0.01),
significant (p < 0.05), or not significant (p > 0.05). One-way analysis of variance (ANOVA)
followed by least significant difference (LSD) post-hoc tests was used to check significant
differences among groups and p < 0.05 values were considered statistically significant.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxins14120878/s1, Table S1: MS/MS identification of MCLR and
MCLR-DBPs; Table S2: Preparation and purification information for typical MCLR-DBPs; Table S3:
The candidate interaction parameters between MCLR/MCLR-DBPs and PP2A; Figure S1: Pearson
correlation coefficients between inhibition data and exposure areas associated with phosphate group.
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