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Abstract: Palytoxin (PLTX) is one of the most poisonous substances known to date and considered
as an emergent toxin in Europe. Palytoxin binds to the Na+-K+ ATPase, converting the enzyme in
a permeant cation channel. This toxin is known for causing human fatal intoxications associated
with the consumption of contaminated fish and crustaceans such as crabs, groupers, mackerel,
and parrotfish. Human intoxications by PLTX after consumption of contaminated fishery products
are a serious health issue and can be fatal. Different reports have previously explored the acute
oral toxicity of PLTX in mice. Although the presence of palytoxin in marine products is currently
not regulated in Europe, the European Food Safety Authority expressed its opinion on PLTX and
demanded assessment for chronic toxicity studies of this potent marine toxin. In this study, the chronic
toxicity of palytoxin was evaluated after oral administration to mice by gavage during a 28-day
period. After chronic exposure of mice to the toxin, a lethal dose 50 (LD50) of 0.44 µg/kg of PLTX and
a No-Observed-Adverse-Effect Level (NOAEL) of 0.03 µg/kg for repeated daily oral administration of
PLTX were determined. These results indicate a much higher chronic toxicity of PLTX and a lower
NOAEL than that previously described in shorter treatment periods, pointing out the need to further
reevaluate the levels of this compound in marine products.

Keywords: palytoxin; marine toxins; in vivo toxicity; EFSA; risk assessment; sodium-potassium
ATPase; LD50; NOAEL

Key Contribution: The oral cumulative toxicity of the marine toxin palytoxin was evaluated after
daily treatment of mice during 28 days.

1. Introduction

The marine toxin palytoxin (PLTX) is one of the most toxic marine phycotoxins known to date.
Since its first isolation, about 50 years ago, from marine corals of the genus Palythoa [1] and later on
from algae of the genus Ostreopsis [2–4], the toxin was associated with high toxicity. Even though
the toxic organisms producers of PLTX were initially located in the Pacific Sea, now the presence of
the toxin and its congeners has expanded also to European waters. In fact, a recent report described
a massive bloom of the dinoflagellate Ostreopsis cf. ovata producer of 5.6 pg of PLTX per cell in the
Adriatic Sea [5]. This bloom was not an isolated case but rather massive Ostreopsis blooms have been
reported in the Mediterranean Sea during the last 20 years as summarized in several reports [5] and
increasingly reported in the literature [2,3,5–10], and are in expansion mainly due to environmental
factors [11–13].
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The increment in toxic blooms of PLTX in Europe raised high concern and the urgent need to
obtain toxicity data useful for the future regulation of this toxin in marine products captured in
European coasts. Besides causing human intoxications, after consumption of marine crustaceans and
fish [14–17], toxic effects of different severity have been attributed to PLTX after human inhalation of
marine aerosols or skin contact during Ostreopsis blooms [18–20] and even after dermal or inhalatory
exposition to zoanthid corals in aquariums [21,22].

The mechanism of action of palytoxin is well established because the toxin transforms the
sodium-potassium pump (Na+/K+-ATPase), an enzyme crucial to maintain the sodium and potassium
gradients across all the cell membranes, in a non-selective cation channel [23–25], which leads to
the increase in intracellular potassium levels [26,27]. The sodium-potassium pump is ubiquitously
distributed in different cells types and the interaction of PLTX with the enzyme has been studied in a wide
variety of in vitro [28–34] and in vivo systems [29,35–38]; therefore, the benthic microalgal proliferation
of the dinoflagellates producers of PLTX and its analogues causes respiratory, muscular, cardiovascular,
gastrointestinal, and nervous alterations in humans [39]. After ingestion of PLTX-contaminated fishery
products, several fatal human intoxications with symptomatology characterized by gastrointestinal
alterations, myalgia and spasms, have been reported [38,40]. Initial studies on the chronic
PLTX toxicity after repeated daily oral administration of PLTX to mice allowed to determine a
No-Observed-Adverse-Effect Level (NOAEL) of 3µg/kg/day for a 7-day exposure period [28]. Moreover,
we have recently shown that a single oral dose of 15 µg/kg PLTX elicited statistically significant subtle
changes in mouse LDH plasma levels after a 96 h observation period [35].

Besides their high toxicity, currently, neither PLTX nor its analogues are regulated in fishery
products in Europe or in other countries, but the European Food Safety Authority (EFSA) has
recommended a maximum of 30 µg PLTX and analogues/kg of shellfish meat [41], and in the same
reports, an oral acute reference dose (ARfD) of 0.2 µg/kg body weight (BW) for the total content of
PLTX and its analogue Ostreocin-D was derived. However, this report remarks the lack of chronic
toxicity data for this group of toxins. In fact, while several reports have evaluated the acute toxicity of
PLTX by several administration routes [36,37,42], the acute oral toxicity of this group of toxins increases
with longer times of observation. Therefore, in this work we aimed to evaluate the chronic toxicity of
PLTX following the principles of the internationally adopted Organisation for Economic Co-operation
and Development (OECD) guidelines for the 28 days exposure period, as adapted to comply with the
principle of reduction required by the Directive 2010/63/EU [43]. In this report, Swiss mice were fed
daily with PLTX, by gavage, at doses of 0.03, 0.1, 0.3, 1, 3.5, and 10 µg/kg and animals were monitored
for the corresponding survival periods ending the experiments after 28 days of PLTX administration.
The data presented here indicate that daily chronic exposure of mice to the toxin has profound effects
on blood biochemistry and urine parameters. In addition, daily dosage of mice with PLTX elicited
macroscopic alterations in the digestive tract and ultrastructural alterations in the stomach.

2. Results

2.1. Chronic Toxicity Elicited by Daily Oral PLTX

Based on the initial results for the acute toxicity of PLTX in mice [35], we further explored the
chronic toxicity of this compound assessing its oral toxicity after a 28 daily exposure period. Thus,
the first dose of palytoxin evaluated to test its chronic toxicity was 3.5 µg/kg/day over a 28 day treatment
period, but with this dose a mortality of about 75% was observed, therefore, subsequent dilutions of the
toxin were made in order to achieve the chronic NOAEL for the toxin. Table 1 represents the mortality
rate at the different PLTX doses evaluated. As shown in this table, at 3.5 µg/kg/day, only two out of
eight mice survived the 28-day treatment period. At the highest dose evaluated (10 µg/kg/day) animals
survived 8, 10 and 18 days and none of the animals evaluated completed the entire treatment period.
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Table 1. Percent of mortality and survival times observed for each mouse fed daily with PLTX during a
28 day period.

Dose (µg/kg) Total Mice Dead Mice Individual Survival Time (Days)
(Mean Survival Time ± SD) Mortality %

Control 6 0 28 0
0.03 5 0 28 0

0.1 8 3 15, 22, 27, 28, 28, 28, 28, 28
(25.5 ± 4.7) 38

0.3 7 3 17, 18, 24, 28, 28, 28, 28
(24.4 ± 5.0) 43

1 10 6 2, 2, 14, 15, 22, 25, 28, 28, 28, 28
(19.2 ± 10.5) 60

3.5 8 6 0.3, 8, 9, 15, 15, 16, 28, 28
(14.9 ± 9.6) 75

10 3 3 8, 10, 18
(12.0 ± 5.3) 100

As shown in Figure 1A, non-linear fit of the data represented on Table 1 allowed to calculate a
chronic lethal dose 50 (LD50) for PLTX of 0.44 µg/kg (95% confidence interval (CI) from 0.22 to 0.9 µg/kg,
R2 = 0.9122, df (degrees of freedom) = 7), although the survival times differed considerably between
the individual mice fed with each dose of PLTX as depicted in Figure 1B.
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Figure 1. Chronic oral LD50 for PLTX (A) and survival times for each mouse treated with the different
PLTX doses (B). Scatter plot graph showing the survival time for each animal. Values are means ± SEM
of the data obtained from three to ten animals.

All over the treatment period, mice weight was monitored weekly. As shown in Table 2,
control mice and mice treated with PLTX at doses of 0.03, 0.1 and 0.3 µg/kg gained some weight during
the 28 days treatment period while mice dosed with PLTX at 1 and 3.5 µg/kg lost weight during the
treatment. Average weight of the animals during the treatment period and accumulative weekly
weight change are shown in Table 2. Mice dosed with PLTX at 1 and 3.5 µg/kg exhibited significant
weight lost at day 7 and day 14 of treatment and mice treated with 10 µg/kg lost weight at day 14,
but this data was not significantly different due to the limited number of animals.
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Table 2. Effect of repeated oral exposure of mice to PLTX on body weight (BW) and accumulated weight
change during the treatment period. Values are expressed as mean ± SEM and the number of mice at
each week and dose is shown in parenthesis (* p < 0.05; ** p < 0.01; *** p < 0.001 vs. control values).

Day 0 Day 7 Day 14 Day 21 Day 28

Control (n = 6) (n = 6) (n = 6) (n = 6) (n = 6)
Body weight (g) 22.2 ± 0.9 23.9 ± 0.6 25.9 ± 0.5 27.1 ± 0.8 27.3 ± 0.7

Cumulative BW (g) 0.0 1.7 ± 0.4 3.7 ± 0.6 4.8 ± 0.8 5.1 ± 0.9

0.03 µg/kg (n = 5) (n = 5) (n = 5) (n = 5) (n = 5)
Body weight (g) 22.9 ± 0.6 23.5 ± 0.3 24.5 ± 0.2 25.6 ± 0.4 25.8 ± 0.6

Cumulative BW (g) 0.0 0.6 ± 0.4 1.6 ± 0.7 2.7 ± 0.3 2.9 ± 0.3

0.1 µg/kg (n = 8) (n = 8) (n = 8) (n = 7) (n = 5)
Body weight (g) 23.4 ± 0.8 23.7 ± 0.7 25.0 ± 0.6 25.1 ± 0.8 24.2 ± 0.8 *

Cumulative BW (g) 0.0 0.3 ± 0.6 1.6 ± 0.3 2.2 ± 0.7 1.4 ± 1.6

0.3 µg/kg (n = 7) (n = 7) (n = 7) (n = 5) (n = 4)
Body weight (g) 23.7 ± 0.4 23.3 ± 0.6 24.0 ± 0.8 25.7 ± 0.6 26.1 ± 1.5

Cumulative BW (g) 0.0 −0.4 ± 0.7 0.3 ± 0.9 * 1.9 ± 0.4 2.3 ± 1.0

1 µg/kg (n = 10) (n = 8) (n = 8) (n = 6) (n = 4)
Body weight (g) 24.5 ± 0.8 21.8 ± 1.0 21.1 ± 1.0 ** 20.1 ± 0.9 *** 21.8 ± 1.2 **

Cumulative BW (g) 0.0 −2.4 ± 0.8 *** −3.6 ± 0.7 *** −4.2 ± 1.2 *** −2.6 ± 1.4 ***

3.5 µg/kg (n = 8) (n = 7) (n = 5) (n = 2) (n = 2)
Body weight (g) 23.6 ± 0.9 20.4 ± 1.3 * 18.6 ± 2.0 ** 20.0 ± 3.8 * 21.8 ± 3.0 *

Cumulative BW (g) 0.0 −3.6 ± 0.7 *** −5.1 ± 2.1 *** −3.6 ± 3.5 *** −1.9 ± 2.7 *

10 µg/kg (n = 3) (n = 3) (n = 1) (n = 1)
Body weight (g) 22.2 ± 1.5 20.0 ± 0.7 21.5 21.9

Cumulative BW (g) 0.0 −2.2 ± 1.2 * −3.4 *** −3.0 ***

Even at PLTX doses as low as 0.1 µg/kg, animals fed with the toxin administered daily by gavage
exhibited symptoms typical of the toxin that are summarized in Table 3, specifying the number of
animals that exhibited the different symptoms. No symptoms were observed after dosing the mice
with 0.03 µg/kg PLTX, while piloerection was the most frequent observation at the dose of 0.1 µg/kg
PLTX. At the 0.3 µg/kg PLTX dose, the most common symptoms were lethargy, piloerection, and facial
swelling. In addition, dyspnea appeared at the doses of 1, 3.5 and 10 µg/kg together with signs of
abdominal pain and, as in our preliminary acute study [35], kyphosis and ataxia were also present
after PLTX administration.

Table 3. Main symptoms after oral administration of PLTX by gavage (animals with
symptomatology/total animals for each dose).

Symptoms 0.03 µg/kg 0.1 µg/kg 0.3 µg/kg 1 µg/kg 3.5 µg/kg 10 µg/kg

Lethargy 0/5 1/8 3/7 8/10 6/8 3/3
Piloerection 0/5 3/8 3/7 8/10 7/8 3/3

Dyspnea 0/5 2/8 0/7 6/10 4/8 2/3
Cyanosis 0/5 1/8 0/7 1/10 0/8 0/3

Abdominal pain 0/5 2/8 2/7 4/10 7/8 2/3
Kyphosis 0/5 1/8 2/7 4/10 4/8 3/3
Circling 0/5 0/8 0/7 1/10 2/8 0/3
Ataxia 0/5 0/8 0/7 1/10 2/8 1/3

Vocalization 0/5 0/8 0/7 0/10 2/8 1/3
Facial swelling 0/5 1/8 3/7 3/10 1/8 3/3

2.2. Chronic Oral PLTX Induced Macroscopic Changes in the Intestines and Stomachs of Treated Animals

After euthanasia, the animals were subjected to macroscopic observation on necropsy. As shown
in Figure 2, no macroscopic alterations were observed neither in control animals nor in animals fed
28 days with 0.03 µg/kg PLTX. However, in one animal treated with 0.1 µg/kg PLTX that survived for
27 days, the stomach and small intestines were empty of solid contents and instead these structures
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contained dark-yellow mucous liquid. At the same dose, after daily feeding with 0.1 µg/kg PLTX,
two mice showed swollen abdomen at death and survival times of 15 and 27 days. At the dose of
0.3 µg/kg, one mouse that survived 18 days of treatment showed gas accumulation in the stomach and
intestines and absence of solid content. For this group of mice, two out of seven animals presented
abdominal swelling and survival times of 18 and 24 days. Similarly, stomach and intestine alterations
were observed in other mice fed daily with 1 µg/kg PLTX and that survived 25 days. At this dose,
4 out of 10 animals showed abdominal swelling and survival times of 2, 15, 25, and 28 days from the
beginning of treatment. Similar alterations were observed in a mouse fed daily with 3.5 µg/kg PLTX that
survived for 15 days. At this dose, five out of eight mice showed abdominal swelling at death (survival
times ranged from 7 h for one animal, 9 days for another mouse, 15 days for 2 mice, and 28 days in the
last animal with abdominal swelling). Notwithstanding, it is noteworthy to remark that abdominal
swelling and the presence of gas and mucus in the stomach and intestines of PLTX-treated animals
was a common feature. At the highest dose employed, 10 µg/kg, only one mouse, which survived
8 days, did not present changes at necropsy.
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Figure 2. Representative image of the organs from control mice or mice treated daily with PLTX at doses
of 0.03, 0.1 (survival time 28 days), 0.3 (survival time 18 days), 1 (survival time 25 days), or 3.5 µg/kg
(survival time 15 days).

2.3. Chronic Oral PLTX at Doses of 1 and 3.5 µg/kg Decreased Urine Production After the 28 Days
Treatment Period

On day 27 after the beginning of treatment, mice were housed individually in metabolic cages and
the last dose of toxin was administered by gavage, before monitoring food consumption and urine and
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faeces production over a 24 h period. As shown in Table 4, at the highest doses evaluated after daily
oral administration of PLTX, urine production decreased by about 88% at the doses of 1 and 3.5 µg/kg
(Table 4). Urine samples were limited to the number of animals that survived the entire treatment.

Table 4. Food intake, faeces and urine production over a 24 h period in control mice and in mice treated
with PLTX. Urine production was decreased in mice treated with PLTX at doses of 1 and 3.5 µg/kg,
but no significant changes were found mainly due to the limited number of animals.

Group/Analysed Parameters

Control (n = 6)

Food consumption (g) 4.9 ± 0.6
Faeces (g) 1.3 ± 0.2

Urine (mL) 2.5 ± 1.0

0.03 µg/kg PLTX (n = 5)

Food consumption (g) 4.4 ± 0.3
Faeces (g) 1.0 ± 0.4

Urine (mL) 1.1 ± 0.1

0.1 µg/kg PLTX (n = 5)

Food consumption (g) 4.4 ± 0.2
Faeces (g) 1.3 ± 0.1

Urine (mL) 1.2 ± 0.2

0.3 µg/kg PLTX (n = 4)

Food consumption (g) 3.8 ± 0.6
Faeces (g) 1.5 ± 0.1

Urine (mL) 1.3 ± 0.5

1 µg/kg PLTX (n = 4)

Food consumption (g) 4.3 ± 0.3
Faeces (g) 1.0 ± 0.2

Urine (mL) 0.3 ± 0.1

3.5 µg/kg PLTX (n = 2)

Food consumption (g) 3.4 ± 0.8
Faeces (g) 0.9 ± 0.4

Urine (mL) 0.3 ± 0.2

2.4. Urine Parameters in Control Mice and in Mice Treated Daily with PLTX

Urine parameters were evaluated in samples collected during the 24 h period before sacrifice,
after mouse placement in individual metabolic cages. The animals employed for this analysis were
the mice that survived the 28 days treatment period. Urine parameters analyzed included colour,
clarity, specific gravity, protein, glucose, ketones, blood/hemoglobin, bilirubin, and urobilinogen.
Urine parameters in control and PLTX-treated mice are summarized in Table 5. No statistically
significant differences were found between control mice and animals dosed daily with PLTX besides
a bilirubin increase at PLTX doses of 0.1 µg/kg (t = 2.959; df = 9; p = 0.016) and 3.5 µg/kg (t = 2.579;
df = 6; p = 0.0418).
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Table 5. Analytical results of urine in control animals and in animals treated daily with PLTX at doses
ranging from 0.03 µg/kg to 3.5 µg/kg for 28 days. Values are expressed as mean ± SEM and the number
of animals used to evaluate urine parameters is shown in parenthesis for each dose. * p < 0.05 versus
control animals. For urine protein, glucose, ketones, blood haemoglobin, and bilirubin values represent
mean ± SEM (in bold) and after the individual values for each mouse.

Group/Analyzed
Parameters

Control
(n = 6)

0.03 µg/kg
(n = 5)

0.1 µg/kg
(n = 5)

0.3 µg/kg
(n = 4)

1 µg/kg
(n = 3)

3.5 µg/kg
(n = 2)

Colour
(2) Pale Yellow
(3) Amber
(1) Dark Yellow

(1) Pale Yellow
(1) Amber
(3) Dark Yellow

(3) Amber
(2) Dark Yellow (4) Amber (3) Amber (2) Amber

Turbididy

(1) Clear
(1) Slightly
cloudy
(4) Cloudy

(3) Clear
(2) Cloudy

(1) Slightly cloudy
(4) Cloudy (4) Very Cloudy (3) Cloudy (2) Cloudy

Specific Gravity
(1) 1020
(1) 1032
(4) >1050

(2) 1030
(1) 1032
(2) >1050

(1) 1028
(4) >1050

(1) 1038
(1) 1050
(2) >1050

(3) >1050 (2) >1050

Urine protein (g/L)

0.4 ± 0.2
(3) 0
(1) Trace
(2) 1

0 ± 0
(4) 0
(1) Trace

0.4 ± 0.2
(1) 0
(3) 0.3
(1) 1

0.3 ± 0
(1) Trace
(3) 0.3

2.1 ± 1.5
(1) 0.3
(1) 1
(1) 5

0.7 ± 0.4
(1) 0.3
(1) 1

Glucose (mmol/L)
1.5 ± 0.7
(3) 0
(3) 3

3 ± 0
(5) 3

5.8 ± 2.8
(4) 3
(1) 17

3 ± 0
(4) 3

0 ± 0
(2) 0

0 ± 0
(2) 0

Ketones (mmol/L)
0.8 ± 0.4
(3) 0
(3) 1.5

0.3 ± 0.3
(4) 0
(1) 1.5

1.2 ± 0.3
(1) 0
(4) 1.5

0.4 ± 0.4
(3) 0
(1) 1.5

0.8 ± 0.8
(1) 0
(1) 1.5

0 ± 0
(2) 0

Blood/Haemoglobin
(Ery/µL)

1.6 ± 1.6
(5) 0
(1) 10

0 ± 0
(5) 0

12 ± 9.7
(3) 0
(1) 10
(1) 50

2.5 ± 2.5
(3) 0
(1) 10

0 ± 0
(2) 0

5 ± 5
(1) 0
(1) 10

Bilirubin (µmol/L)

11.2 ± 8.3
(4) 0
(1) 17
(1) 50

10.2 ± 4.2
(2) 0
(3) 17

43.4 ± 6.6 *
(1) 17
(4) 50

25.3 ± 8.3
(3) 17
(1) 50

17 ± 0
(2) 17

50 ± 0 *
(2) 50

Urobilinogen
(µmol/L)

2.8 ± 2.8
(5) 0
(1) 17

10.2 ± 4.2
(2) 0
(3) 17

6.8 ± 4.2
(3) 0
(2) 17

0 ± 0
(4) 0

8.5 ± 8.5
(1) 0
(1) 17

8.5 ± 8.5
(1) 0
(1) 17

2.5. Effect of 28 Day Repeated Exposure of Mice to Low Doses of PLTX on Blood Biochemical Parameters

At the end of the 28 days of treatment, mice were euthanized, and biochemical analysis was
performed in blood extracted by cardiac puncture immediately after euthanasia or, in some cases,
after sudden death of animals. Blood samples were analyzed as in the previous study [35] and
blood parameters analyzed included electrolyte levels (Cl−, Na+ and K+), alanine transaminase (ALT),
aspartate transaminase (AST), lactate dehydrogenase (LDH), and creatine kinase (CK). As shown in
Figure 3A, mean blood levels of ALT in control animals were 44 ± 4 U/L (n = 6) and 52 ± 5 U/L (n = 5) in
animals dosed with 0.03 µg/kg. ALT blood levels were significantly increased to 163 ± 46 U/L in seven
animals dosed with 0.1 µg/kg PLTX (t = 2.410; df = 11; p = 0.0346). In mice fed orally with PLTX at
0.3 µg/kg ALT blood levels were 103 ± 49 U/L, 116 ± 49 U/L in mice fed with 1 µg/kg PLTX, 128 ± 46 U/L
in the four mice fed with 3.5 µg/kg PLTX, and 49 U/L in one mice that survived 10 days after daily
PLTX dosage. Besides mean AST blood levels (Figure 3B), were 157 ± 26 U/L (n = 6) in control mice,
210 ± 23 U/L in mice dosed daily with 0.03 µg/kg (n = 5), 535 ± 206 U/L (n = 7) in mice treated with
0.1 µg/kg PLTX, 869 ± 435 U/L (n = 5) in mice fed with 0.3 µg/kg PLTX, 343 ± 113 U/L (n = 6) in mice
fed orally with PLTX at 1 µg/kg, 301 ± 47 U/L (n = 4) in mice fed with 3.5 µg/kg, and 194 U/L in one
mice after 10 days administration of PLTX at 10 µg/kg. Statistical analysis of AST data did not yield
significant differences between the control group and the PLTX-treated animals with the exception
of mice fed with 3.5 µg/kg (t = 2.935; df = 8; p = 0.0189), but the levels of AST in 0.1, 0.3, 1 and 3.5
groups were above the normal reference range (59–247 U/L for the IDEXX). In contrast, creatine kinase
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blood levels (Figure 3C) were 508 ± 147 U/L for the control group (n = 6), 708 ± 220 U/L for the group
of mice dosed with 0.03 µg/kg (n = 5), 1781 ± 572 U/L (n = 6), 3040 ± 1319 U/L (n = 5), 512 ± 99 U/L
(n = 5), 654 ± 208 U/L (n = 4), and 814 U/L (n = 1) for the groups of mice dosed with 0.1, 0.3, 1, 3.5 and
10 µg/kg PLTX, respectively. Statistical comparison of creatine kinase data did not show significant
differences between control animals and animals treated daily with PLTX. Nevertheless, in this case,
the blood level of CK in the animals dosed daily with 0.1 and 0.3 µg/kg of PLTX was well above the
IDEXX reference range, which is between 68 and 1070 U/L, with some animals showing CK levels well
above 1070 U/L. As shown in Figure 3D, mean LDH values were 1277 ± 229 U/L (n = 6) in the control
group, 1904 ± 338 U/L in three animals dosed with 0.03 µg/kg, 6230 ± 2448 U/L (n = 6) in the 0.1 µg/kg
group, 2716 ± 841 U/L (n = 3) for the 0.3 µg/kg group, 1626 ± 325 U/L (n = 4) in the 1 µg/kg group,
1275 ± 296 U/L (n = 4) in the 3.5 µg/kg group, and finally 1914 U/L in one mouse at the highest dose
employed. In this case, no statistically significant differences were observed between control animals
and those that received a daily PLTX dose. However, two out of the six mice fed with 0.1 µg/kg PLTX
had LDH levels well above the IDEXX reference range for blood LDH, which is between 1105 and
3993 U/L.
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Figure 3. Scatter plot graphs showing the effects of different doses of PLTX administered daily by gavage
on the blood levels of ALT (A), AST (B), CK (C), and LDH (D). Data are expressed as means ± SEM from
one to seven determinations. * p < 0.05 versus control mice. The respective minimum and maximum
reference blood values for each parameter are marked by the pointed lines.

Next, the effect of repeated exposure of mice to low doses of PLTX on blood electrolyte levels was
evaluated (Figure 4). Statistically significant differences were found in sodium and potassium levels as
well as in the Na+/K+ ratio and on blood chloride levels, this dysregulation of electrolytes levels is in
agreement with the previously reported alterations produced by a single oral dose of PLTX [35].
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Figure 4. Scatter plot representation of the blood levels of sodium (A), potassium (B),
ratio sodium/potassium (C) and chloride (D) in control Swiss female mice and in mice dosed daily by
gavage with PLTX at 0.03, 0.1, 0.3, 1, 3.5, and 10 µg/kg. * p < 0.05, ** p < 0.01, *** p < 0.001 versus control
mice. The respective minimum and maximum reference values of blood electrolyte levels are indicated
by the pointed lines.

As shown in Figure 4A, mean Na+ blood values in control animals were 155 ± 1 mmol/L (n = 4)
while in PLTX-treated animals, sodium levels were 156± 2 mmol/L (n = 5) at 0.03 µg/kg, 152 ± 2 mmol/L
in seven animals dosed with 0.1 µg/kg of PLTX. At the dose of 0.3 µg/kg of PLTX, five animals have
mean blood Na+ values of 149 ± 1 mmol/L and significant differences were observed versus control
animals (t = 3.332, df = 7, p = 0.0126). Similarly, blood sodium levels were 159 ± 2 mmol/L (n = 6) and
158 ± 2 mmol/L (n = 4) in animals dosed with 1 and 3.5 µg/kg PLTX, respectively. Moreover, at the
highest dose employed (10 µg/kg), the blood sodium level was 150 mmol/L, but only one mouse was
evaluated. Interestingly, an increase in potassium levels was found in blood samples as indicated
in Figure 4B. Animals fed daily with PLTX doses of 0.03, 0.1, and 0.3 µg/kg presented a statistically
significant increase in blood potassium levels comparing with control animals. In control animals,
K+ levels were 6.8 ± 0.2 mmol/L (n = 4), 8.6 ± 0.1 mmol/L (n = 5) in mice fed daily with 0.03 µg/kg
PLTX (t = 4.053; df = 7; p = 0.0048), 9.3 ± 0.3 mmol/L in seven mice fed with 0.1 µg/kg PLTX (t = 5.611;
df = 9; p = 0.0003) and 8.6 ± 0.5 mmol/L (n = 5) in mice treated with 0.3 µg/kg PLTX (t = 3.255; df = 7;
p = 0.0140). Despite the short survival time of the animals treated with the highest PLTX dose, blood
K+ levels were well above the normal range in one mouse that survived 10 days of treatment. Due to
the decrease in blood sodium concentration and the increase in blood potassium levels, the ratio
Na+/K+ decreased (Figure 4C), especially at low doses of PLTX, for which survival times were longer.
In control mice, the ratio Na+/K+ was 23 (n = 4) and it decreased to 19 ± 1 (t = 4.000, df = 6, p = 0.0071),
18 ± 1 (t = 5.547, df = 6, p = 0.0015) and 19 ± 1 (t = 3.313, df = 5, p = 0.0212) in animals treated with
0.03, 0.1 and 0.3 µg/kg PLTX, respectively. Next, the effects of oral PLTX on blood chloride levels
were evaluated (Figure 4D). Chloride blood levels increased compared with control, and statistically
significant variations were found between control animals and PLTX-treated animals. Thus, Cl− levels
were 112 ± 2 mmol/L in four control animals, 118 ± 1 mmol/L (t = 3.041, df = 7, p = 0.0188) in animals
fed daily with 0.03 µg/kg PLTX, 120 ± 1 mmol/L (t = 5.066, df = 9, p = 0.0007) after the 0.1 µg/kg
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treatment, 117 ± 1 mmol/L (p = 0.0192) after the 0.3 µg/kg treatment, and 119 ± 1 mmol/L (p = 0.0047)
after the 1 µg/kg treatment.

2.6. Ultrastructural Examination of Stomach Damage Induced by Repeated Oral Dosing of Mice with PLTX

Since, after necropsy, macroscopic changes in the digestive tract of PLTX-treated animals were
observed, and some mice dosed with PLTX at 1 and 3.5 µg/kg exhibited significant weight loss,
transmission electron microscopic studies (TEM) of the stomach were performed. Samples from
control animals and from animals treated with PLTX were obtained immediately after euthanasia and
evaluated. First, and in view of the macroscopic alterations of the stomach with dark-yellow liquid
and dilatation with gas accumulation, mucous cells were evaluated. After TEM analysis, some evident
changes in the structure of mucous cells, which were identified by their electron-lucent granules,
were appreciated as Figure 5 shows. Thus, in control animals, a regular structure of the mucous cells
was observed (Figure 5A,B), while in animals treated daily with PLTX at doses of 1 µg/kg during 9 days
(Figure 5C,D) or 3.5 µg/kg for 22 days (Figure 5E,F), the surface of mucous cells was damaged and
most mucous cells showed an irregular nuclei with chromatin margination and vacuolated cytoplasm
with numerous autophagosomes.
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Figure 5. TEM micrographs showing mucous cells of the stomach from control mice (A,B), from mice
treated with PLTX at 1 µg/kg during 9 days (C,D), and from mice treated daily with PLTX at 3.5 µg/kg
during 22 days (E,F). Different magnifications are shown; scale bars are 5 µm (left panel) and 2 µm
(right panel) respectively. N: nucleus, G: electron-lucent granules of mucous cells. Evident deformation
of nuclei (white arrows), and cytoplasm disintegration were observed in the mucous cells of PLTX-
treated mice with autophagosomes (black arrows).
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Aside from mucous cells, the gastric epithelium secretes hydrochloric acid and digestive enzymes,
and since palytoxin altered blood ionic homeostasis, the acid-producing cells of the stomach (parietal
cells) were also analyzed by TEM. As shown in Figure 6, in control animals, parietal cells conserved
their characteristic microvilli, membrane invaginations called canaliculi and clusters of round vesicles
that transfer substances from the cytoplasm to the lumen of the canalicular system (Figure 6A,B).
In contrast, in animals fed daily with PLTX at the dose of 1 µg/kg (Figure 6C,D), evident alterations of
the parietal cells were observed, consisting of damage of the cytoplasm with dilatation of the canaliculi
system, electron dense mitochondria and proliferation of autophagosomes (black arrows). Moreover,
in PLTX-treated animals, nuclear membrane shrinkage, chromatin margination, and development
of membrane-bound remnants of the nuclear membrane also called apoptotic bodies were observed.
These alterations are consistent with programmed cell death that leads to apoptosis of the parietal cells
of PLTX-treated animals [44]. The same ultrastructural alterations were observed in mice dosed daily
with 3.5 µg/kg of PLTX (Figure 6E,F).
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Figure 6. Representative electron micrographs depicting parietal cells of control animals (A,B) and of
animals treated daily with 1 µg/kg PLTX (C,D) or PLTX at 3.5 µg/kg (E,F). Scale bar is 5 µm, and 2 µm,
respectively from the left to the right panels. N: nucleus, C: canalicular system, M: mitochondria.
Animals fed with PLTX showed apoptotic nuclei with nucleus membrane shrinkage (white arrows),
abundant autophagosomes (black arrows), electron dense mitochondria and dilatation of the oval
vesicles of the canalicular system with evident wide clear centers.



Toxins 2020, 12, 489 12 of 17

3. Discussion

So far, the available in vivo toxicity studies with palytoxin have shown a high acute oral toxicity
with LD50 ranging from 510 to 767 µg/kg. Nevertheless, in the latest opinion of the EFSA experts
on PLTX-related risks [41], the lack of data on the subchronic and chronic toxicity of PLTX and its
analogues was highlighted. In view of these requirements, in this work we pursued to determine the
chronic LD50 and the chronic NOAEL for oral PLTX. In this context, the data presented in this report
constitute the first initial approach for the chronic evaluation of the PLTX toxicity after daily ingestion.
Moreover, as far as we know, this is the first work that evaluates the chronic toxicity of this potent
marine toxin following the OECD recommendations to evaluate the chronic toxicity of chemicals [43].
The data presented here indicate that daily feeding of female Swiss mice by gavage with different
PLTX doses for 28 days resulted in an oral LD50 of 0.44 µg/kg and a NOAEL of 0.03 µg/kg. In view of
the high increase of toxicity after repeated exposure to PLTX, it is crucial to consider a representative
scenario in which successive exposures to low doses of PLTX might arise, especially for the population
living near coastal areas affected by Ostreopsis blooms. Indeed, besides oral toxicity, many reports
have described toxic corneal reactions [45,46], as well as frequent respiratory and dermal alterations in
humans [18,20,47,48].

Until now, different in vivo toxicities for PLTX in mice have been reported, depending mainly on
the time of exposure of the animals to the toxin. For instance, a NOAEL of 300 µg/kg and a LD50 of
757 µg/kg have been reported after a single dose of PLTX and an observation period of 24 h [37]. In the
same conditions, an LD50 of 510 µg/kg was reported by other authors [49], while no death was observed
in mice after oral administration of PLTX at doses up to 200 or 300 µg/kg [42] but stomach alterations
were evident 2 h after toxin administration. However, the toxin lethality increased in mice after oral
repeated administration of successive doses and this was associated to a decrease in the NOAEL up to
3 µg/kg after a repeated oral dose of PLTX for 7 days [28]. However, to date, no additional reports
on the chronic toxicity of PLTX have been released. We demonstrated here that after daily feeding of
mice with PLTX during 28 days, a daily oral dose of 3.5 µg/kg led to a mortality rate of about 75% with
survival times between 7 h and 28 days. In this context, it is important to remark that the NOAEL
was much lower than that previously reported, since even after oral administration of the toxin at
doses of 1 µg/kg, animals exhibited stomach ultrastructural alterations after 9 days of treatment and
characteristic symptoms, some of them initiating on the third day of treatment. The results presented
here indicate that after the 28-day treatment period, mice dosed with 0.03 µg/kg of PLTX did not
present changes in most of the blood parameters analyzed in this work. However, the only alteration
observed in mice fed with 0.03 µg/kg PLTX was hyperkalemia that appeared in two out of five animals.
However, the modifications in blood electrolyte levels were much lower at this dose than that observed
at higher toxin concentrations. These results are in consonance with previous studies that reported
electrolyte changes after PLTX administration [28,35,38].

As the molecular target of PLTX, the Na+-K+-ATPase pump is indispensable for different cellular
functions, and its inhibition results in an excess of extracellular K+ and accumulation of intracellular
Na+ because, in the presence of toxin the Na+-K+- ATPase can no longer pump K+ into the cell or
pump Na+ out of the cell [50], the resulting blood electrolyte homeostasis dysregulation observed in
animals fed daily with PLTX was expected. The pathophysiology expected after PLTX intoxication,
includes cardiovascular alterations as a consequence of the Na+-K+ inhibition [51] and could result in
other clinical signs such as piloerection, dyspnea, and abdominal pain that were even present in some
mice fed daily with 0.1 µg/kg of PLTX. Clinical signs including lethargy, dyspnea and consequently
cyanosis in the tail of the animals and neuromuscular alterations, kyphosis, circling, and ataxia were
also present after daily PLTX administration, in consonance with the symptoms reported in other
in vivo studies using higher doses of PLTX and shorter exposure periods [28,29,35,38]. Additionally,
macroscopic alterations of the digestive tract were also present in animals fed with PLTX at doses of
0.3 µg/kg and higher. This observation is in agreement with previous data indicating gastric lesions
after acute oral administration of higher PLTX doses [35,38,42]. Regarding electron microscopy analysis
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of the stomach, the results presented here showed a strong ultrastructural damage of the mucous and
parietal cells which could probably lead to erosion and detachment of the gastric epithelium. This fact
could be related with earlier PLTX studies reporting that the Na+-K+-ATPase was transformed in an
open cation channel in the presence of PLTX [23,25] which will lead to cell membrane depolarization
and the consequent change in ion channel conductance. Thus, it was expected that the sustained
overload of the Na+ concentration would affect all the ion transport systems coupled to the sodium
gradient like the Na+/H+ exchanger, the Na+/Ca2+ exchanger, the H+-K+-ATPase pump and hence,
the osmotic balance [52,53]. In this regard, death of parietal cells has been observed after inhibition of
the H+-K+-ATPase with omeprazol [54,55]. In addition to the gastric alterations observed by electron
microscopy, it is noteworthy to point out that blood electrolytes imbalances together with gastric acid
changes could lead to nutrient deficiency and consequently weight loss [56], as observed after daily
administration of PLTX at doses of 1 and 3.5 µg/kg.

Altogether, the new findings described in the present study, together with the increase in Ostreopsis
blooms in Europe, raise the need to perform additional studies on the oral in vivo toxicity of this potent
marine toxin in order to prevent human illness and accurately regulate the food levels of this emerging
marine toxin.

4. Conclusions

Daily feeding of female Swiss mice by gavage with different PLTX doses for 28 days resulted in an
oral LD50 of 0.44 µg/kg and a NOAEL of 0.03 µg/kg.

5. Materials and Methods

5.1. In Vivo Experimental Procedure

In vivo studies were performed with Swiss female mice weighing an average of 21 to 25 g in each
group (4 weeks old). All in vivo studies employed in the manuscript followed the European directives
(EU directive 2010/63/EU) and the Spanish legislation (Real Decreto 53/2013, Decreto 296/2008), and were
performed accordingly with the principles approved by the Institutional Animal Care Committee of the
Universidade de Santiago de Compostela under procedure number 011/14, authorized on 14 August 2014
(MR110250) and under procedure number 06/19/LU-002, authorized on 1 March 2019 (A12X00509).

The PLTX used in the experiments was purchased from Fujifilm Wako Pure Chemical Corporation
(Osaka, Japan) extracted from Palythoa tuberculosa, (purity 88.9% and CAS Number: 77734-91-9) and
dissolved in water. Before administration, the stock PLTX solution was diluted in 0.9% saline solution
to achieve each dose. For the treatment, mice received a daily oral dose of PLTX by gavage (200 µL
of physiological saline at 9:30 am) or the same volume of control saline. Animals were observed
closely for the first 2 h and periodically thereafter, until sacrifice of surviving animals at the end of the
treatments. During the course of the experiments, moribund animals or animals obviously in pain or
showing signs of agony, as well as animals with weight loss higher than 10% and enduring distress,
were euthanized and considered in the interpretation of the test results in the same way as animals
that were euthanized at the end of the 28 days treatment period. During treatment, mice were housed
in rooms with constant temperature, humidity, and a controlled photoperiod at the animal facilities of
the School of Veterinary Medicine of the University of Santiago de Compostela (Code: AE-LU-002).
During experiments, control and PLTX-treated mice were weighted weekly at day 0 (day of the fist
treatment), day 7, day 14, day 21 and day 28, and food consumption was also registered at the same
intervals. Euthanasia was performed on day 28. After the last PLTX-dosage (day 27), control and
PLTX-treated mice were placed in metabolic cages for 24 h to monitor urine and faeces production
and obtain samples. Finally, animals were euthanized in a CO2 chamber, and immediately after death
confirmation by cervical dislocation, blood and tissue samples were collected. All animals in the study
were subjected to a full necropsy, including detailed visualization of heart, liver, lungs, kidneys, spleen,
stomach, duodenum, rectum, and cerebrum.
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5.2. Evaluation of Enzyme and Electrolyte Levels in Plasma of Control and PLTX-Treated Mice

Blood was obtained directly from the ventricle of euthanized mice as previously described [35,
57] and conserved in microtubes containing lithium heparin (2.5 U.I./mL) until the end of the
necropsy and tissue collection (30 min). Afterwards, each blood sample was mixed for 30 s and
centrifugated for 90 s at 15,800 rpm/12,000× g (IDEXX Stat Spin, IDEXX Europe B.V., Hoofddorp,
The Netherlands). The computer controlled biochemical analyzer IDEXX Catalyst Dx (IDEXX VetLab
Station, IDEXX Europe B.V) was used for the analysis of plasma parameters. In most of the samples,
300 µL of plasma were used to evaluate electrolyte levels (Cl−, Na+ and K+), alanine transaminase,
aspartate transaminase, lactate dehydrogenase, and creatine kinase. Initially, all the markers were
evaluated in undiluted samples, but if the marker level in plasma was above the reference range of the
analyzer, an automatic dilution with physiological saline was performed. Samples with altered visual
properties that could lead to the misinterpretation of the biochemical parameters (high hemolysis,
icterus or lipidemia) were not further processed.

5.3. Urine Analysis

Urine colour, clarity, protein, glucose, ketones, blood hemoglobin, bilirubin, and urobilinogen
analysis were performed using a reflectance photometer (IDEXX VetLab UA), which reads and evaluates
IDEXX UA strips. Urine specific gravity was measured with a refractometer. Because for some mice a
small amount of blood or urine were obtained, it was not possible to measure all the parameters for
each animal.

5.4. Ultraestructural Analysis

Stomach samples preparation for transmission electron microscopy was performed according to
previously described procedures [35,57,58]. Concisely, organ samples (1 mm3) were fixed by immersion
(2.5% glutaraldehyde in phosphate buffered saline (PBS) containing in mM: 137 NaCl, 8.2 Na2HPO4,
1.5 KH2PO4 and 3.2 KCl) for 2 h at 4 ◦C and rinsed three times with PBS. Postfixation by immersion in
1% OsO4 in 0.1 M cacodylate trihydrate buffer was performed for 60 min. After, tissues were rinsed and
dehydrated in graded ethanol solutions, including one bath with 70% ethanol and 0.5% uranyl acetate,
rinsed in propylene oxide, and embedded in Epon 812 (Momentive Specialty Chemicals Inc., Houston,
TX, USA). A Leica Ultracut UCT ultramicrotome (Leica Microsystems GmbH, Wetzlar, Germany) was
used to obtain ultrathin sections of the tissue samples. Samples were counterstained with uranyl
acetate and lead citrate, and ultrastructural analysis of 1 mm2 thick samples was performed with a
JEOL JEM-1011 Transmission Electron Microscope (Jeol Ltd., Tokyo, Japan).

5.5. Statistical Analysis

Statistical analyses were carried out using GraphPad Prism 5 (GraphPad Software, Inc, La Jolla,
CA, USA). All values are expressed as mean ± SEM. A p-value of < 0.05 was considered statistically
significant. ANOVA repeated measures followed by the Dunnett’s comparison test was used for
statistical comparisons.
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