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Abstract: Mycotoxins are secondary metabolites produced by fungi. Food/feed contamination by
mycotoxins is a great threat to food safety. The contamination can occur along the food chain and
can cause many diseases in humans and animals, and it also can cause economic losses. Many
detoxification methods, including physical, chemical, and biological techniques, have been estab-
lished to eliminate mycotoxins in food/feed. The biological method, with mycotoxin detoxification
by microorganisms, is reliable, efficient, less costly, and easy to use compared with physical and
chemical ones. However, it is important to discover the metabolite’s toxicity resulting from mycotoxin
biodegradation. These compounds can be less or more toxic than the parent. On the other hand,
mechanisms involved in a mycotoxin’s biological control remain still unclear. Mostly, there is little
information about the method used by microorganisms to control mycotoxins. Therefore, this article
presents an overview of the most toxic mycotoxins and the different microorganisms that have a
mycotoxin detoxification ability. At the same time, different screening methods for degradation
compound elucidation are given. In addition, the review summarizes mechanisms of mycotoxin
biodegradation and gives some applications.

Keywords: mycotoxins; aflatoxins; contamination; microorganisms; biodegradation; enzymes

Key Contribution: This review highlights the current research in mycotoxin biodegradation and
bioadsorption. As such, an emphasis is placed on microorganism species; mechanisms; resulting
compounds after biodegradation; and main important applications.

1. Introduction

Mycotoxins are secondary metabolites with low molecular weight produced by fil-
amentous fungal species [1–3]. Their chemical structures are very different [4], and they
cause various degrees of toxicity in humans and animals. Mycotoxins are often genotypi-
cally specific but can be produced by one or more fungal species; one species can produce
more than one kind of mycotoxin. In the environment, there are more than 200 kinds of
mycotoxins [5]. Some of them can exhibit carcinogenic, teratogenic, mutagenic, and neuro-
toxic properties, and others can show antitumor capacity and cytotoxic and antimicrobial
properties [4,6].
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Mycotoxin contamination can occur throughout the whole food process, from pre-
harvest to food storage [5,7–9]. It is estimated that 25% of the world’s agricultural products
may be contaminated by mycotoxins each year [10], which leads to economic losses and
causes a variety of toxic effects in humans and animals. According to the RASFF (Rapid
Alert System for Food and Feed), for the 10-year period from 2010–2019, almost 98.9% of
U.S. food notifications on mycotoxins were due to aflatoxin contamination in almonds,
peanuts, and pistachio nuts [11]. A multi-mycotoxin analysis of sorghum and finger millet
in 2014 showed that these two types of cereals were contaminated with major mycotoxins,
with a prevalence of 6 to 52% for finger millet and less than 15% for sorghum [12]. A similar
study about the occurrence of mycotoxins in peanuts and peanut products showed that the
level of aflatoxins was higher than the maximum limit in 90% of the samples [13]. A study
by Monyo et al. on the occurrence of aflatoxin contamination in groundnut demonstrated
that the amount of aflatoxin was higher than the maximal limit in 11 to 28% of the samples
and below the limit in 2 to 10% of the samples [14]. A study on the occurrence of ochratoxin
A (OTA) in food products available in Silesia markets showed that around 22% of the
samples were contaminated [15]. Up to 30 or 31% of total wheat-based product samples
collected from some districts of Punjab were found to be contaminated with aflatoxins and
zearalenone (ZEN) [16]. A three-year survey about Fusarium mycotoxin contamination
in wheat samples showed the presence of deoxynivalenol (DON) and nivalenol (NIV) in
about 540 and 337 µg/kg, respectively [17]. To deal with this worldwide problem, many
detoxification methods have been found against mycotoxins: physical methods, chemical
methods, and biological methods [18,19].

Physical control refers to all methods that use the physical properties of a detoxica-
tion agent. This can include adsorption, extrusion, cooking, ozonation, the mechanical
separation of the clean product from contaminated one, heating at high temperatures,
use of radiation and light, grinding, and washing [20,21]. At present, the utilization of
mycotoxin-binding adsorbents is the most frequently applied method to protect animals
from contaminated feed [22]. Agro-product processing can also reduce mycotoxin contami-
nation. Fermentation has been useful for some Fusarium mycotoxins [23]. It is considered
an excellent technique for mycotoxin control in African countries [24].

Chemical control refers to methods that require the use of chemical compounds.
This includes techniques such as ammonization [25], the influence of acids and bases,
and the influence of oxidizing agents or various inorganic and organic chemicals [20].
However, these methods have some limitations because of the possible deterioration of
animal health caused by excessive residual chemical substances in the feed and even some
environmentally negative impacts [22].

Nowadays, the biological control of mycotoxins has gained great interest because
most chemical and physical detoxification pathways have limitations such as high cost,
residual compounds in food and feed, and loss of nutrients. Biological methods include
the action of yeasts, bacteria, and enzymes against mycotoxins [26,27]. This detoxification
pathway offers an excellent alternative to eliminate toxins and safeguards the nutritional
value of food and feed. Nonetheless, biodegradation can result in more toxic compounds.
Therefore, there is a need to study the toxicity of the resulting compounds [28].

This paper first describes the most common mycotoxins, then it provides a summary
of different mycotoxin detoxification methods by microorganisms and detoxification mech-
anisms already found. Finally, some important microorganism applications are provided.

2. Major Mycotoxin Overview

Along the food chain, aflatoxins, ochratoxin A, zearalenone, deoxynivalenol, nivalenol,
fumonisin B1 and B2, and patulin are the most common mycotoxins that can contaminate
food and feed [29].

Aflatoxins are secondary fungi metabolites mostly produced by Aspergillus flavus,
Aspergillus parasiticus, Aspergillus nominus, and Aspergillus niger [5,30,31]. Approximately
18 aflatoxins have been identified [32], but the most common are aflatoxin B1 (AFB1),
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aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), aflatoxin M1 (AFM1), and
aflatoxin M2 (AFM2). Due to their capacity to bind with the DNA of cells, aflatoxins affect
protein synthesis [33]. Group B has blue fluorescence and group G has green fluorescence
under ultraviolet light [33]. Aflatoxin contamination occurs mainly in hot and humid
regions [34]. AFB1 is the most toxic and is cancerogenic, teratogenic, and mutagenic [35].
It is included in category 1A of active carcinogenic compounds (IARC, 1993). The liver
is its number one target [36]. On the other hand, AFM1 is a metabolite of AFB1 mainly
present in dairy products [37] and is included in group 2B by International Agency for
Research on Cancer (IARC) (1993) with a maximum of 0.5 µg/kg in milk [38]. Aflatoxin B1
is bio-transformed into AFB1-8,9-epoxide via cytochrome p450 enzymes, which can induce
DNA damage [39].

Patulin (PAT) is a mycotoxin produced mostly by penicillium [40], Byssochlamys,
and Aspergillus species [41]. Patulin contamination can cause a lot of damage to animals,
such as cancer, by affecting different organs, including the kidney, liver, and intestine [42].
It can contaminate foodstuffs such as fruits and vegetables, especially apples and apple
by-products [43–45].

Ochratoxin A (OTA) is the most common toxin in grapes and grape-derived prod-
ucts [46], but it can also contaminate food such as coffee, spices, beer [47], and some meat
products [48]. OTA is mainly produced by Aspergillus ochraceus and Penicillium verruco-
sum [49]. Aspergillus carbonarius, and Aspergillus niger can also produce OTA, especially
in grapes and wines [50]. OTA is very stable at high temperatures [51]. It has neuro-
toxicological effects [52,53] nephrotoxic effects and can affect mammary functions [54].
OTA production in grapes and grape-derived products is a severe problem in the wine
production field, especially in European countries where the climate conditions favor the
growth of ochratoxigenic Aspergillus species. Thus, since March 2002, maximum OTA
levels in cereals and dried vine fruits are regulated by the EU [55,56].

Fumonisin B1 (FB1) is the most abundant and toxic of the more than 15 types of
fumonisins that have been identified [57]. FB1 can cause many diverse toxic effects in
animals, including neurotoxicity, hepatotoxicity, and nephrotoxicity [58]. FB1 is a mycotoxin
produced by Fusarium species such as Fusarium verticilloides and Fusarium proliferatum [59].
It is found in various crops, but mostly in corn and corn-based food or feed products. It is
classified by the IARC 2002 as a carcinogen to humans (group 2B) [60].

Trichothecene mycotoxins are a group of sesquiterpenoid metabolites produced by
Fusarium species. They usually contaminate cereals and threaten human and animal
health [61]. Around 200 tetracyclic sesquiterpenoids have been identified as part of the
trichothecene group [62]. Deoxynivalenol (DON) and nivalenol (NIV), and T-2 Toxin (T-2)
are the more significant trichothecenes [63]. Type-B trichothecenes include deoxynivalenol
(DON), nivalenol (NIV), and their acetylated derivatives, whereas Type-A includes T-2 and
HT-2 toxins [10]. They are distinguished by the presence or absence of a carbonyl group in
the C8 position.

Deoxynivalenol (DON) has been found to contaminate cereal crops such as barley [64],
wheat [65], and maize, as well as their by-products [66]. It is mainly produced by Fusarium
species [67]. DON may cause toxic and immune-toxic effects in animal species [6]. It is a
potent inhibitor of protein synthesis. Fusarium mycotoxins such as DON and ZEN have
been shown to affect liver morphology [68] and to have an immunosuppressive effect [69].

Zearalenone is a β-resorcylic acid lactone [70] that is produced by several species of
Fusarium, including Fusarium graminearum, Fusarium culmorum, Fusarium cerealis, Fusarium
equiseti, and Fusarium semitectum [71]. This mycotoxin infects cereals such as maize and
wheat and can cause many hazards to humans and animals, such as cytogenetic toxicity,
decrease fertility, embryotoxicity, and immunotoxicity [72–74]. ZEN has the ability to bind
to the estrogen receptors of a cell, making it hazardous to humans and animals [75]. ZEN is
mostly bio-transforming in α-ZEN and β-ZEN [76].

Due to their toxicity and effects on human health, many countries and international
organizations, such as the World Health Organization (WHO), the Food and Agriculture
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Organization (FAO), and the European Union (EU) through the European Food Safety
Authority (EFSA) [77], have set up strict controls of maximum residue levels in foodstuffs.
Figure 1 provides some examples of mycotoxin structures.
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Table 1 provides an overview of the characteristics of some mycotoxins, including
their effects and corresponding recommendations from the World Health Organization [38].

Table 1. Some mycotoxin characterizations.

Toxins Effects Fungi Producer WHO Recommendation References

Aflatoxin B1 Cancerogenic, teratogenic,
mutagenic

Aspergillus flavus,
Aspergillus parasiticus,
Aspergillus nominus,
and Aspergillus niger

15 µg/kg in peanuts [5,30,31,39,78–80]

Patulin
Genotoxicity, mutagenicity,
gastrointestinal disorders,

edema

Penicillium,
Byssochlamys, and
Aspergillus species

50 µg/kg in apple juice [27,81–85]

OTA
Nephrotoxic and neurotoxic

effects, affects mammary
functions

Aspergillus ochraceus,
Penicillium verrucosum,
Aspergillus carbonarius,
and Aspergillus niger

5 µg/kg in wheat and
barley [50,52,54,86,87]

DON Intestinal damage, emetic
effects, immune-toxic

Fusarium graminearum
and Fusarium culmorum

2000 µg/kg in wheat,
barley, and maize [88–90]

ZEN

Cytogenetic toxicity, decreases
fertility, embryotoxicity,

immunotoxicity, estrogenic,
anti-androgenic activities

Fusarium graminearum,
Fusarium culmorum,

Fusarium cerealis,
Fusarium equiseti, and
Fusarium semitectum

TDI1 0.25 µg/kg by EFSA2 [70–74,91–93]

Fumonisin B1 Neurotoxicity, Hepatotoxicity,
nephrotoxicity

Fusarium verticilloides
and Fusarium
proliferatum

Total of FB1 + FB2: 2000
µg/kg in maize flour and

maize meal
[59,94–96]

1TDI: Tolerable daily intake; 2EFSA: European Food Safety Authority.
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3. Microorganism Degradation
3.1. Toxin Detoxification by Bacteria

Many species of bacteria have the ability to degrade mycotoxins, including lactic acid
bacteria [97] and other species [98]. Tetragenococcus halophilus [99], Rhodococcus erythro-
polis, and Mycobacterium fluoranthenivorans [100] were proven to degrade AFB1; Pediococ-
cus parvulus [101] and Lactobacillus acidophilus [102,103] are effective for OTA, AFB1, and
AFM1 biocontrol; Bifidobacterium animalis [104] is useful for patulin control; Pseudomonas
otitidis [105] and Bacillus velezensis Strain ANSB01E [106] are able to detoxify ZEN. The
degradation process depends on many factors, such as the incubation time, the medium,
the microorganism species, the concentration of the bacteria cells, and the pH.

The degradation time changes according to the bacteria strain; the microbiota from
the thermophilic compost of agricultural waste have degraded AFB1 in 5 days, with a
degradation yield of more than 95% after cultivation in a PCS medium at 55 ◦C [107],
and Rhodococcus pyridinivorans K408 took 12 days to detoxify AFB1 in bioethanol [26]; the
Lacticaseibacillus rhamnosus (previously Lactobacillus rhamnosus) strains LBGG and LC705,
however, removed AFB1 very rapidly [108].

The detoxification rate can depend on the medium; Bacillus subtilis UTBSP1 is able
to detoxify AFB1 in a higher yield in pistachio nuts than in a medium culture [109], and
Pseudomonas fluorescens strain 3JW1 can degrade AFB1 in potato dextrose broth and peanut
medium by 97.8% and 99.4%, respectively [18].

Many bacteria have been reported to be able to degrade more than one mycotoxin [110].
AFB1 and ZEN have been degraded simultaneously by a microbial consortium, TADC7 [111];
Rhodococcus pyridinivorans strains (K408 and AK37) are able to degrade AFB1, T-2, and
ZEN simultaneously [22], but also, some lactic acid bacteria strains can degrade multi-
mycotoxins [112,113]. On the other hand, Pseudomonas fluorescens strain 3JW1 is able not
only to degrade AFB1 but also to inhibit the AFB1 production of Aspergillus flavus. It reduces
the amount of AFB1 produced by Aspergillus by 97.8%, 99.4%, and 55.8%, respectively, in
the medium culture, peanut medium, and peanut kernels [18].

pH also plays an important role in mycotoxin biodegradation. An Alcaligenes faecalis
strain called ANSA176 is able to detoxify OTA at a rate of 97.43% per 1 mg/mL OTA
into OTα within 12 h at 37 ◦C. The optimal pH is between 6.0–9.0. The bacterial species
subjected to the tested pH, ranging from 2.5 to 5.0, were unable to grow [114].

Therefore, mycotoxin biodegradation is an effective method, but it depends on multi-
ple factors. Strict studies are needed for each biocontrol strain to determine the optimal
conditions for its use. Table 2 provides an overview of AFB1 detoxification by bacteria with
regard to the medium culture used and the main effect on the mycotoxin.

Table 3 provides a global vision of mycotoxin detoxification by bacteria. The main
effects on each mycotoxin are provided, as well as the medium culture used.

3.2. Mycotoxin Detoxification by Yeast

Yeasts are able to detoxify mycotoxins in different ways: biodegradation, bioadsorp-
tion, or the inhibition of mycotoxin production [126].

The biodegradation method can happen with an enzyme isolated from the yeast or
the use of the yeast itself. Hong Cao et al. [127] demonstrated the aflatoxin B1 degradation
activity of an oxidase enzyme from the fungus Armillariella tabescens. The degradation
ability of aflatoxin oxidase has been shown by high-performance thin-layer chromatography
(HPTLC). The main mechanism was thought to be the cleavage of the bis-furan ring of
the aflatoxin molecule. Meyerozyma guilliermondii has been shown to be able to control
patulin in pear. The patulin degradation ability of Meyerozyma guilliermondii in pear wounds
increases with a higher concentration of yeast cells. The optimal temperatures are 20 ◦C
and 4 ◦C in wounds, as well as in whole fruits [128].
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Table 2. Aflatoxin B1 detoxification by bacteria.

Bacteria Medium Culture Main Effects References

Bacillus subtilis UTBSP1 (1) Nutrient broth culture
(2) Pistachio nut

Detoxification of AFB1 by 85.66% and 95%,
respectively, in the nutrient broth culture

and the pistachio nuts in optima conditions
of 35–40 ◦C during 24 h.

[109]

Mycobacterium fluoranthenivorans sp. Medium culture with AFB1 The AFB1 concentration was reduced by
70% to 80% within 36 h. [115]

Myroides odoratimimus strain 3J2MO Medium culture with AFB1 Degradation of 93.82% of the AFB1 after
incubation for 48 h at 37 ◦C. [116]

Pseudomonas fluorescens strain 3JW1
(1) Medium culture with AFB1

(2) Peanut medium
(3) Peanut kernels

Degradation of AFB1 by 88.3% in 96 h. [18]

Rhodococcus pyridinivorans K408
Bioethanol produced by

Aspergillus flavus-
contaminated corn

Degradation rate was more than 63% in the
solid phase and 75% in the liquid phase

after 12 experiment days.
[26]

Staphylococcus warneri, Sporosarcina
sp., Lysinibacillus fusiformis

Medium culture with
AFB1 standard

Both cultures and lysates degraded AFB1,
and the addition of a protease inhibitor

enhanced the degradation rate of the lysate.
[117]

Enterococcus faecium M74 and EF031
strains

Medium culture with
FB1 solution

AFB1 removal by 19.3 to 30.5% for M74
strain and 23.4 to 37.5% for EF031 strain. [110]

Pontibacter specie Medium culture with
aflatoxin B1 standard Lysates and cultures both degraded AFB1. [118]

Microbial consortium, TADC7 Medium culture with
aflatoxin B1 standard

Degradation of more than 95% of the
amount of AFB1 after five days cultivation

in PCS medium at 55 ◦C.
[107]

Lacticaseibacillus rhamnosus
(previously Lactobacillus rhamnosus)

strains LBGG and LC705

Medium culture with
aflatoxin B1 standard

A rapid removal of 80% of AFB1 by both
two strains. [108]

Lacticaseibacillus rhamnosus
(previously Lactobacillus rhamnosus)

TISTR 541

Bread produced by
contaminated wheat flour

Decrease in AFB1 levels during mixing and
fermentation process. [119]

Rhodococcus erythropolis Medium culture with
aflatoxin B1 standard

A significant reduction in the amount of
AFB1 when treated with the Rhodococcus

erythropolis extracellular extracts.
[120]

Lactobacillus acidophilus and prebiotics Whole cow’s milk Reduction in AFB1 of 13.53 to 35.53%. [103]
Lactobacillus acidophilus and
Lacticaseibacillus (previously

Lactobacillus rhamnosus)
Yogurt samples Binding of AFB1 by 64.56 to 96.58% during

21 days of storage. [121]

On the other hand, yeast biocontrol can involve bioadsorption mechanisms. Some
Saccharomyces strains are able to remove OTA contamination via adsorption; the mechanism
of removal can be enhanced from 45% to 90% by heat treatment of the microorganism
and with a lower pH in the medium [129]. In another case, during OTA reduction caused
by Saccharomyces cerevisiae, the addition of sugar at a temperature of 30 ◦C enhanced the
OTA reduction rate in a semi-synthetic medium [130]. The binding capacity of AFB1, ZEN,
OTA, and DON with respect to the Saccharomyces cerevisiae contained in beer fermentation
residue was studied by Campagnollo et al. [131]. The results showed that beer fermentation
residue has a higher binding capacity for ZEN at levels of 75.1% and 77.5% at pH 3.0 and
6.5, respectively. The volatiles of non-fermenting yeasts have shown significant binding
activity against mycotoxins. The highest mycotoxin binding activities of these strains were
noted against ochratoxin A (92%), AFB2 (66%), AFG2 (59%), and AFB1 (31%) [132]. One
issue concerning mycotoxin biocontrol by yeast is that it can sometimes be a reversible
mechanism, as has been noted with S. cerevisiae CECT 1891 and L. acidophilus 24, which
were able to remove FB1 from a liquid medium. The removal was a fast and reversible
process [133]. Yeasts’ complicated interactions with mycotoxins indicate that cell wall
structural integrity, physical structure and morphology, and chemical components all play
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important roles in the adsorption process. On this basis, future approaches may rely
on combinations of different microorganisms to provide complementary advantages in
mycotoxin adsorption by yeast [134].

Table 3. Other mycotoxins detoxification by bacteria.

Bacteria Toxins Medium Culture Main Effects References

Enterococcus faecium
M74 and EF031 strains Patulin

Medium culture
enriched with

patulin solution

Patulin removal of 15.8 to 41.6% for M74
strain and 19.5 to 45.3% for EF031 strain. [110]

Bacillus pumilus ES-21 Zearalenone Medium culture with
ZEN standard The degradation rate was more than 95.7%. [91]

Bacillus
amyloliquefaciens ZDS-1 Zearalenone

(1) Medium culture
with ZEN standard
(2) Contaminated

wheat samples

ZEN degradation with a concentration
ranging from 1 mg/L to 100 mg/L for specific

optimal conditions, which are temperature
30 ◦C, pH from 6.0 to 7.0, and a
microorganism concentration of

5.1 × 108 CFU/mL.

[122]

Rhodococcus
pyridinivorans strains

(K408 and AK37)

AFB1, T2
toxin, ZEA

Medium culture with
mycotoxin standard

solutions

Degradation of the 03 mycotoxins and
increase in the ZON degradation capacity
from 60% to 95% in the multi-mycotoxin

degradation system

[22]

Microbial consortium
TADC7 AFB1, ZEN

Medium culture with
mycotoxin standard

solutions

Degradation of AFB1 by 98.9% and ZEN by
88.5% after 168 h. [111]

Pseudomonas otitidis
TH-N1 Zearalenone Medium culture with a

ZEN standard

Degradation of ZEN under optimal
conditions: Temperature 37 ◦C, pH 4 to pH 5,
and bacterial concentration of 109 CFU/mL.

[105]

Bacterial consortium
PGC-3 DON, NIV

Medium culture with
mycotoxin standard

solution

Biotransformation of DON into
de-epoxy-DON and NIV into de-epoxy-NIV

with optimal conditions of pH 5–10 and
temperatures of 20–37 ◦C

in aerobic conditions.

[123]

Lactic acid bacteria DON, T-2,
HT-2, ZEN Malting wheat

Reduction in the amount of DON, T-2, HT-2,
and ZEN of, respectively, 23%, 34%, 58%, and

73% in malting wheat samples.
[112]

Lactic acid bacteria FB1, ZEN Maize meal Reduction in ZEN of 68.3% and FB1 of 75%
after 4 incubation days. [124]

Limosilactobacillus
reuteri (previously

Lactobacillus reuteri)
ZEN Nutrient broth and

maize kernels

Hydrolysis of 5.0 mg/L ZEN for 8 h in
nutrient broth and hydrolysis of

2.5 mg/kg ZEN for 4 h in ZEN-contaminated
maize kernels.

[125]

Bacillus velezensis Strain
ANSB01E ZEN Liquid medium and

moldy corn

ZEN degradation of 95% in the liquid
medium and of 25% in the moldy corn

after 48 h.
[106]

Finally, mycotoxin biocontrol by yeast can concern the inhibition of mycotoxin pro-
duction. Ponsone et al. studied the activity of some yeast strains isolated from Argentinean
vineyards against the growth of the ochratoxigenic Aspergillus strain Nigri and also evalu-
ated their effects on OTA. This study demonstrated the natural occurrence of biocontrol
agents in the environment to reduce fungi and mycotoxin problems. The results showed
that these yeast strains have the ability, under different water activity (aw) and tempera-
ture conditions, to control Aspergillus carbonarius and A. niger aggregate growth and OTA
accumulation with a reduction of at least 50% [135]. The same results were obtained when
non-fermenting and low-fermenting yeasts were used by Fiori et al. to reduce OTA contam-
ination in grape juice [136]. Nonetheless, some yeast strains are just able to inhibit growth
parameters but not mycotoxin production.

Table 4 provides a summary of mycotoxin detoxification by yeast. Emphasis is given
to related medium culture and its main effects on mycotoxins.
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Table 4. Toxin detoxification by yeasts.

Yeasts Toxins Medium Culture Main Effects References

Saccharomyces
cerevisiae

Beauvericin
(BEA)

(1) Standard of BEA
(2) Corn flour

In total, 89.1 to 99.3% degradation rate in
the standard solution against 73.5 to 91%

in the cornflour.
[137]

Rhodosporidium
paludigenum Patulin Patulin standard Removal of the total amount of patulin

after two days at 28 ◦C. [138]

Armillariella tabescens Aflatoxin B1 Aflatoxin B1 standard Cleavage of the bis-furan ring. [127]

Candida versatilis
CGMCC 3790 Aflatoxin B1

A mixture of steamed
soybean and baked

wheat flour

Degradation dependent on initial
AFB1 concentration. [139]

Rhizopus stolonifer OTA Wheat contaminated
by OTA Degradation of 96.5% of OTA. [140]

Candida intermedia,
Lachancea

thermotolerans,
Candida friedrichii

OTA Grape juice
Reductions in OTA by Candida intermedia,
Lachancea thermotolerans, Candida friedrichii

of 73%, 75%, and 70%, respectively.
[136]

Candida tropicalis,
Torulaspora delbriickii,

Zygosaccharomyces
rouxii, and

Saccharomyces strains

ZEN Growth media Biodegradation of ZEN into α- zearalenol
and β-zearalenol. [141]

Saccharomyces
cerevisiae W13 OTA Semi-synthetic medium

Removal of an amount of OTA from 6 to
57.21% with the highest level obtained at

30 ◦C with 250 g/L of sugar.
[130]

3.3. Toxin Detoxification by Enzymes

Some enzymes isolated from microorganisms or mushrooms are able to degrade one or
multiple mycotoxins. This is the case for the Ery4 laccase from Pleurotus eryngii, which can
degrade AFB1, FB1, OTA, ZEN, and T-2 at the same time [142]. Other enzymes can detoxify
only one mycotoxin; this is the case for Armillariella tabescens, which has been demonstrated
to have an AFB1 degradation ability [127]. The degradation mechanism depends on the
enzyme type and the type of mycotoxins. Enzymes can transform the parent into a new
compound [91,127,143] or digest it completely [122]. Zeinvand-Lorestani et al. studied
the action of a laccase enzyme against AFB1. Under optimal conditions, 67% of the total
amount of AFB1 was degraded by the laccase after two days. The degraded product’s
prooxidative properties and mutagenicity were lower than the AFB1 one [144]. Bacillus
amyloliquefaciens ASAG1 can detoxify OTA by 98.5% after 24 h of incubation and 100% after
72 h. On the other hand, the carboxypeptidase cloned from the bacterium is also able to
degrade OTA at a level of 41% and 72%, respectively, when cultivated with the supernatant
and the purified protein of the carboxypeptidase [145]. Another study showed the effect of
carboxypeptidases against OTA. Commercial protease A, commercial pancreatin, and an
enzyme extract isolated from Aspergillus niger MUM have been proven to degrade OTA
to Otα, respectively, by 87.3%, 43.4%, and 99.8% under the optimal conditions of pH 7.5
and temperature 37 ◦C after 25 h [146]. Porcine pancreatic lipase degraded PAT in pear
juice [147].

Table 5 provides an overview of mycotoxin degradation by enzymes with emphasis
given to the medium culture and its main effects.
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Table 5. Toxin detoxification by enzymes.

Toxins Medium Enzymes Main Effects References

Patulin Apple juice Orotate phosphoribo-
syltransferase The degradation rate can reach over 80%. [148]

Aflatoxin B1 Medium culture with
aflatoxin B1 standard

Aflatoxin-oxidase
(AFO) Cleavage of the bis-furan ring. [127]

Aflatoxin B1
Citrate buffer

solution containing
20% DMSO

Laccase

Under optimal conditions, which are a
temperature of 35 ◦C, a pH of 4.5, and a
laccase activity of 30 U/mL, 67% of the
AFB1 total amount was degraded after

two days.

[144]

OTA LB medium

Carboxypeptidase
from Bacillus

amyloliquefaciens
ASAG1

Decrease of 41% and 72%, respectively,
when cultivated with the supernatant and
the purified protein of carboxypeptidase.

[145]

OTA Buffer systems with
enzymes

Commercial protease
A, commercial

pancreatin, and an
enzyme extract
isolated from

Aspergillus niger
MUM

At pH 7.5 and 37 ◦C, protease A and
pancreatin reduce the OTA level,

respectively, by 87.3%, 43.4%, and 99.8%
after 25 h.

[146]

AFB1 Reaction mixture Manganese protease
MnP

In total, 86% of AFB1 levels decrease after
48 h and 5 nkat of MnP. [143]

Patulin Pear juice Porcine pancreatic
lipase (PPL)

Patulin degradation with 0.02 g/mL PPL
and 0.375 mg/L of PAT at 40 ◦C within 24 h. [147]

Aflatoxin B1,
Fumonisin B1,
Ochratoxin A,

Zearalenone, T-2

Medium culture with
a standard solution of

mycotoxins

Ery4 laccase from
Saccharomyces

cerevisiae

AFB1, FB1, OTA, ZEN, and T-2 toxin
degradations of 73%, 74%, 27%, 100%, and

40%, respectively.
[142]

Aflatoxin B1 Medium culture with
aflatoxin B1 standard

Laccase from white
rot fungi

In total, 40.45% degradation of AFB1 by
Peniophora sp. SCC0152; 35.90% degradation
of AFB1 by Pleurotus ostreatus St2; 3; 87.34%
degradation of AFB1 by pure laccase from

Trametes versicolor.

[149]

4. Detoxification Mechanism
4.1. Biodegradation Mechanism

The toxin biodegradation mechanism depends on the microorganism and toxin na-
ture. In their study of AFB1 biodegradation, J. Li et al. demonstrated that aflatoxin B1
degradation by Tetragenococcus halophilus is first caused by adsorption and then by the
enzymatical pathway. The amount of AFB1 binding caused by adsorption was smaller than
the one degraded by the enzymatical pathway. Two mechanisms have been offered as pos-
sible pathways for enzymatical action, and six degradation products have been identified:
C14H10O4, C18H16O8, C14H12O3, C16H20O4, C14H16O2, and C14H20O2. The first pathway
involves the lactone ring, and the second one involves the double bond of the furan ring.
Both mechanisms result in the same compound: C14H20O2 [99]. The same results were
obtained with another salt-tolerant Candida versatilis, CGMCC 3790 [139]. In that case, four
resulting compounds were identified by LC/TOF-MS: C14H10O4, C14H12O3, C13H12O2,
and C11H10O4. Elsewhere, Hong Cao et al. suggested that the aflatoxin oxidase (AFO)
extracted from Armillariella tabescens detoxifies the AFB1 by cleaving the bis-furan ring [127].
Adebo et al. found that the pathway of AFB1 degradation by the culture and lysate of
a Pontibacter species is enzymatical and suggested that when the AFB1 is hydrolyzed, it
has probably been transformed into new compounds, which were not identified in that
paper [118]. AFB1 has been partially bio-transformed into aflatoxin D1 (AFD1) by deleting
a mutant of the bacC gene in Baccilus subtilis UTB1. The mechanism was a reduction in the
double bond of the lactone ring in the coumarin moiety, followed by the hydrolysis of the



Toxins 2022, 14, 729 10 of 22

ester bond and, finally, the des-carboxylation of the yield to aflatoxin D1 (AFD1); all the
processes were catalyzed by the BacC [150]. AFD1, AFD2, and AFD3 have been shown
to be degradation compounds of AFB1 detoxification by Pseudomonas putida. The mech-
anism might be lactone [151]. Phanerochaetesordida YK-624 is able to transform AFB1 into
AFB1-8,9-epoxide by, firstly, the oxidation of the manganese protease; thereafter, hydrolysis
obtains the final product, AFB1-8,9-dihydrodiol [143]

A yeast enzyme, orotate phosphoribosyltransferase, from Rhodotorula mucilaginosa was
tested against patulin in apple juice samples and under optimum degradation conditions,
which are 0.15 g/L of orotate phosphoribosyltransferase for every 1 mg/L patulin at 25 ◦C
for 18 h; the degradation rate of patulin reached over 80% [148]. During a study of patulin
degradation by the yeast Rhodosporidium paludigenum, the authors of [138] made the state-
ment that the enzyme(s) responsible for patulin degradation synthesis was enhanced by
the presence of patulin. In fact, an assay with protein extracted from cells contaminated
by patulin was more active than those with proteins from cells grown without patulin.
This difference was attributed to the synthesis of the enzyme. Patulin degradation screen-
ing of Saccharomyces cerevisiae, tested by M. Li et al., showed that the mechanism was
enzymatical and that the PAT-metabolizing enzyme production by the yeast cells is not
induced by PAT preincubation [27]. These results were not in accordance with those of
Ianiri et al., who concluded in their study that the patulin degradation mechanism by the
yeast Sporobolomyces sp. IAM 13481 can be induced via pretreatment with the mycotoxin;
the pre-incubation with patulin can induce the earlier activation of the gene-encoding
proteins of the antioxidant system and the proteins involved in the patulin efflux and
patulin degradation [152].

Young et al., in their study, showed that microbial isolate microbiota and pure cultures
from chicken intestines have the ability to degrade twelve trichothecenes. The degradation
compound identification by MS has suggested that the mechanism includes de-epoxidation
and or a diacylation, with the route depending on the presence and position of acyl
functionalities [153]. In addition, Gao et al. isolated a bacterium, Eggerthella sp. DII-9,
which has the ability to degrade some types of trichothecenes, including DON, HT-2,
T-2 triol, and T-2 tetraol, into other compounds. T-2 triol was degraded into de-epoxy
T-2triol (88.0%), de-epoxy HT-2 (8.6%), and de-epoxy T-2tetraol (2.3%). T-2 tetraol was
converted into de-epoxy T-2 tetraol (85.9%), and about 2.3% de-epoxy T-2 triol. HT-2
was transformed into de-epoxy HT-2 (81.4%) and 4.7% de-epoxy T-2 triol. To identify the
molecular mechanism, the complete genome of DII-9 was sequenced, but the location of
the responsible genes was not found. After the enzymatical study, de-epoxidation was
found to be a complex phenomenon [62].

The zearalenone degradation of Bacillus pumilus ES-21 was studied by G. Wang et al.
The degradation rate was more than 95.7%, and the degradation compound was identified
as 1-(3,5-dihydroxyphenyl)-60-hydroxy-l0-undecen-l00-one. Nonetheless, the compound
was not very stable and degraded very rapidly. The mechanism was found to be enzy-
matical and was thought to be due to esterase activity [91]. on the other hand, during the
process of ZEN degradation by Bacillus amyloliquefaciens [122], no resulting compounds
were detected. It was concluded that during the biodegradation of Zen by the bacteria’s
extracellular enzyme, no ZEN derivatives were produced; in fact, a study of ZEN deriva-
tive biodegradation by Bacillus amyloliquefaciens, including α-zearalenol, β-zearalenol,
α-zearalanol, and β-Zearalanol, resulted in no metabolites. Koch et al. (2014) studied
the ZEN detoxification ability of nine different fungal strains of the genera Rhizopus and
Aspergillus, which are known to produce and transform steroids. The results showed
that all the strains were able to detoxify ZEN. Biodegradation and adsorption happen
simultaneously. Five resulting compounds were identified: ZEN-14-sulfate, ZEN-O-14,
ZEN- O-16-glucoside, α-zearalenol, and α- zearalenol-sulfate. The nine biocontrol agents
were divided into three groups: (1) Rhizhopus oryzae DSM 907 and Rhizhopus stolonifera
DSM 855, which can catalyze ZEN glycosylation; (2) Rhizhopus oryzae DSM 906 and Rhizho-
pus oligosporus DSM 1964 and Aspergillus oryzae DSM 1864 and Aspergillus oryzae NBRC
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100959, which are involved in the formation of sulfated ZEN metabolites; (3) Rhizopus
DSM 908, DSM 1834, and Rhizopus oligosporus LMH 1133 T, which have shown the ability
to produce the metabolite of both patterns [154]. The bacterial gut flora of pigs are able to
transform ZEN into α-zearalenol and an unidentified compound via hydrolysis and DON
into de-epoxy-DON via a de-epoxydation reaction [155].

OTA biodegradation by Pediococcus parvulus UTAD depended on the inoculum size and
the incubation temperature coupled with a latency phase before biodegradation initiation.
This later effect is due to the biodegradation enzyme synthesis of the bacteria [101]. OTA
has been biodegraded into Otα by OTA amide group hydrolysis. On the other hand, OTA
reduction by Debaryomyces hansenii involves neither absorption nor detoxification. It is
a repression of the expression of the non-ribosomal peptide synthetase (otanpsPN) gene
linked to the OTA biosynthetic pathway, which was observed in [48].

Generally, mechanisms of mycotoxin degradation by microorganisms include different
types of enzymes (protease, esterase, intracellular enzymes, etc.). The degradation process
can include one or two types of reactions. The mechanisms elucidated by now include
oxidation, hydrolysis, the cleavage of the lactone ring, des-carboxylation, de-epoxidation,
glycosylation, and sulfate-conjugation reactions. Figure 2 provides a general scheme of
different enzymes that participate in mycotoxin degradation caused by microorganisms
and the involved reactions.
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Figure 2. Mycotoxin biodegradation: Enzymes and reactions/mechanisms.

Many studies have focused on the mycotoxin detoxification abilities of microorgan-
isms, but a better understanding of responsible enzymes and the mechanisms involved
is still needed. In some specific cases, no resulting metabolites were detected after myco-
toxin biodegradation caused by microorganisms, but mostly, one or multiple compounds
are usually detected. Table 6 provides an overview of mycotoxin degradation caused
by microorganisms with a focus on the involved enzymes, degradation reactions, and
resulting metabolites.

4.2. Decontamination by Removal Mechanism

The use of microorganisms as agents for toxin sequestration in order to remove them
from food and feed is an approach that has shown many good results.

Taheur et al. showed that strains isolated from a kefir culture are efficient in binding
mycotoxins. The binding ability was dependent on the strain and the mycotoxin type [158].
From the same perspective, Saccharomyces cerevisiae CECT 1891 and Lactobacillus acidophilus
24 FB1 were shown to have a binding ability by Pizzolitto et al. The binding process needed
a little time (1 min), and the mechanism involved was demonstrated to be a toxin molecule
via the physical adsorption of the microorganism’s cell wall components. Cell viability
was not necessary for FB1 binding, but the microorganism’s cell wall structural integrity
was required, and the process did not involve FB1 chemical modification [133]. From the
same perspective, two strains of Enterococcus faecium, which are present in dairy products,
particularly in cheese, are efficient in AFB1 and PAT removal [110]. The same results were
obtained by Elsanhoty et al. when they studied the AFM1 removal ability of some strains
of Lactobacillus in milk samples [159].
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Table 6. Toxin degradation by microorganism mechanisms summary.

Microorganisms Genes or
Enzymes Toxins Degradation Reactions Obtained Metabolites References

Tetragenococcus
halophilus Enzyme ND * Aflatoxin B1 Adsorption + enzymatical

action

C14H10O4, C18H16O8,
C14H12O3, C16H20O4,
C14H16O2, C14H20O2

[99]

Candida
versatilis

CGMCC 3790
Enzyme ND Aflatoxin B1 Adsorption + enzymatical

action
C14H10O4, C14H12O3,
C13H12O2, C11H10O4. [139]

Phanerochaetesor-
didaYK-624

Manganese
protease MnP Aflatoxin B1 Oxidation + hydrolysis AFB1-8,9-dihydrodiol [143]

Rhodosporidium
paludigenum Enzyme ND Patulin ND Desoxypatulinic acid [138]

Bacillus pumilus
ES-21 Esterase Zearalenone

(ZEN)

Cleavage of the lactone ring,
followed by

des-carboxylation. The
enzymatic process follows

first-order kinetics with t1/2
of 6.52 h.

1-(3,5-dihydroxyphenyl)-60-
hydroxy-l0-

undecen-l00-one
[91]

Eggerthella sp. Enzyme ND
DON, HT-2,
T-2 triol and
T-2 tetraol

De-epoxidation

De-epoxy- DON, de-epoxy
T-2triol, de-epoxy HT-2,

de-epoxy T-2 tetraol for the
04 parents in different ratios

[62]

Saccharomyces
cerevisiae

Endo and Exo
enzymes

synthesized by
the yeast during
the fermentation

Patulin

The mechanism was
enzymatical and the

production of the relevant
PAT-metabolizing enzymes

synthesized by the yeast
cells is not induced by PAT

preincubation

E-ascladiol [27]

Sporobolomyces
sp. IAM 13481 ND Patulin

The mechanism was
induced by pretreatment

with patulin.
DPA and (Z)-ascladiol [152]

Pediococcus
parvulus UTAD Peptidases OTA Hydrolysis of the OTA

amide group. Otα [101]

Rhizopus and
Aspergillus

species
ZEN Glycosylation,

sulfate-conjugation

ZEN-14-sulfate, ZEN-O-14,
ZEN- O-16-glucoside,

α-zearalenol, α-
zearalenol-sulfate

[154]

Phaffia
rhodozyma Metalloprotease OTA ND Otα [156]

Gut Microflora
of Pigs ND DON De-epoxidation De-epoxy-DON [155]

Gut Microflora
of Pigs ND ZEN Hydrolyze α-zearalenol [155]

Bacillus subtilis
UTB1 Gene bacC, AFB1

Reduction in the
double bond

Hydrolysis of the ester bond
Des-carboxylation

AFD1 [150]

Pseudomonas
putida ND AFB1 Opening of the lactone ring AFD1, AFD2, AFD3 [151]

Pichia caribbica Intracellular
enzymes Patulin Unidentified Ascladiol and unknown

compound [157]

* ND: not determined.

OTA removal by Saccharomyces strains was demonstrated by Bejaoui et al. to be an
adsorption mechanism. This mechanism was dependent on the OTA molecule’s ionic
properties, the yeast membrane state, and the biomass concentration [129].

Lactococcus lactis and Bifidobacterium sp. Isolated from milk are able to neutralize ZEN
contents via absorption. The Lactococcus lactis absorption is not homogeneous, and the
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process happens in two different steps. The first one includes a ZEN absorption of 88%,
and the second one consists of ZEN diffusion into bacterial cells. This was contrary to that
of Bifidobacterium sp., where the adsorption mechanism only had a single homogeneous
step. The deprotonated carboxyl groups of the bacterial proteins and peptidoglycan play a
significant role in the absorption process [71].

AFB1 binding via the Saccharomyces cerevisiae mannoprotein is possible because of
AFB1 absorption onto mannose sites, where the new structure is maintained. Indeed, the
new structure nature does not match that of a natural AFB1 molecule, so AFB1 can be
removed from the media [160].

4.3. Degradation Compound Toxicity

Knowing the degraded compound’s toxicity is very important because it can be more
or less toxic than the parent. Therefore, many cytotoxicity studies have been conducted.

Adebo et al. studied the toxicity of the compounds resulting from AFB1 degradation
caused by Staphylococcus warneri, Sporosarcina sp., and Lysinibacillus fusiformis. The experi-
ment was conducted by monitoring the mortality of lymphocyte cells (from human blood)
after the cells were exposed to degraded compounds. A lower mortality rate was recorded
compared with aflatoxin B1. The authors concluded that there was lower toxicity [117]. On
the other hand, Escherichia coli DH5a, Arabidopsis thaliana, and human hepatocyte LO2 were
used by [138] to determine the degradation toxicity of the compound identified as desoxy-
patulinic acid (DPA) due to patulin detoxification caused by Rhodosporidium paludigenum.
The lower toxicity of DPA compared with PAT was demonstrated.

Elsewhere, no toxicity reduction has been found after ZEN and FB1 biocontrol using
lactic acid bacteria. One toxicity study was conducted using human esophageal carcinoma
cell lines [124]. Some ZEN degradation products are known to be more toxic than ZEN. In
the case of α-ZOL, it shows higher estrogenicity than ZEN [71]. The compounds derived
from ZEN biocontrol toxicity can be ranked as follows: α-zearalenol > α-zearalanol >
zearalenone > β-zearalenol [161].

Figure 3 provides some mycotoxin degradation pathways.
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5. Functional Enzymes Extraction from Bacteria

Nowadays, enzymes, as shown in Section 3.3, play a key role in mycotoxin biodegrada-
tion. Therefore, it is important to have a general method of enzyme extraction
from microorganisms.

The process of enzyme extraction from microorganisms can be divided into three parts:
extraction, purification, and characterization.

The extraction step’s main idea is to extract the enzyme outside the host. Some
procedures are performed by harvesting the mycelia pellet via centrifugation and then
washing it with phosphate buffer, followed by a second centrifugation to remove cell
debris [127]. More recently, the homogenization of cells with protein extraction buffer
followed by ultrasonication and centrifugation has been performed [148].

The purification step’s aim is, after the extraction step, to obtain an enzyme that
is as pure as possible. Ammonium sulfate is the most used compound to precipitate
enzymes [162]. This step is generally followed by centrifugation. In some cases, the precipi-
tation step can be performed by using both organic solvents, such as methanol, ethanol,
or acetone, and ammonium sulfate separately [163]. After enzyme activity determination,
some purification techniques are used. Chromatography purification can be performed
by using hydrophobic interaction chromatography (HIC) followed by immobilized metal
ion affinity chromatography (IMAC) [127] or ion-exchange chromatography on a DEAE-
Sepharose GE column, followed by dialysis and lyophilization [163]; dialysis can also be
performed with a DEAE-Sepharose column [164]. Further purification can be performed
using a Superdex 75 column followed by dialysis and lyophilization [163].

The last step is purified enzyme characterization. This step permits us to find the char-
acteristics of the enzyme. It can be feasible to use SDS polyacrylamide gel electrophoresis
(SDS-PAGE) to determine the molecular weight [127,163], HPTLC analysis to determine
the enzymatic activity, and ESI-MS/MS to identify the enzyme [127]. Finally, the determi-
nation of the optimum pH, the optimum temperature, the ion metal effect on the enzyme
activity [163], and the protein concentration (which can be determined using the method of
Bradford) can be performed. Then, the enzyme can be stored at −85 ◦C until used.

Figure 4 provides a brief scheme of all the steps of enzyme extraction
from microorganisms.
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[127]. More recently, the homogenization of cells with protein extraction buffer followed 
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The purification step’s aim is, after the extraction step, to obtain an enzyme that is as 

pure as possible. Ammonium sulfate is the most used compound to precipitate enzymes 

[162]. This step is generally followed by centrifugation. In some cases, the precipitation 

step can be performed by using both organic solvents, such as methanol, ethanol, or ace-

tone, and ammonium sulfate separately [163]. After enzyme activity determination, some 

purification techniques are used. Chromatography purification can be performed by us-

ing hydrophobic interaction chromatography (HIC) followed by immobilized metal ion 

affinity chromatography (IMAC) [127] or ion-exchange chromatography on a DEAE-Se-

pharose GE column, followed by dialysis and lyophilization [163]; dialysis can also be 

performed with a DEAE-Sepharose column [164]. Further purification can be performed 

using a Superdex 75 column followed by dialysis and lyophilization [163].  

The last step is purified enzyme characterization. This step permits us to find the 

characteristics of the enzyme. It can be feasible to use SDS polyacrylamide gel electropho-

resis (SDS-PAGE) to determine the molecular weight [127,163], HPTLC analysis to deter-

mine the enzymatic activity, and ESI-MS/MS to identify the enzyme [127]. Finally, the de-

termination of the optimum pH, the optimum temperature, the ion metal effect on the 

enzyme activity [163], and the protein concentration (which can be determined using the 

method of Bradford) can be performed. Then, the enzyme can be stored at −85°C until 

used. 
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6. Application and Perspectives

Microorganisms that can detoxify hazardous mycotoxins into low-toxicity compounds
are of great importance. Being able to utilize them in the field and industries would be of
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great interest to food/feed safety. Therefore, it is advantageous to use microorganisms for
mycotoxin detoxification on a large scale. Nevertheless, any applications to be set up must
take into account both biocontrol agents and the life cycle of mycotoxigenic species, as well
as the environmental conditions and plant agronomy [166]. Microorganisms that show
activity against mycotoxins provide important properties because of the future possibility
of exchanging the chemical and physical methods of preservation with a biological method
based on those microorganisms and enzymes. Metabolism products of biocontrol agents
are propitious for the bioconservation of food due to their ability to reduce the proliferation
of mycotoxigenic fungi and mycotoxin production [167].

Microorganisms are used in many different ways. They are already used as probiotics
to enhance the health of the host upon adequate administration. Lactobacillus species are
most often used as probiotics [168], mainly via encapsulation [169], [170]. Encapsulation
is one of the most effective methods of saving the viability and stability of microorgan-
isms [113,171]. Therefore, it is a good alternative for microorganism applications in food
and feed. Recently, the yeast Sporidiobolus pararoseus, which has a mycotoxin binding
ability, was successfully produced with this approach on an industrial production scale
with possible applications in feed additives [172].

Microorganisms can also be used as biopesticides [173]. The use of biofungicides is
an approach that involves the application of different microorganisms that can suppress
toxic fungi [174]. Recently, novel biofungicide formulations based on Bacillus subtilis 5,
Bacillus cereus 3S5, and Pseudomonas fluorecens 10S2 were produced [175]. The same formu-
lation has been created using other microorganisms [176–178].

Finally, the mycotoxin degradation enzyme can be especially valuable in the feed,
food, and fermentation industry [109,120]. The α-amylase enzymes from some bacterial or
fungal strains are widely used [179]. A carboxypeptidase that can degrade OTA has been
cloned and used to detoxify the OTA mycotoxin [145].

7. Conclusions

This paper reviews mycotoxin degradation caused by microorganisms. Mycotoxins are
secondary compounds produced by fungi with various chemical structures. Some of them
are very hazardous for humans and animals, and strict regulations have been made for their
content in food and feed. Physical, chemical, and biological methods can be used to control
mycotoxin food/feed contamination. Biological control, which includes bacteria, yeast,
and enzymatic activities against mycotoxins, is considered a very friendly control method
compared with physical and chemical methods. However, more studies are needed to
elucidate mycotoxin detoxification mechanisms. Unfortunately, most investigations do not
address the real process involved with this biodegradation. In some cases, the degradation
compound structures are elucidated, which helps to provide the hypothetically involved
mechanisms. The detoxification of mycotoxins using bacterial strains augurs a new path
for food/feed safety. From this perspective, more emphasis can be given to the toxicity of
the resulting degradation compounds and the involved mechanisms of elucidation.
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