Next Issue
Volume 14, December
Previous Issue
Volume 14, October
 
 

Toxins, Volume 14, Issue 11 (November 2022) – 91 articles

Cover Story (view full-size image): Approximately 80% of individuals who suffer spinal cord injury (SCI) will develop hypertrophic and neurogenic bladders resulting in complications including urinary incontinence, urinary tract infection and renal failure. In this study, the authors examined the effect of early bladder chemodenervation with botulinum toxin A on bladder histopathology and collagen deposition. They found that the bladders of SCI rats injected with botulinum toxin A had a significant reduction in detrusor hypertrophy and less fibrous collagen deposition compared to bladders from SCI animals injected with saline. These findings suggest that acute detrusor chemodenervation using botulinum toxin A after SCI can preserve bladder tissue integrity by reducing the development of detrusor fibrosis and hypertrophy associated with SCI. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
16 pages, 1271 KiB  
Article
Measurement of Microcystin Activity in Human Plasma Using Immunocapture and Protein Phosphatase Inhibition Assay
by Brady R. Cunningham, Rebekah E. Wharton, Christine Lee, Mike A. Mojica, Logan C. Krajewski, Shirley C. Gordon, Adam M. Schaefer, Rudolph C. Johnson and Elizabeth I. Hamelin
Toxins 2022, 14(11), 813; https://doi.org/10.3390/toxins14110813 - 21 Nov 2022
Cited by 1 | Viewed by 1860
Abstract
Microcystins are toxic chemicals generated by certain freshwater cyanobacteria. These chemicals can accumulate to dangerous levels during harmful algal blooms. When exposed to microcystins, humans are at risk of hepatic injury, including liver failure. Here, we describe a method to detect microcystins in [...] Read more.
Microcystins are toxic chemicals generated by certain freshwater cyanobacteria. These chemicals can accumulate to dangerous levels during harmful algal blooms. When exposed to microcystins, humans are at risk of hepatic injury, including liver failure. Here, we describe a method to detect microcystins in human plasma by using immunocapture followed by a protein phosphatase inhibition assay. At least 279 microcystins have been identified, and most of these compounds share a common amino acid, the Adda side chain. We targeted this Adda side chain using a commercial antibody and extracted microcystins from human samples for screening and analysis. To quantitate the extracted microcystins, we fortified plasma with microcystin-LR, one of the most well-studied, commonly detected, and toxic microcystin congeners. The quantitation range for the detection of microcystin in human plasma using this method is 0.030–0.50 ng/mL microcystin-LR equivalents. This method detects unconjugated and conjugated forms (cysteine and glutathione) of microcystins. Quality control sample accuracies varied between 98.9% and 114%, with a precision of 7.18–15.8%. Finally, we evaluated plasma samples from a community health surveillance project of Florida residents living or working near harmful algae blooms. Full article
Show Figures

Figure 1

14 pages, 1519 KiB  
Article
The Influence of Micronutrient Trace Metals on Microcystis aeruginosa Growth and Toxin Production
by Jordan A. Facey, Jake P. Violi, Josh J. King, Chowdhury Sarowar, Simon C. Apte and Simon M. Mitrovic
Toxins 2022, 14(11), 812; https://doi.org/10.3390/toxins14110812 - 21 Nov 2022
Cited by 4 | Viewed by 1730
Abstract
Microcystis aeruginosa is a widespread cyanobacteria capable of producing hepatotoxic microcystins. Understanding the environmental factors that influence its growth and toxin production is essential to managing the negative effects on freshwater systems. Some micronutrients are important cofactors in cyanobacterial proteins and can influence [...] Read more.
Microcystis aeruginosa is a widespread cyanobacteria capable of producing hepatotoxic microcystins. Understanding the environmental factors that influence its growth and toxin production is essential to managing the negative effects on freshwater systems. Some micronutrients are important cofactors in cyanobacterial proteins and can influence cyanobacterial growth when availability is limited. However, micronutrient requirements are often species specific, and can be influenced by substitution between metals or by luxury uptake. In this study, M. aeruginosa was grown in modified growth media that individually excluded some micronutrients (cobalt, copper, iron, manganese, molybdenum) to assess the effect on growth, toxin production, cell morphology and iron accumulation. M. aeruginosa growth was limited when iron, cobalt and manganese were excluded from the growth media, whereas the exclusion of copper and molybdenum had no effect on growth. Intracellular microcystin-LR concentrations were variable and were at times elevated in treatments undergoing growth limitation by cobalt. Intracellular iron was notably higher in treatments grown in cobalt-deplete media compared to other treatments possibly due to inhibition or competition for transporters, or due to irons role in detoxifying reactive oxygen species (ROS). Full article
(This article belongs to the Special Issue Microalga and Toxins)
Show Figures

Figure 1

14 pages, 2325 KiB  
Article
Function Prediction of Peptide Toxins with Sequence-Based Multi-Tasking PU Learning Method
by Yanyan Chu, Huanhuan Zhang and Lei Zhang
Toxins 2022, 14(11), 811; https://doi.org/10.3390/toxins14110811 - 21 Nov 2022
Cited by 1 | Viewed by 1525
Abstract
Peptide toxins generally have extreme pharmacological activities and provide a rich source for the discovery of drug leads. However, determining the optimal activity of a new peptide can be a long and expensive process. In this study, peptide toxins were retrieved from Uniprot; [...] Read more.
Peptide toxins generally have extreme pharmacological activities and provide a rich source for the discovery of drug leads. However, determining the optimal activity of a new peptide can be a long and expensive process. In this study, peptide toxins were retrieved from Uniprot; three positive-unlabeled (PU) learning schemes, adaptive basis classifier, two-step method, and PU bagging were adopted to develop models for predicting the biological function of new peptide toxins. All three schemes were embedded with 14 machine learning classifiers. The prediction results of the adaptive base classifier and the two-step method were highly consistent. The models with top comprehensive performances were further optimized by feature selection and hyperparameter tuning, and the models were validated by making predictions for 61 three-finger toxins or the external HemoPI dataset. Biological functions that can be identified by these models include cardiotoxicity, vasoactivity, lipid binding, hemolysis, neurotoxicity, postsynaptic neurotoxicity, hypotension, and cytolysis, with relatively weak predictions for hemostasis and presynaptic neurotoxicity. These models are discovery-prediction tools for active peptide toxins and are expected to accelerate the development of peptide toxins as drugs. Full article
(This article belongs to the Special Issue Proteomic Analysis and Functional Characterization of Venom)
Show Figures

Figure 1

20 pages, 2318 KiB  
Article
Time- and Dose-Dependent Effects of Dietary Deoxynivalenol (DON) in Rainbow Trout (Oncorhynchus mykiss) at Organism and Tissue Level
by Paraskevi Koletsi, Geert F. Wiegertjes, Elisabeth A. M. Graat, Philip Lyons and Johan Schrama
Toxins 2022, 14(11), 810; https://doi.org/10.3390/toxins14110810 - 20 Nov 2022
Cited by 2 | Viewed by 2056
Abstract
This study with juvenile rainbow trout evaluated the effects of dietary exposure to deoxynivalenol (DON) at industrially relevant doses (up to 1.6 mg/kg) on growth performance, the liver, and the gastrointestinal tract. Fifteen groups of 30 fish each were given one of five [...] Read more.
This study with juvenile rainbow trout evaluated the effects of dietary exposure to deoxynivalenol (DON) at industrially relevant doses (up to 1.6 mg/kg) on growth performance, the liver, and the gastrointestinal tract. Fifteen groups of 30 fish each were given one of five dietary treatments in triplicate: (1) control diet (CON; DON < 100 µg/kg feed), (2) naturally DON-contaminated diet (ND1) with a DON content of 700 µg/kg in the feed, (3) ND2 with a DON content of 1200 µg/kg feed, (4) a pure DON-contaminated diet (PD1) with 800 µg/kg of DON in the feed, and (5) PD2 with DON at a concentration of 1600 µg/kg in the feed. The feeding trial lasted eight weeks: six weeks of restrictive feeding followed by two weeks of ad libitum feeding. Exposure to DON during restrictive feeding for six weeks did not affect the growth performance of trout but did lead to a reduction in retained protein in fish fed with higher doses of DON in the ND2 and PD2 groups. During the two following weeks of ad libitum feeding, feed intake was similar among all groups, but body weight gain was lower in the ND2 and PD2 groups and feed efficiency was higher in PD2 (week 8). Histopathological assessment revealed liver damage, including altered nuclear characteristics and haemorrhages, in groups fed higher doses of natural DON (ND2) after just one week of restrictive feeding. Liver damage (necrosis and haemorrhage presence in ND2) was alleviated over time (week 6) but was again aggravated after ad libitum exposure (week 8). In contrast, gastrointestinal tract damage was generally mild with only a few histopathological alterations, and the absence of an inflammatory cytokine response was demonstrated by PCR at week 8. In conclusion, ad libitum dietary exposure of rainbow trout to either natural or pure DON resulted in reduced growth (dose-dependent), while restrictive exposure revealed time-dependent effects of natural DON in terms of liver damage. Full article
(This article belongs to the Special Issue Mycotoxins in Feeds and Their Effects on Fish)
Show Figures

Figure 1

14 pages, 1258 KiB  
Article
Post Hoc Subgroup Analysis of the BCause Study Assessing the Effect of AbobotulinumtoxinA on Post-Stroke Shoulder Pain in Adults
by Marcelo Riberto, João Amaury Frances, Regina Chueire, Ana Cristina Ferreira Garcia Amorim, Denise Xerez, Tae Mo Chung, Lucia Helena Costa Mercuri, Sérgio Lianza, Eduardo Carvalho de Melo Rocha, Pascal Maisonobe, Thais Cuperman-Pohl and Patricia Khan
Toxins 2022, 14(11), 809; https://doi.org/10.3390/toxins14110809 - 20 Nov 2022
Viewed by 1601
Abstract
Botulinum toxin type A is approved for the focal treatment of spasticity; however, the effectiveness of abobotulinumtoxinA (aboBoNT-A) in patients with shoulder pain who have set reduced pain as a treatment goal is understudied. In addition, some patients encounter delays in accessing treatment [...] Read more.
Botulinum toxin type A is approved for the focal treatment of spasticity; however, the effectiveness of abobotulinumtoxinA (aboBoNT-A) in patients with shoulder pain who have set reduced pain as a treatment goal is understudied. In addition, some patients encounter delays in accessing treatment programs; therefore, the suitability of aboBoNT-A for pain reduction in this population requires investigation. These factors were assessed in aboBoNT-A-naive Brazilian patients in a post hoc analysis of data from BCause, an observational, multicenter, prospective study (NCT02390206). Patients (N = 49, n = 25 female; mean (standard deviation) age of 60.3 (9.1) years; median (range) time since onset of spasticity of 16.1 (0–193) months) received aboBoNT-A injections to shoulder muscles in one or two treatment cycles (n = 47). Using goal attainment scaling (GAS), most patients achieved their goal of shoulder pain reduction after one treatment cycle (72.1%; 95% confidence interval: 57.2–83.4%). Improvements in GAS T-score from baseline, clinically meaningful reductions in pain score at movement, and clinically meaningful increases in passive shoulder abduction angle further improved with repeated treatment more than 4 months later, despite treatment starting at a median of 16.1 months after the onset of spasticity. These findings support the further investigation of aboBoNT-A injections in chronic post-stroke shoulder pain. Full article
Show Figures

Figure 1

15 pages, 1983 KiB  
Article
Integrated Transcriptome Analysis Reveals mRNA–miRNA Pathway Crosstalk in Roman Laying Hens’ Immune Organs Induced by AFB1
by Zhongxian Xu, Qian Liu, Xueqin Liu, Maosen Yang, Yuan Su, Tao Wang, Diyan Li and Feng Li
Toxins 2022, 14(11), 808; https://doi.org/10.3390/toxins14110808 - 19 Nov 2022
Cited by 2 | Viewed by 1589
Abstract
Aflatoxin B1 (AFB1) is a widely distributed contaminant in moldy corn, rice, soybean, and oil crops. Many studies have revealed its adverse effects, such as carcinogenicity, immunotoxicity, and hepatotoxicity, on the health of humans and animals. To investigate the immunotoxic effects on chicken [...] Read more.
Aflatoxin B1 (AFB1) is a widely distributed contaminant in moldy corn, rice, soybean, and oil crops. Many studies have revealed its adverse effects, such as carcinogenicity, immunotoxicity, and hepatotoxicity, on the health of humans and animals. To investigate the immunotoxic effects on chicken immune organs induced by AFB1, we integrated RNA and small-RNA sequencing data of the spleen and the bursa of Fabricius to elucidate the response of the differentially expressed transcriptional profiles and related pathways. AFB1 consumption negatively influenced egg quality, but no obvious organ damage was observed compared to that of the control group. We identified 3918 upregulated and 2415 downregulated genes in the spleen and 231 upregulated and 65 downregulated genes in the bursa of Fabricius. We confirmed that several core genes related to immune and metabolic pathways were activated by AFB1. Furthermore, 42 and 19 differentially expressed miRNAs were found in the spleen and the bursa of Fabricius, respectively. Differentially expressed genes and target genes of differentially expressed miRNAs were mainly associated with cancer progression and immune response. The predicted mRNA–miRNA pathway network illustrated the potential regulatory mechanisms. The present study identified the transcriptional profiles and revealed potential mRNA–miRNA pathway crosstalk. This genetic regulatory network will facilitate the understanding of the immunotoxicity mechanisms of chicken immune organs induced by high concentrations of AFB1. Full article
Show Figures

Graphical abstract

25 pages, 2846 KiB  
Article
Lactic Acid Bacteria as Potential Agents for Biocontrol of Aflatoxigenic and Ochratoxigenic Fungi
by Eva María Mateo, Andrea Tarazona, Misericordia Jiménez and Fernando Mateo
Toxins 2022, 14(11), 807; https://doi.org/10.3390/toxins14110807 - 19 Nov 2022
Cited by 5 | Viewed by 2375
Abstract
Aflatoxins (AF) and ochratoxin A (OTA) are fungal metabolites that have carcinogenic, teratogenic, embryotoxic, genotoxic, neurotoxic, and immunosuppressive effects in humans and animals. The increased consumption of plant-based foods and environmental conditions associated with climate change have intensified the risk of mycotoxin intoxication. [...] Read more.
Aflatoxins (AF) and ochratoxin A (OTA) are fungal metabolites that have carcinogenic, teratogenic, embryotoxic, genotoxic, neurotoxic, and immunosuppressive effects in humans and animals. The increased consumption of plant-based foods and environmental conditions associated with climate change have intensified the risk of mycotoxin intoxication. This study aimed to investigate the abilities of eleven selected LAB strains to reduce/inhibit the growth of Aspergillus flavus, Aspergillus parasiticus, Aspergillus carbonarius, Aspergillus niger, Aspergillus welwitschiae, Aspergillus steynii, Aspergillus westerdijkiae, and Penicillium verrucosum and AF and OTA production under different temperature regiments. Data were treated by ANOVA, and machine learning (ML) models able to predict the growth inhibition percentage were built, and their performance was compared. All factors LAB strain, fungal species, and temperature significantly affected fungal growth and mycotoxin production. The fungal growth inhibition range was 0–100%. Overall, the most sensitive fungi to LAB treatments were P. verrucosum and A. steynii, while the least sensitive were A. niger and A. welwitschiae. The LAB strains with the highest antifungal activity were Pediococcus pentosaceus (strains S11sMM and M9MM5b). The reduction range for AF was 19.0% (aflatoxin B1)-60.8% (aflatoxin B2) and for OTA, 7.3–100%, depending on the bacterial and fungal strains and temperatures. The LAB strains with the highest anti-AF activity were the three strains of P. pentosaceus and Leuconostoc mesenteroides ssp. dextranicum (T2MM3), and those with the highest anti-OTA activity were Leuconostoc paracasei ssp. paracasei (3T3R1) and L. mesenteroides ssp. dextranicum (T2MM3). The best ML methods in predicting fungal growth inhibition were multilayer perceptron neural networks, followed by random forest. Due to anti-fungal and anti-mycotoxin capacity, the LABs strains used in this study could be good candidates as biocontrol agents against aflatoxigenic and ochratoxigenic fungi and AFL and OTA accumulation. Full article
Show Figures

Figure 1

26 pages, 4283 KiB  
Article
Extracellular Vesicles from Bothrops jararaca Venom Are Diverse in Structure and Protein Composition and Interact with Mammalian Cells
by Larissa Gonçalves-Machado, Brunno Renato Farias Verçoza, Fábio César Sousa Nogueira, Rafael Donadélli Melani, Gilberto Barbosa Domont, Silas Pessini Rodrigues, Juliany Cola Fernandes Rodrigues and Russolina Benedeta Zingali
Toxins 2022, 14(11), 806; https://doi.org/10.3390/toxins14110806 - 19 Nov 2022
Cited by 1 | Viewed by 2374
Abstract
Snake venoms are complex cocktails of non-toxic and toxic molecules that work synergistically for the envenoming outcome. Alongside the immediate consequences, chronic manifestations and long-term sequelae can occur. Recently, extracellular vesicles (EVs) were found in snake venom. EVs mediate cellular communication through long [...] Read more.
Snake venoms are complex cocktails of non-toxic and toxic molecules that work synergistically for the envenoming outcome. Alongside the immediate consequences, chronic manifestations and long-term sequelae can occur. Recently, extracellular vesicles (EVs) were found in snake venom. EVs mediate cellular communication through long distances, delivering proteins and nucleic acids that modulate the recipient cell’s function. However, the biological roles of snake venom EVs, including possible cross-organism communication, are still unknown. This knowledge may expand the understanding of envenoming mechanisms. In the present study, we isolated and characterized the EVs from Bothrops jararaca venom (Bj-EVs), giving insights into their biological roles. Fresh venom was submitted to differential centrifugation, resulting in two EV populations with typical morphology and size range. Several conserved EV markers and a subset of venom related EV markers, represented mainly by processing enzymes, were identified by proteomic analysis. The most abundant protein family observed in Bj-EVs was 5’-nucleotidase, known to be immunosuppressive and a low abundant and ubiquitous toxin in snake venoms. Additionally, we demonstrated that mammalian cells efficiently internalize Bj-EVs. The commercial antibothropic antivenom partially recognizes Bj-EVs and inhibits cellular EV uptake. Based on the proteomic results and the in vitro interaction assays using macrophages and muscle cells, we propose that Bj-EVs may be involved not only in venom production and processing but also in host immune modulation and long-term effects of envenoming. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

9 pages, 1126 KiB  
Case Report
Bilateral Simultaneous Optic Neuritis Following Envenomations by Indian Cobra and Common Krait
by Subramanian Senthilkumaran, Stephen W. Miller, Harry F. Williams, Ponniah Thirumalaikolundusubramanian, Ketan Patel and Sakthivel Vaiyapuri
Toxins 2022, 14(11), 805; https://doi.org/10.3390/toxins14110805 - 19 Nov 2022
Cited by 2 | Viewed by 2345
Abstract
In India, most snakebite envenomation (SBE) incidents are caused by the “Big Four” snakes which include Russell’s viper, common krait, Indian cobra, and saw-scaled viper. Their common envenomation effects include neurotoxicity, myotoxicity, and coagulopathy. However, they also induce rare complications such as priapism, [...] Read more.
In India, most snakebite envenomation (SBE) incidents are caused by the “Big Four” snakes which include Russell’s viper, common krait, Indian cobra, and saw-scaled viper. Their common envenomation effects include neurotoxicity, myotoxicity, and coagulopathy. However, they also induce rare complications such as priapism, pseudoaneurysm, and sialolithiasis. Ocular manifestations such as optic neuritis develop rarely following envenomations by non-spitting snakes and they may cause temporary vision changes and blindness if untreated. While optic neuritis following Indian cobra envenomation has been reported previously, this was not encountered in victims of common kraits. Hence, for the first time, we report optic neuritis developed in a victim following envenomation by a common krait and compare its clinical features and diagnostic and therapeutic methods used with another case of optic neuritis in a victim of an Indian cobra bite. Both patients received antivenom treatment and made an initial recovery; however, optic neuritis developed several days later. The condition was diagnosed using ophthalmic examination together with computed tomography and/or magnetic resonance imaging methods. Due to very similar clinical features, both patients received intravenous corticosteroids which restored their vision and successfully treated optic neuritis. This case report suggests that the optic neuritis developed in a common krait envenomation is comparable to the one developed following a cobra bite, and therefore, the same diagnostic and therapeutic approaches can be used. This study also raises awareness of this rare complication and provides guidance for the diagnosis and treatment of SBE-induced optic neuritis. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

19 pages, 5474 KiB  
Article
Confirmation Using Triple Quadrupole and High-Resolution Mass Spectrometry of a Fatal Canine Neurotoxicosis following Exposure to Anatoxins at an Inland Reservoir
by Andrew D. Turner, Florence R. I. Turner, Martha White, David Hartnell, Claire G. Crompton, Nicola Bates, Jan Egginton, Liz Branscombe, Adam M. Lewis and Benjamin H. Maskrey
Toxins 2022, 14(11), 804; https://doi.org/10.3390/toxins14110804 - 18 Nov 2022
Cited by 5 | Viewed by 3107
Abstract
Cyanobacterial blooms are often associated with the presence of harmful natural compounds which can cause adverse health effects in both humans and animals. One family of these compounds, known as anatoxins, have been linked to the rapid deaths of cattle and dogs through [...] Read more.
Cyanobacterial blooms are often associated with the presence of harmful natural compounds which can cause adverse health effects in both humans and animals. One family of these compounds, known as anatoxins, have been linked to the rapid deaths of cattle and dogs through neurotoxicological action. Here, we report the findings resulting from the death of a dog at a freshwater reservoir in SW England. Poisoning was rapid following exposure to material at the side of the lake. Clinical signs included neurological distress, diaphragmatic paralysis and asphyxia prior to death after 45 min of exposure. Analysis by HILIC-MS/MS of urine and stomach content samples from the dog revealed the detection of anatoxin-a and dihydroanatoxin-a in both samples with higher concentrations of the latter quantified in both matrices. Detection and quantitative accuracy was further confirmed with use of accurate mass LC-HRMS. Additional anatoxin analogues were also detected by LC-HRMS, including 4-keto anatoxin-a, 4-keto-homo anatoxin-a, expoxy anatoxin-a and epoxy homo anatoxin-a. The conclusion of neurotoxicosis was confirmed with the use of two independent analytical methods showing positive detection and significantly high quantified concentrations of these neurotoxins in clinical samples. Together with the clinical signs observed, we have confirmed that anatoxins were responsible for the rapid death of the dog in this case. Full article
(This article belongs to the Special Issue Cyanobacterial Toxins: Toxins Production and Risk Assessment)
Show Figures

Figure 1

26 pages, 1952 KiB  
Article
Fumonisin B Series Mycotoxins’ Dose Dependent Effects on the Porcine Hepatic and Pulmonary Phospholipidome
by Omeralfaroug Ali, Miklós Mézes, Krisztián Balogh, Melinda Kovács, Janka Turbók and András Szabó
Toxins 2022, 14(11), 803; https://doi.org/10.3390/toxins14110803 - 18 Nov 2022
Cited by 2 | Viewed by 1492
Abstract
Male weaned piglets n = 6/group were fed Fumonisin B1+2+3 (FBs) mycotoxins at 0, 15, or 30 mg/kg diet for 3 weeks to assess the fatty acid (FA) composition of membrane lipid classes, lipid peroxidation, and histomorphological changes in the liver and [...] Read more.
Male weaned piglets n = 6/group were fed Fumonisin B1+2+3 (FBs) mycotoxins at 0, 15, or 30 mg/kg diet for 3 weeks to assess the fatty acid (FA) composition of membrane lipid classes, lipid peroxidation, and histomorphological changes in the liver and lung. Growth performance and lipid peroxidation were unaltered, but histomorphological lesion scores increased in the liver. Linear dose–response was detected in liver phosphatidylcholines for C16:1n7, C18:1n9, and total monounsaturation and in lungs for C22:6n3, total n-3 and n-3:n-6, in pulmonary phosphatidylserines C20:0 and C24:0. Alterations associated with the highest FBs dose were detected in sphingomyelins (liver: total saturation ↓, total monounsaturation ↑), phosphatidylcholines (liver: total n-6 ↓, n-6:n-3 ↑; in lungs: total monounsaturation ↑, total polyunsaturation ↑), phosphatidylethanolamines (liver: total n-3 ↓; in lungs: total monounsaturation ↑ and n-6:n-3 ↑), phosphatidylserines (liver: n-6:n-3 ↑; in lungs: total saturation ↓, total polyunsatuartion ↑, and total n-6 and its ratio to n-3 ↑), and phosphatidylinositol (n-6:n-3 ↑; lungs: C22:1n9 ↑, C22:6n3 ↓, total saturation ↓, total monounsaturaion ↑). In conclusion, FBs exposures neither impaired growth nor induced substantial lipid peroxidation, but hepatotoxicity was proven with histopathological alterations at the applied exposure period and doses. FA results imply an enzymatic disturbance in FA metabolism, agreeing with earlier findings in rats. Full article
(This article belongs to the Special Issue Toxicology Research on Mycotoxins)
Show Figures

Figure 1

13 pages, 350 KiB  
Review
Inflammation and Oxidative Stress in Snakebite Envenomation: A Brief Descriptive Review and Clinical Implications
by Dabor Resiere, Hossein Mehdaoui and Remi Neviere
Toxins 2022, 14(11), 802; https://doi.org/10.3390/toxins14110802 - 18 Nov 2022
Cited by 10 | Viewed by 3015
Abstract
Snakebite envenoming is a pathological condition which may occur in response to the injection of venom. Snake venoms contain a complex mixture of biologically active molecules which are responsible for a broad spectrum of clinical manifestations, ranging from local tissue injuries to fatal [...] Read more.
Snakebite envenoming is a pathological condition which may occur in response to the injection of venom. Snake venoms contain a complex mixture of biologically active molecules which are responsible for a broad spectrum of clinical manifestations, ranging from local tissue injuries to fatal complications. Snake venom administration commonly provokes local tissue injury often associated with systemic effects, including neurotoxic and cardiotoxic manifestations, bleeding, acute kidney injury, and rhabdomyolysis. An important spectrum of pathogenesis of snake envenomation is the generation of reactive oxygen species (ROS), which can directly provoke tissue damage and also potentiate the deleterious consequences of inflammation at the bite site. Snake venom components known to induce oxidative stress include phospholipases A2, metalloproteinases, three-finger toxins, and L-amino acid oxidase. Clear evidence is mounting suggesting that inflammation and oxidative stress participate in the destructive effects of envenoming, including acute renal failure, tissue necrosis, and unusual susceptibility to bleed (hemorrhage), mostly due to hypocoagulability, neuro/cardio toxicity, and myonecrosis. Impaired regulation of oxidative stress may also set the stage for secondary/long-term complications of snakebite envenomation such as musculoskeletal disabilities. Some aspects of natural antioxidant therapeutic options are discussed in this review. Full article
(This article belongs to the Section Animal Venoms)
11 pages, 2187 KiB  
Article
Detoxification of the Mycotoxin Citrinin by a Manganese Peroxidase from Moniliophthora roreri
by Shuai Wang, Xiaolu Wang, Huoqing Huang, Tao Tu, Huiying Luo, Yuhong Zhang, Bo Liu, Bin Yao, Wei Zhang and Xiaoyun Su
Toxins 2022, 14(11), 801; https://doi.org/10.3390/toxins14110801 - 18 Nov 2022
Cited by 1 | Viewed by 2078
Abstract
Citrinin (CIT) is a mycotoxin found in foods and feeds and most commonly discovered in red yeast rice, a food additive made from ordinary rice by fermentation with Monascus. Currently, no enzyme is known to be able to degrade CIT effectively. In [...] Read more.
Citrinin (CIT) is a mycotoxin found in foods and feeds and most commonly discovered in red yeast rice, a food additive made from ordinary rice by fermentation with Monascus. Currently, no enzyme is known to be able to degrade CIT effectively. In this study, it was discovered that manganese peroxidase (MrMnP) from Moniliophthora roreri could degrade CIT. The degradation appeared to be fulfilled by a combination of direct and indirect actions of the MrMnP with the CIT. Pure CIT, at a final concentration of 10 mg/L, was completely degraded by MrMnP within 72 h. One degradation product was identified to be dihydrocitrinone. The toxicity of the CIT-degradation product decreased, as monitored by the increased survival rate of the Caco-2 cells incubated with MrMnP-treated CIT. In addition, MrMnP could degrade CIT (with a starting concentration of up to 4.6 mg/L) completely contaminated in red yeast rice. MrMnP serves as an excellent candidate enzyme for CIT detoxification. Full article
Show Figures

Graphical abstract

30 pages, 1790 KiB  
Review
Superantigens, a Paradox of the Immune Response
by Sofia Noli Truant, Daniela María Redolfi, María Belén Sarratea, Emilio Luis Malchiodi and Marisa Mariel Fernández
Toxins 2022, 14(11), 800; https://doi.org/10.3390/toxins14110800 - 18 Nov 2022
Cited by 9 | Viewed by 5345
Abstract
Staphylococcal enterotoxins are a wide family of bacterial exotoxins with the capacity to activate as much as 20% of the host T cells, which is why they were called superantigens. Superantigens (SAgs) can cause multiple diseases in humans and cattle, ranging from mild [...] Read more.
Staphylococcal enterotoxins are a wide family of bacterial exotoxins with the capacity to activate as much as 20% of the host T cells, which is why they were called superantigens. Superantigens (SAgs) can cause multiple diseases in humans and cattle, ranging from mild to life-threatening infections. Almost all S. aureus isolates encode at least one of these toxins, though there is no complete knowledge about how their production is triggered. One of the main problems with the available evidence for these toxins is that most studies have been conducted with a few superantigens; however, the resulting characteristics are attributed to the whole group. Although these toxins share homology and a two-domain structure organization, the similarity ratio varies from 20 to 89% among different SAgs, implying wide heterogeneity. Furthermore, every attempt to structurally classify these proteins has failed to answer differential biological functionalities. Taking these concerns into account, it might not be appropriate to extrapolate all the information that is currently available to every staphylococcal SAg. Here, we aimed to gather the available information about all staphylococcal SAgs, considering their functions and pathogenicity, their ability to interact with the immune system as well as their capacity to be used as immunotherapeutic agents, resembling the two faces of Dr. Jekyll and Mr. Hyde. Full article
(This article belongs to the Special Issue Toxins: Mr Hyde or Dr Jekyll?)
Show Figures

Figure 1

10 pages, 1989 KiB  
Article
Proteomic Analysis of the Predatory Venom of Conus striatus Reveals Novel and Population-Specific κA-Conotoxin SIVC
by Fabrice Saintmont, Guillaume Cazals, Claudia Bich and Sebastien Dutertre
Toxins 2022, 14(11), 799; https://doi.org/10.3390/toxins14110799 - 17 Nov 2022
Cited by 1 | Viewed by 1766
Abstract
Animal venoms are a rich source of pharmacological compounds with ecological and evolutionary significance, as well as with therapeutic and biotechnological potentials. Among the most promising venomous animals, cone snails produce potent neurotoxic venom to facilitate prey capture and defend against aggressors. Conus [...] Read more.
Animal venoms are a rich source of pharmacological compounds with ecological and evolutionary significance, as well as with therapeutic and biotechnological potentials. Among the most promising venomous animals, cone snails produce potent neurotoxic venom to facilitate prey capture and defend against aggressors. Conus striatus, one of the largest piscivorous species, is widely distributed, from east African coasts to remote Polynesian Islands. In this study, we investigated potential intraspecific differences in venom composition between distinct geographical populations from Mayotte Island (Indian Ocean) and Australia (Pacific Ocean). Significant variations were noted among the most abundant components, namely the κA-conotoxins, which contain three disulfide bridges and complex glycosylations. The amino acid sequence of a novel κA-conotoxin SIVC, including its N-terminal acetylated variant, was deciphered using tandem mass spectrometry (MS/MS). In addition, the glycosylation pattern was found to be consisting of two HexNAc and four Hex for the Mayotte population, which diverge from the previously characterized two HexNAc and three Hex combinations for this species, collected elsewhere. Whereas the biological and ecological roles of these modifications remain to be investigated, population-specific glycosylation patterns provide, for the first time, a new level of intraspecific variations in cone snail venoms. Full article
(This article belongs to the Special Issue Evolution, Genomics and Proteomics of Venom)
Show Figures

Graphical abstract

6 pages, 269 KiB  
Concept Paper
Effector-Triggered Trained Immunity: An Innate Immune Memory to Microbial Virulence Factors?
by Cedric Torre and Laurent Boyer
Toxins 2022, 14(11), 798; https://doi.org/10.3390/toxins14110798 - 17 Nov 2022
Cited by 3 | Viewed by 1555
Abstract
In the last decade, a major dogma in the field of immunology has been called into question by the identification of a cell autonomous innate immune memory. This innate immune memory (also named trained immunity) was found to be mostly carried by innate [...] Read more.
In the last decade, a major dogma in the field of immunology has been called into question by the identification of a cell autonomous innate immune memory. This innate immune memory (also named trained immunity) was found to be mostly carried by innate immune cells and to be characterized by an exacerbated inflammatory response with a heightened expression of proinflammatory cytokines, including TNF-α, IL-6 and IL-1β. Unlike the vast majority of cytokines, IL-1β is produced as a proform (pro-IL-1β) and requires a proteolytic cleavage to exert its biological action. This cleavage takes place mainly within complex molecular platforms named inflammasomes. These platforms are assembled upon both the infectious or sterile activation of NOD-like receptors (NLRs), thereby allowing for the recruitment and activation of caspases and the subsequent maturation of pro-IL-1β into IL-1β. The NLRP3 inflammasome has recently been implicated both in western diet-induced trained immunity, and in the detection of microbial virulence factors (effector-triggered immunity (ETI)). Here, we will attempt to link these two immune processes and provide arguments to hypothesize the existence of trained immunity triggered by microbial virulence factors (effector-triggered trained immunity (ETTI)). Full article
(This article belongs to the Special Issue Toxins: Mr Hyde or Dr Jekyll?)
10 pages, 663 KiB  
Communication
Reduction of Mycotoxigenic Fungi Growth and Their Mycotoxin Production by Bacillus subtilis QST 713
by Terenzio Bertuzzi, Giulia Leni, Giulia Bulla and Paola Giorni
Toxins 2022, 14(11), 797; https://doi.org/10.3390/toxins14110797 - 17 Nov 2022
Cited by 11 | Viewed by 2501
Abstract
The use of chemical pesticides to control the occurrence of mycotoxigenic fungi in crops has led to environmental and human health issues, driving the agriculture sector to a more sustainable system. Biocontrol agents such as Bacillus strains and their antimicrobial metabolites have been [...] Read more.
The use of chemical pesticides to control the occurrence of mycotoxigenic fungi in crops has led to environmental and human health issues, driving the agriculture sector to a more sustainable system. Biocontrol agents such as Bacillus strains and their antimicrobial metabolites have been proposed as alternatives to chemical pesticides. In the present work, a broth obtained from a commercial product containing Bacillus subtilis QST 713 was tested for its ability to inhibit the growth of mycotoxigenic fungi as well as reduce their mycotoxin production. Mass spectrometry analysis of Bacillus subtilis broth allowed to detect the presence of 14 different lipopeptides, belonging to the iturin, fengycin, and surfactin families, already known for their antifungal properties. Bacillus subtilis broth demonstrated to be a useful tool to inhibit the growth of some of the most important mycotoxigenic fungi such as Aspergillus flavus, Fusarium verticillioides, Fusarium graminearum, Aspergillus carbonarius, and Alternaria alternata. In addition, cell-free Bacillus subtilis broth provided the most promising results against the growth of Fusarium graminearum and Alternaria alternata, where the radial growth was reduced up to 86% with respect to the untreated test. With regard to the mycotoxin reduction, raw Bacillus subtilis broth completely inhibited the production of aflatoxin B1, deoxynivalenol, zearalenone, and tenuazonic acid. Cell-free broth provided promising inhibitory properties toward all of the target mycotoxins, even if the results were less promising than the corresponding raw broth. In conclusion, this work showed that a commercial Bacillus subtilis, characterized by the presence of different lipopeptides, was able to reduce the growth of the main mycotoxigenic fungi and inhibit the production of related mycotoxins. Full article
(This article belongs to the Special Issue Mycotoxins in Food and Feed: Detection and Identification)
Show Figures

Figure 1

13 pages, 1179 KiB  
Article
Identification and Characterization of Clostridium perfringens Atypical CPB2 Toxin in Cell Cultures and Field Samples Using Monoclonal Antibodies
by Anna Serroni, Claudia Colabella, Deborah Cruciani, Marcella Ciullo, Silvia Crotti, Paola Papa, Antonella Di Paolo, Marco Gobbi, Katia Forti, Martina Pellegrini, Romolo Salini, Nicoletta D’Avino, Monica Cagiola, Giovanni Pezzotti and Antonio De Giuseppe
Toxins 2022, 14(11), 796; https://doi.org/10.3390/toxins14110796 - 17 Nov 2022
Cited by 1 | Viewed by 1751
Abstract
A direct sandwich enzyme-linked immunosorbent assay (sELISA) was developed for the detection of the atypical β2-toxin (CPB2) of Clostridium perfringens. Polyclonal (PAbs) and monoclonal (MAbs) antibodies were previously obtained employing recombinant CPB2 produced in the baculovirus system as antigen. In the current [...] Read more.
A direct sandwich enzyme-linked immunosorbent assay (sELISA) was developed for the detection of the atypical β2-toxin (CPB2) of Clostridium perfringens. Polyclonal (PAbs) and monoclonal (MAbs) antibodies were previously obtained employing recombinant CPB2 produced in the baculovirus system as antigen. In the current study, PAbs were used as capture molecules, while purified MAbs conjugated to horseradish peroxidase (MAbs-HRP) were used for the detection of atypical CPB2 toxin. MAbs 5C11E6 and 2G3G6 showed high reactivity, sensitivity and specificity when tested on 232 C. perfringens cell culture isolates. In addition, a reactivity variation among different strains producing atypical CPB2 toxin was observed using the conformation-dependent MAb 23E6E6, suggesting the hypothesis of high instability and/or the existence of different three-dimensional structures of this toxin. Results obtained by sELISA and Western blotting performed on experimentally CPB2-contaminated feces revealed a time-dependent proteolytic degradation as previously observed with the consensus allelic form of CPB2. Finally, the sELISA and an end-point PCR, specific for the atypical cpb2 gene, were used to test field samples (feces, rectal swabs and intestinal contents) from different dead animal species with suspected or confirmed clostridiosis. The comparison of sELISA data with those obtained with end-point PCR suggests this method as a promising tool for the detection of atypical CPB2 toxin. Full article
Show Figures

Figure 1

32 pages, 9446 KiB  
Review
Small Peptides in the Detection of Mycotoxins and Their Potential Applications in Mycotoxin Removal
by Zitong Zhao, Zhenzhen Zhang, Haoxiang Zhang and Zhihong Liang
Toxins 2022, 14(11), 795; https://doi.org/10.3390/toxins14110795 - 16 Nov 2022
Cited by 9 | Viewed by 2896
Abstract
Mycotoxins pose significant risks to humans and livestock. In addition, contaminated food- and feedstuffs can only be discarded, leading to increased economic losses and potential ecological pollution. Mycotoxin removal and real-time toxin level monitoring are effective approaches to solve this problem. As a [...] Read more.
Mycotoxins pose significant risks to humans and livestock. In addition, contaminated food- and feedstuffs can only be discarded, leading to increased economic losses and potential ecological pollution. Mycotoxin removal and real-time toxin level monitoring are effective approaches to solve this problem. As a hot research hotspot, small peptides derived from phage display peptide libraries, combinatorial peptide libraries, and rational design approaches can act as coating antigens, competitive antigens, and anti-immune complexes in immunoassays for the detection of mycotoxins. Furthermore, as a potential approach to mycotoxin degradation, small peptides can mimic the natural enzyme catalytic site to construct artificial enzymes containing oxidoreductases, hydrolase, and lyase activities. In summary, with the advantages of mature synthesis protocols, diverse structures, and excellent biocompatibility, also sharing their chemical structure with natural proteins, small peptides are widely used for mycotoxin detection and artificial enzyme construction, which have promising applications in mycotoxin degradation. This paper mainly reviews the advances of small peptides in the detection of mycotoxins, the construction of peptide-based artificial enzymes, and their potential applications in mycotoxin control. Full article
(This article belongs to the Special Issue Advanced Research on Mycotoxins: Detection and Removal)
Show Figures

Figure 1

13 pages, 837 KiB  
Article
The Clinical Usefulness of Taiwan Bivalent Freeze-Dried Hemorrhagic Antivenom in Protobothrops mucrosquamatus- and Viridovipera stejnegeri-Envenomed Patients
by Chih-Chuan Lin, Chia-Pang Shih, Chia-Cheng Wang, Chun-Hsiang Ouyang, Chien-Chun Liu, Jau-Song Yu and Chih-Hong Lo
Toxins 2022, 14(11), 794; https://doi.org/10.3390/toxins14110794 - 15 Nov 2022
Cited by 3 | Viewed by 1532
Abstract
Snakebites from Protobothrops mucrosquamatus (Taiwan habus) and Viridovipera stejnegeri (green bamboo vipers) account for the most venomous snakebites in Taiwan. The bivalent freeze-dried hemorrhagic (FH) antivenom is employed to treat these two snakebite patients without a strict clinical trial. We evaluated the clinical [...] Read more.
Snakebites from Protobothrops mucrosquamatus (Taiwan habus) and Viridovipera stejnegeri (green bamboo vipers) account for the most venomous snakebites in Taiwan. The bivalent freeze-dried hemorrhagic (FH) antivenom is employed to treat these two snakebite patients without a strict clinical trial. We evaluated the clinical usefulness of Taiwan bivalent freeze-dried hemorrhagic (FH) antivenom in Taiwan habu- and green bamboo viper-envenomed patients. We checked ELISA- based serum venom antigen levels before and after FH antivenom to evaluate FH’s ability to neutralize patients’ serum snake venom and its usefulness in reducing limb swelling after snakebites. Patients who had higher serum venom antigen levels had more severe limb swelling. Of the 33 enrolled patients, most of their snake venom antigen levels were undetected after the appliance of antivenom. Most enrolled patients (25/33) had their limb swelling subside within 12 h after antivenom treatment. The failure to reduce limb swelling was probably due to an inadequate antivenom dose applied in more severely envenomated patients. Our data indicate the feasibility of the FH antivenom in effectively eliminating venom and resolving the affected limb swelling caused by Taiwan habu and green bamboo viper bites. Full article
(This article belongs to the Special Issue Snakebite and Clinical Toxinology)
Show Figures

Figure 1

17 pages, 4702 KiB  
Article
Zearalenone Exposure Affects the Keap1–Nrf2 Signaling Pathway and Glucose Nutrient Absorption Related Genes of Porcine Jejunal Epithelial Cells
by Qun Cheng, Shuzhen Jiang, Libo Huang, Yuxi Wang and Weiren Yang
Toxins 2022, 14(11), 793; https://doi.org/10.3390/toxins14110793 - 14 Nov 2022
Cited by 2 | Viewed by 1553
Abstract
This study aims to examine the impact of zearalenone (ZEA) on glucose nutrient absorption and the role of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1)–nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in zearalenone-induced oxidative stress of porcine [...] Read more.
This study aims to examine the impact of zearalenone (ZEA) on glucose nutrient absorption and the role of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1)–nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in zearalenone-induced oxidative stress of porcine jejunal epithelial cells (IPEC-J2). For 24 and 36 h, the IPEC-J2 cells were exposed to ZEA at concentrations of 0, 10, 20, and 40 (Control, ZEA10, ZEA20, ZEA40) mol/L. With the increase of ZEA concentration and prolongation of the action time, the apoptosis rate and malondialdehyde level and relative expression of sodium-dependent glucose co-transporter 1 (Sglt1), glucose transporter 2 (Glut2), Nrf2, quinone oxidoreductase 1 (Nqo1), and hemeoxygenase 1 (Ho1) at mRNA and protein level, fluorescence intensity of Nrf2 and reactive oxygen species increased significantly (p < 0.05), total superoxide dismutase and glutathione peroxidase activities and relative expression of Keap1 at mRNA and protein level, fluorescence intensity of Sglt1 around the cytoplasm and the cell membrane of IPEC-J2 reduced significantly (p < 0.05). In conclusion, ZEA can impact glucose absorption by affecting the expression of Sglt1 and Glut2, and ZEA can activate the Keap1-Nrf2 signaling pathway by enhancing Nrf2, Nqo1, and Ho1 expression of IPEC-J2. Full article
(This article belongs to the Special Issue Mechanism of Action of Mycotoxins)
Show Figures

Figure 1

7 pages, 278 KiB  
Communication
IncobotulinumtoxinA Injection for Treating Children with Idiopathic Toe Walking: A Retrospective Efficacy and Safety Study
by Mirko Filippetti, Alessandro Picelli, Rita Di Censo, Sabrina Vantin, Pietro Nicola Randazzo, Giorgio Sandrini, Cristina Tassorelli, Roberto De Icco, Nicola Smania and Stefano Tamburin
Toxins 2022, 14(11), 792; https://doi.org/10.3390/toxins14110792 - 13 Nov 2022
Viewed by 1966
Abstract
There is no gold-standard treatment for idiopathic toe walking (ITW). Some previous evidence suggested that botulinum neurotoxin-A injection might improve ITW. This is a single-center retrospective study on children with ITW treated with incobotulinumtoxinA injection in the gastrocnemius medialis/lateralis muscles. We screened the [...] Read more.
There is no gold-standard treatment for idiopathic toe walking (ITW). Some previous evidence suggested that botulinum neurotoxin-A injection might improve ITW. This is a single-center retrospective study on children with ITW treated with incobotulinumtoxinA injection in the gastrocnemius medialis/lateralis muscles. We screened the charts of 97 ITW children treated with incobotulinumtoxinA (January 2019–December 2021), and the data of 28 of them, who satisfied the inclusion/exclusion criteria, were analyzed. The maximal passive ankle dorsiflexion (knee extended) was assessed at three time points, i.e., immediately before incobotulinumtoxinA injection (T0), after incobotulinumtoxinA injection during the timeframe of its effect (T1), and at follow-up, when the effect was expected to disappear (T2). The maximal passive ankle dorsiflexion was improved by incobotulinumtoxinA injection, and the effect lasted up to 6 months in some children. No adverse effects were reported to incobotulinumtoxinA injections. The treatment with incobotulinumtoxinA might improve the maximal passive ankle dorsiflexion and is safe and well-tolerated in ITW with a longer-than-expected effect in comparison to cerebral palsy. These results may offer ground to future randomized controlled trials and studies assessing the effect of BoNT-A in combination with other non-invasive approaches and exercise programs in children with ITW. Full article
11 pages, 826 KiB  
Article
Occurrence and Determination of Alternaria Mycotoxins Alternariol, Alternariol Monomethyl Ether, and Tentoxin in Wheat Grains by QuEChERS Method
by Nikola Puvača, Giuseppina Avantaggiato, Jordan Merkuri, Gorica Vuković, Vojislava Bursić and Magdalena Cara
Toxins 2022, 14(11), 791; https://doi.org/10.3390/toxins14110791 - 12 Nov 2022
Cited by 6 | Viewed by 1964
Abstract
The Alternaria mycotoxins such as alternariol (AOH), alternariol monomethyl ether (AME), and tentoxin (TEN) are mycotoxins, which can contaminate cereal-based raw materials. Today, wheat is one of the most important crops in temperate zones, and it is in increasing demand in the Western [...] Read more.
The Alternaria mycotoxins such as alternariol (AOH), alternariol monomethyl ether (AME), and tentoxin (TEN) are mycotoxins, which can contaminate cereal-based raw materials. Today, wheat is one of the most important crops in temperate zones, and it is in increasing demand in the Western Balkans countries that are urbanizing and industrializing. This research aimed to investigate the occurrence and determine the concentration of Alternaria mycotoxins AOH, AME, and TEN in wheat samples from the Republic of Serbia and the Republic of Albania, harvested in the year 2020 in the period between 15 June and 15 July. A total of 80 wheat grain samples, 40 from each country, were analyzed by an QuEChERS (quick, easy, cheap, effective, rugged, and safe) method. From the obtained results, it can be seen that the mean concentration of AOH was 3.3 µg/kg and AME was 2.2 µg/kg in wheat samples from Serbia, while TEN from both Serbia and Albania was under the limit of quantification (<LOQ). The maximum of AOH and AME mycotoxins was recorded only in wheat grain samples collected in the Republic of Serbia (5.3 and 2.3 µg/kg). In conclusion, Alternaria mycotoxins have concentrations above the LOQ, which could be potentially considered a health hazard to both humans and animals. Full article
Show Figures

Graphical abstract

18 pages, 2222 KiB  
Article
Exposure to Low Zearalenone Doses and Changes in the Homeostasis and Concentrations of Endogenous Hormones in Selected Steroid-Sensitive Tissues in Pre-Pubertal Gilts
by Magdalena Gajęcka, Łukasz Zielonka, Andrzej Babuchowski and Maciej Tadeusz Gajęcki
Toxins 2022, 14(11), 790; https://doi.org/10.3390/toxins14110790 - 11 Nov 2022
Cited by 4 | Viewed by 1369
Abstract
This study was undertaken to analyze whether prolonged exposure to low-dose zearalenone (ZEN) mycotoxicosis affects the concentrations of ZEN, α-zearalenol (α-ZEL), and β-zearalenol (β-ZEL) in selected reproductive system tissues (ovaries, uterine horn—ovarian and uterine sections, and the middle part of the cervix), the [...] Read more.
This study was undertaken to analyze whether prolonged exposure to low-dose zearalenone (ZEN) mycotoxicosis affects the concentrations of ZEN, α-zearalenol (α-ZEL), and β-zearalenol (β-ZEL) in selected reproductive system tissues (ovaries, uterine horn—ovarian and uterine sections, and the middle part of the cervix), the hypothalamus, and pituitary gland, or the concentrations of selected steroid hormones in pre-pubertal gilts. For 42 days, gilts were administered per os different ZEN doses (MABEL dose [5 µg/kg BW], the highest NOAEL dose [10 µg/kg BW], and the lowest LOAEL dose [15 µg/kg BW]). Tissue samples were collected on days seven, twenty-one, and forty-two of exposure to ZEN (exposure days D1, D2, and D3, respectively). Blood for the analyses of estradiol and progesterone concentrations was collected in vivo on six dates at seven-day intervals (on analytical dates D1–D6). The analyses revealed that both ZEN and its metabolites were accumulated in the examined tissues. On successive analytical dates, the rate of mycotoxin accumulation in the studied tissues decreased gradually by 50% and proportionally to the administered ZEN dose. A hierarchical visualization revealed that values of the carry-over factor (CF) were highest on exposure day D2. In most groups and on most exposure days, the highest CF values were found in the middle part of the cervix, followed by the ovaries, both sections of the uterine horn, and the hypothalamus. These results suggest that ZEN, α-ZEL, and β-ZEL were deposited in all analyzed tissues despite exposure to very low ZEN doses. The presence of these undesirable compounds in the examined tissues can inhibit the somatic development of the reproductive system and compromise neuroendocrine coordination of reproductive competence in pre-pubertal gilts. Full article
(This article belongs to the Special Issue Influence of Deoxynivalenol and Zearalenone in Feed on Animal Health)
Show Figures

Figure 1

14 pages, 1974 KiB  
Article
Studying the Rationale of Fire Ant Sting Therapy Usage by the Tribal Natives of Bastar Revealed Ant Venom-Derived Peptides with Promising Anti-Malarial Activity
by Jyoti Kumari, Raj Kumar Sah, Nazar Mohamed Mohaideen. S, Shakeel Ahmad, Soumya Pati and Shailja Singh
Toxins 2022, 14(11), 789; https://doi.org/10.3390/toxins14110789 - 11 Nov 2022
Cited by 1 | Viewed by 3740
Abstract
Prevailing drug resistance in malaria imposes the major roadblock for the existing interventions necessitating the timely need to search for alternative therapies. Ants in Solenopsis spp, termed ’Fire ants’, are well known for their aggressive behavior, which leads to the release of [...] Read more.
Prevailing drug resistance in malaria imposes the major roadblock for the existing interventions necessitating the timely need to search for alternative therapies. Ants in Solenopsis spp, termed ’Fire ants’, are well known for their aggressive behavior, which leads to the release of toxic venom. Notably, the tribal natives of the malaria-laden densely forested Bastar region, Chhattisgarh, India, use fire ant sting-based therapy to cure malaria-like high fever. Inspired by this, we have collected the fire ants from the forest of Bastar and extracted peptide and alkaloid fractions from ant venom using HPLC and analyzed them by LC/MS-based applications. Evaluation of the anti-malarial efficacy of these peptide fractions demonstrated a significant reduction in the growth of Plasmodium falciparum (Pf 3D7) in vitro, whereas the alkaloid fraction showed a negligible effect. in vitro hemolytic activity confirmed the venom peptide fraction to be non-hemolytic. Additionally, the venom peptide fraction is purely non-toxic to HepG2 cells. Anti-malarial efficiency of the same in Plasmodium berghei ANKA infected mice models showed a drastic reduction in parasitemia representing promising anti-malarial activity. Overall, our study has unraveled the scientific rationale underlying fire ant sting therapy used as a tribal naturotherapy for curing malaria-like fever, thus, introducing a way forward to develop nature-inspired anti-malarial chemotherapeutics. Full article
(This article belongs to the Special Issue Ant Venom)
Show Figures

Graphical abstract

13 pages, 4180 KiB  
Article
The Inhibitory Effect of Pseudomonas stutzeri YM6 on Aspergillus flavus Growth and Aflatoxins Production by the Production of Volatile Dimethyl Trisulfide
by An-Dong Gong, Yin-Yu Lei, Wei-Jie He, Yu-Cai Liao, Ling Ma, Tian-Tian Zhang and Jing-Bo Zhang
Toxins 2022, 14(11), 788; https://doi.org/10.3390/toxins14110788 - 11 Nov 2022
Cited by 5 | Viewed by 1651
Abstract
Aspergillus flavus and the produced aflatoxins cause great hazards to food security and human health across all countries. The control of A. flavus and aflatoxins in grains during storage is of great significance to humans. In the current study, bacteria strain YM6 isolated [...] Read more.
Aspergillus flavus and the produced aflatoxins cause great hazards to food security and human health across all countries. The control of A. flavus and aflatoxins in grains during storage is of great significance to humans. In the current study, bacteria strain YM6 isolated from sea sediment was demonstrated effective in controlling A. flavus by the production of anti-fungal volatiles. According to morphological characteristics and phylogenetic analysis, strain YM6 was identified as Pseudomonas stutzeri. YM6 can produce abundant volatile compounds which could inhibit mycelial growth and conidial germination of A. flavus. Moreover, it greatly prevented fungal infection and aflatoxin production on maize and peanuts during storage. The inhibition rate was 100%. Scanning electron microscopy further supported that the volatiles could destroy the cell structure of A. flavus and prevent conidia germination on the grain surface. Gas chromatography/mass spectrometry revealed that dimethyl trisulfide (DMTS) with a relative abundance of 13% is the most abundant fraction in the volatiles from strain YM6. The minimal inhibitory concentration of DMTS to A. flavus conidia is 200 µL/L (compound volume/airspace volume). Thus, we concluded that Pseudomonas stutzeri YM6 and the produced DMTS showed great inhibition to A. flavus, which could be considered as effective biocontrol agents in further application. Full article
(This article belongs to the Special Issue Mycotoxins and Fungal Toxins: Current Status and Future Perspectives)
Show Figures

Figure 1

20 pages, 1388 KiB  
Article
In Silico Study of the Mechanisms Underlying the Action of the Snake Natriuretic-Like Peptide Lebetin 2 during Cardiac Ischemia
by Hinda Allaoui, Nedra Rached, Naziha Marrakchi, Ameur Cherif, Amor Mosbah and Erij Messadi
Toxins 2022, 14(11), 787; https://doi.org/10.3390/toxins14110787 - 11 Nov 2022
Cited by 3 | Viewed by 1714
Abstract
Lebetin 2 (L2), a natriuretic-like peptide (NP), exerts potent cardioprotection in myocardial infarction (MI), with stronger effects than B-type natriuretic peptide (BNP). To determine the molecular mechanisms underlying its cardioprotection effect, we used molecular modeling, molecular docking and molecular dynamics (MD) simulation to [...] Read more.
Lebetin 2 (L2), a natriuretic-like peptide (NP), exerts potent cardioprotection in myocardial infarction (MI), with stronger effects than B-type natriuretic peptide (BNP). To determine the molecular mechanisms underlying its cardioprotection effect, we used molecular modeling, molecular docking and molecular dynamics (MD) simulation to describe the binding mode, key interaction residues as well as mechanistic insights into L2 interaction with NP receptors (NPRs). L2 binding affinity was determined for human, rat, mouse and chicken NPRs, and the stability of receptor–ligand complexes ascertained during 100 ns-long MD simulations. We found that L2 exhibited higher affinity for all human NPRs compared to BNP, with a rank preference for NPR-A > NPR-C > NPR-B. Moreover, L2 affinity for human NPR-A and NPR-C was higher in other species. Both docking and MD studies revealed that the NPR-C–L2 interaction was stronger in all species compared to BNP. Due to its higher affinity to human receptors, L2 could be used as a therapeutic approach in MI patients. Moreover, the stronger interaction of L2 with NPR-C could highlight a new L2 signaling pathway that would explain its additional effects during cardiac ischemia. Thus, L2 is a promising candidate for drug design toward novel compounds with high potency, affinity and stability. Full article
Show Figures

Graphical abstract

16 pages, 4899 KiB  
Article
Modelling the Spatial and Temporal Dynamics of Paralytic Shellfish Toxins (PST) at Different Scales: Implications for Research and Management
by Patricio A. Díaz, Carlos Molinet, Miriam Seguel, Edwin J. Niklitschek, Manuel Díaz, Gonzalo Álvarez, Iván Pérez-Santos, Daniel Varela, Leonardo Guzmán, Camilo Rodríguez-Villegas and Rosa I. Figueroa
Toxins 2022, 14(11), 786; https://doi.org/10.3390/toxins14110786 - 11 Nov 2022
Cited by 4 | Viewed by 1831
Abstract
Harmful algal blooms, in particular recurrent blooms of the dinoflagellate Alexandrium catenella, associated with paralytic shellfish poisoning (PSP), frequently limit commercial shellfish harvests, resulting in serious socio-economic consequences. Although the PSP-inducing species that threaten the most vulnerable commercial species of shellfish are [...] Read more.
Harmful algal blooms, in particular recurrent blooms of the dinoflagellate Alexandrium catenella, associated with paralytic shellfish poisoning (PSP), frequently limit commercial shellfish harvests, resulting in serious socio-economic consequences. Although the PSP-inducing species that threaten the most vulnerable commercial species of shellfish are very patchy and spatially heterogeneous in their distribution, the spatial and temporal scales of their effects have largely been ignored in monitoring programs and by researchers. In this study, we examined the spatial and temporal dynamics of PSP toxicity in the clam (Ameghinomya antiqua) in two fishing grounds in southern Chile (Ovalada Island and Low Bay). During the summer of 2009, both were affected by an intense toxic bloom of A. catenella (up to 1.1 × 106 cells L−1). Generalized linear models were used to assess the potential influence of different environmental variables on the field detoxification rates of PSP toxins over a period of 12 months. This was achieved using a four parameter exponential decay model to fit and compare field detoxification rates per sampling site. The results show differences in the spatial variability and temporal dynamics of PSP toxicity, given that greater toxicities (+10-fold) and faster detoxification (20% faster) are observed at the Ovalada Island site, the less oceanic zone, and where higher amounts of clam are annually produced. Our observations support the relevance of considering different spatial and temporal scales to obtain more accurate assessments of PSP accumulation and detoxification dynamics and to improve the efficacy of fisheries management after toxic events. Full article
Show Figures

Figure 1

13 pages, 1872 KiB  
Article
Target Mechanisms of the Cyanotoxin Cylindrospermopsin in Immortalized Human Airway Epithelial Cells
by Sabine Ziesemer, Susann Meyer, Julia Edelmann, Janita Vennmann, Celine Gudra, Denise Arndt, Marcus Effenberg, Olla Hayas, Aref Hayas, Johanna Sophia Thomassen, Barbara Kubickova, Dierk-Christoph Pöther and Jan-Peter Hildebrandt
Toxins 2022, 14(11), 785; https://doi.org/10.3390/toxins14110785 - 11 Nov 2022
Cited by 1 | Viewed by 1732
Abstract
Cylindrospermopsin (CYN) is a cyanobacterial toxin that occurs in aquatic environments worldwide. It is known for its delayed effects in animals and humans such as inhibition of protein synthesis or genotoxicity. The molecular targets and the cell physiological mechanisms of CYN, however, are [...] Read more.
Cylindrospermopsin (CYN) is a cyanobacterial toxin that occurs in aquatic environments worldwide. It is known for its delayed effects in animals and humans such as inhibition of protein synthesis or genotoxicity. The molecular targets and the cell physiological mechanisms of CYN, however, are not well studied. As inhalation of CYN-containing aerosols has been identified as a relevant route of CYN uptake, we analyzed the effects of CYN on protein expression in cultures of immortalized human bronchial epithelial cells (16HBE14o) using a proteomic approach. Proteins whose expression levels were affected by CYN belonged to several functional clusters, mainly regulation of protein stability, cellular adhesion and integration in the extracellular matrix, cell proliferation, cell cycle regulation, and completion of cytokinesis. With a few exceptions of upregulated proteins (e.g., ITI inhibitor of serine endopeptidases and mRNA stabilizer PABPC1), CYN mediated the downregulation of many proteins. Among these, centrosomal protein 55 (CEP55) and osteonectin (SPARC) were significantly reduced in their abundance. Results of the detailed semi-quantitative Western blot analyses of SPARC, claudin-6, and CEP55 supported the findings from the proteomic study that epithelial cell adhesion, attenuation of cell proliferation, delayed completion of mitosis, as well as induction of genomic instability are major effects of CYN in eukaryotic cells. Full article
Show Figures

Figure 1

9 pages, 2052 KiB  
Systematic Review
Physiotherapy for Cervical Dystonia: A Systematic Review of Randomised Controlled Trials
by Dana Loudovici-Krug, Steffen Derlien, Norman Best and Albrecht Günther
Toxins 2022, 14(11), 784; https://doi.org/10.3390/toxins14110784 - 11 Nov 2022
Cited by 7 | Viewed by 2796
Abstract
Physiotherapy is mentioned as an adjunctive treatment to improve the symptoms of cervical dystonia in terms of pain, function and quality of life. However, botulinum neurotoxin injection remains the treatment of choice. This systematic review emphasizes physical therapy and evaluates it by including [...] Read more.
Physiotherapy is mentioned as an adjunctive treatment to improve the symptoms of cervical dystonia in terms of pain, function and quality of life. However, botulinum neurotoxin injection remains the treatment of choice. This systematic review emphasizes physical therapy and evaluates it by including six studies. The methodology is based on a previous systematic review on this topic to provide better comparability and actuality. For this purpose, two databases were searched using the previously published keywords. This time, only randomised controlled trials were evaluated to increase the power. In conclusion, additional physical therapy and active home exercise programs appear to be useful. Further research should focus on the dose–response principle to emphasize physical therapy treatment modalities. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop