## Supplementary Materials: *Staphylococcus aureus* Pathogenicity in Cystic Fibrosis Patients—Results from an Observational Prospective Multicenter Study Concerning Virulence Genes, Phylogeny, and Gene Plasticity

Jonas Lange, Kathrin Heidenreich, Katharina Higelin, Kristina Dyck, Vanessa Marx, Christian Reichel, Willem van Wamel, Martijn den Reijer, Dennis Goerlich and Barbara C. Kahl



Figure S1. Agr-type vs. virulence gene count.

| Table S1. | Spa-types | detected a | among the | 3180 S. | aureus isol | ates. |
|-----------|-----------|------------|-----------|---------|-------------|-------|
|           | 1 1       |            | 0         |         |             |       |

| Number of <i>spa</i> -Types | Spa-Type | Frequency | Percent | Valid Percent | <b>Cumulative Percent</b> |
|-----------------------------|----------|-----------|---------|---------------|---------------------------|
|                             | n.t.     | 6         | 0.2     | 0.2           | 0.2                       |
| 1                           | t002     | 85        | 2.7     | 2.7           | 2.9                       |
| 2                           | t003     | 21        | 0.7     | 0.7           | 3.5                       |
| 3                           | t004     | 13        | 0.4     | 0.4           | 3.9                       |
| 4                           | t005     | 29        | 0.9     | 0.9           | 4.8                       |
| 5                           | t006     | 12        | 0.4     | 0.4           | 5.2                       |
| 6                           | t008     | 117       | 3.7     | 3.7           | 8.9                       |
| 7                           | t009     | 8         | 0.3     | 0.3           | 9.2                       |
| 8                           | t010     | 2         | 0.1     | 0.1           | 9.2                       |
| 9                           | t011     | 11        | 0.3     | 0.3           | 9.6                       |
| 10                          | t012     | 149       | 4.7     | 4.7           | 14.2                      |
| 11                          | t015     | 100       | 3.1     | 3.1           | 17.4                      |
| 12                          | t017     | 15        | 0.5     | 0.5           | 17.9                      |
| 13                          | t018     | 41        | 1.3     | 1.3           | 19.2                      |
| 14                          | t019     | 21        | 0.7     | 0.7           | 19.8                      |
| 15                          | t021     | 48        | 1.5     | 1.5           | 21.3                      |
| 16                          | t022     | 13        | 0.4     | 0.4           | 21.7                      |
| 17                          | t024     | 26        | 0.8     | 0.8           | 22.5                      |

| 18 | t026   | 61  | 1.9 | 1.9 | 24.5 |
|----|--------|-----|-----|-----|------|
| 19 | t034   | 21  | 0.7 | 0.7 | 25.1 |
| 20 | t040   | 4   | 0.1 | 0.1 | 25.3 |
| 21 | t044   | 12  | 0.4 | 0.4 | 25.6 |
| 22 | t045   | 5   | 0.2 | 0.2 | 25.8 |
| 23 | t050   | 51  | 1.6 | 1.6 | 27.4 |
| 24 | t056   | 60  | 1.9 | 1.9 | 29.3 |
| 25 | t065   | 44  | 1.4 | 1.4 | 30.7 |
| 26 | t068   | 1   | 0.0 | 0.0 | 30.7 |
| 27 | t073   | 11  | 0.3 | 0.3 | 31.0 |
| 28 | t076   | 1   | 0.0 | 0.0 | 31.1 |
| 29 | t078   | 62  | 1.9 | 1.9 | 33.0 |
| 30 | t081   | 22  | 0.7 | 0.7 | 33.7 |
| 31 | t084   | 241 | 7.6 | 7.6 | 41.3 |
| 32 | t085   | 11  | 0.3 | 0.3 | 41.6 |
| 33 | t091   | 137 | 4.3 | 4.3 | 45.9 |
| 34 | t094   | 4   | 0.1 | 0.1 | 46.1 |
| 35 | t099   | 1   | 0.0 | 0.0 | 46.1 |
| 36 | t100   | 8   | 0.3 | 0.3 | 46.4 |
| 37 | t103   | 1   | 0.0 | 0.0 | 46.4 |
| 38 | t105   | 4   | 0.1 | 0.1 | 46.5 |
| 39 | t1050  | 19  | 0.6 | 0.6 | 47.1 |
| 40 | t1057  | 2   | 0.1 | 0.1 | 47.2 |
| 41 | t10605 | 6   | 0.2 | 0.2 | 47.4 |
| 42 | t10606 | 2   | 0.1 | 0.1 | 47.4 |
| 43 | t1070  | 2   | 0.1 | 0.1 | 47.5 |
| 44 | t108   | 3   | 0.1 | 0.1 | 47.6 |
| 45 | t116   | 18  | 0.6 | 0.6 | 48.1 |
| 46 | t1201  | 1   | 0.0 | 0.0 | 48.2 |
| 47 | t1203  | 3   | 0.1 | 0.1 | 48.3 |
| 48 | t1211  | 24  | 0.8 | 0.8 | 49.0 |
| 49 | t122   | 36  | 1.1 | 1.1 | 50.2 |
| 50 | t1245  | 2   | 0.1 | 0.1 | 50.2 |
| 51 | t1259  | 2   | 0.1 | 0.1 | 50.3 |
| 52 | t12674 | 7   | 0.2 | 0.2 | 50.5 |
| 53 | t12678 | 1   | 0.0 | 0.0 | 50.5 |
| 54 | t12679 | 4   | 0.1 | 0.1 | 50.7 |
| 55 | t12680 | 2   | 0.1 | 0.1 | 50.7 |
| 56 | t12681 | 1   | 0.0 | 0.0 | 50.8 |
| 57 | t127   | 37  | 1.2 | 1.2 | 51.9 |
| 58 | t129   | 11  | 0.3 | 0.3 | 52.3 |
| 59 | t1333  | 4   | 0.1 | 0.1 | 52.4 |
| 60 | t1345  | 1   | 0.0 | 0.0 | 52.4 |
| 61 | t136   | 8   | 0.3 | 0.3 | 52.7 |
| 62 | t138   | 1   | 0.0 | 0.0 | 52.7 |
| 63 | t1406  | 2   | 0.1 | 0.1 | 52.8 |
| 64 | t1416  | 2   | 0.1 | 0.1 | 52.8 |
| 65 | t144   | 20  | 0.2 | 0.2 | 53.1 |
| 66 | t1451  | 28  | 0.9 | 0.9 | 53.9 |

| 67  | t1491 | 1  | 0.0 | 0.0 | 54.0 |
|-----|-------|----|-----|-----|------|
| 68  | t1492 | 2  | 0.1 | 0.1 | 54.0 |
| 69  | t150  | 4  | 0.1 | 0.1 | 54.2 |
| 70  | t1510 | 14 | 0.4 | 0.4 | 54.6 |
| 71  | t153  | 14 | 0.4 | 0.4 | 55.0 |
| 72  | t1541 | 1  | 0.0 | 0.0 | 55.1 |
| 73  | t1544 | 1  | 0.0 | 0.0 | 55.1 |
| 74  | t156  | 6  | 0.2 | 0.2 | 55.3 |
| 75  | t1574 | 1  | 0.0 | 0.0 | 55.3 |
| 76  | t1577 | 23 | 0.7 | 0.7 | 56.0 |
| 77  | t159  | 33 | 1.0 | 1.0 | 57.1 |
| 78  | t162  | 1  | 0.0 | 0.0 | 57.1 |
| 79  | t164  | 5  | 0.2 | 0.2 | 57.3 |
| 80  | t1652 | 8  | 0.3 | 0.3 | 57.5 |
| 81  | t166  | 38 | 1.2 | 1.2 | 58.7 |
| 82  | t1670 | 9  | 0.3 | 0.3 | 59.0 |
| 83  | t1671 | 6  | 0.2 | 0.2 | 59.2 |
| 84  | t1685 | 2  | 0.1 | 0.1 | 59.2 |
| 85  | t1689 | 2  | 0.1 | 0.1 | 59.3 |
| 86  | t169  | 1  | 0.0 | 0.0 | 59.3 |
| 87  | t1707 | 7  | 0.2 | 0.2 | 59.6 |
| 88  | t1709 | 1  | 0.0 | 0.0 | 59.6 |
| 89  | t179  | 12 | 0.4 | 0.4 | 60.0 |
| 90  | t185  | 17 | 0.5 | 0.5 | 60.5 |
| 91  | t1858 | 2  | 0.1 | 0.1 | 60.6 |
| 92  | t186  | 4  | 0.1 | 0.1 | 60.7 |
| 93  | t189  | 11 | 0.3 | 0.3 | 61.0 |
| 94  | t190  | 17 | 0.5 | 0.5 | 61.6 |
| 95  | t193  | 2  | 0.1 | 0.1 | 61.6 |
| 96  | t1978 | 13 | 0.4 | 0.4 | 62.0 |
| 97  | t1991 | 20 | 0.6 | 0.6 | 62.7 |
| 98  | t2065 | 3  | 0.1 | 0.1 | 62.8 |
| 99  | t2080 | 21 | 0.7 | 0.7 | 63.4 |
| 100 | t209  | 42 | 1.3 | 1.3 | 64.7 |
| 101 | t211  | 16 | 0.5 | 0.5 | 65.3 |
| 102 | t2133 | 2  | 0.1 | 0.1 | 65.3 |
| 103 | t2164 | 5  | 0.2 | 0.2 | 65.5 |
| 104 | t223  | 2  | 0.1 | 0.1 | 65.5 |
| 105 | t227  | 1  | 0.0 | 0.0 | 65.6 |
| 106 | t2275 | 1  | 0.0 | 0.0 | 65.6 |
| 107 | t228  | 1  | 0.0 | 0.0 | 65.6 |
| 108 | £230  | 2  | 0.1 | 0.1 | 65.7 |
| 109 | t2309 | 1  | 0.0 | 0.0 | 65.7 |
| 110 | t2351 | 1  | 0.0 | 0.0 | 65.8 |
| 111 | t2375 | 1  | 0.0 | 0.0 | 65.8 |
| 112 | t2383 | 20 | 0.6 | 0.1 | 66.4 |
| 115 | t2398 | 4  | 0.1 | 0.1 | 66.5 |
| 114 | t240  | 10 | 0.3 | 0.3 | 66.9 |
| 115 | t2419 | 3  | 0.1 | 0.1 | 66.9 |

| 116 | t2439         | 21      | 0.7 | 0.7 | 67.6         |
|-----|---------------|---------|-----|-----|--------------|
| 117 | t2441         | 24      | 0.8 | 0.8 | 68.4         |
| 118 | t246          | 2       | 0.1 | 0.1 | 68.4         |
| 119 | t2509         | 17      | 0.5 | 0.5 | 69.0         |
| 120 | t254          | 16      | 0.5 | 0.5 | 69.5         |
| 121 | t2553         | 3       | 0.1 | 0.1 | 69.6         |
| 122 | t258          | 11      | 0.3 | 0.3 | 69.9         |
| 123 | t2666         | 8       | 0.3 | 0.3 | 70.2         |
| 124 | t272          | 11      | 0.3 | 0.3 | 70.5         |
| 125 | t275          | 5       | 0.2 | 0.2 | 70.7         |
| 126 | t277          | 1       | 0.0 | 0.0 | 70.7         |
| 127 | t2787         | 14      | 0.4 | 0.4 | 71.1         |
| 128 | t279          | 16      | 0.5 | 0.5 | 71.6         |
| 129 | t2802         | 16      | 0.5 | 0.5 | 72.1         |
| 130 | t284          | 10      | 0.3 | 0.3 | 72.5         |
| 131 | t2845         | 12      | 0.4 | 0.4 | 72.8         |
| 132 | t289          | 1       | 0.0 | 0.0 | 72.9         |
| 133 | t2919         | 4       | 0.1 | 0.1 | 73.0         |
| 134 | t2949         | 1       | 0.0 | 0.0 | 73.0         |
| 135 | t295          | 1       | 0.0 | 0.0 | 73.1         |
| 136 | t3012         | 1       | 0.0 | 0.0 | 73.1         |
| 137 | t304          | 4       | 0.1 | 0.1 | 73.2         |
| 138 | t306          | 23      | 0.7 | 0.7 | 73.9         |
| 139 | t308          | 3       | 0.1 | 0.1 | 74.0         |
| 140 | t3258         | 1       | 0.0 | 0.0 | 74.1         |
| 141 | t330          | 8       | 0.3 | 0.3 | 74.3         |
| 142 | t331          | 18      | 0.6 | 0.6 | 74.9         |
| 143 | t3331         | 2       | 0.1 | 0.1 | 74.9         |
| 144 | t338          | 16      | 0.5 | 0.5 | 75.4         |
| 145 | t346          | 56      | 1.8 | 1.8 | 77.2         |
| 146 | t352          | 1       | 0.0 | 0.0 | 77.2         |
| 147 | t359          | 12      | 0.4 | 0.4 | 77.6         |
| 148 | t362          | 21      | 0.7 | 0.7 | 78.3         |
| 149 | t363          | 1       | 0.0 | 0.0 | 78.3         |
| 150 | t364          | 3       | 0.1 | 0.1 | 78.4         |
| 151 | t3667         | 1       | 0.0 | 0.0 | 78.4         |
| 152 | t370          | 2       | 0.1 | 0.1 | 78.5         |
| 153 | t3745         | 14      | 0.4 | 0.4 | 78.9         |
| 154 | t377          | 1       | 0.0 | 0.0 | 79.0         |
| 155 | £390          | 2       | 0.1 | 0.1 | 79.0         |
| 156 | £393          | 3       | 0.1 | 0.1 | 79.1         |
| 157 | t3933         | 6       | 0.2 | 0.2 | 79.3         |
| 158 | t394          | 7       | 0.2 | 0.2 | 79.5         |
| 159 | t4069         | 1       | 0.0 | 0.0 | 79.6         |
| 160 | t4096         | 1       | 0.0 | 0.0 | /9.6         |
| 101 | t4228         | 2<br>17 | 0.1 | 0.1 | /9./         |
| 102 | t4323         | 1/      | 0.5 | 0.5 | 80.2         |
| 103 | 1433<br>+4451 | 2       | 0.1 | 0.1 | 00.3<br>80 E |
| 104 | 14431         | 0       | 0.5 | 0.5 | 00.0         |

| 165 | t447  | 4  | 0.1 | 0.1 | 80.6                |
|-----|-------|----|-----|-----|---------------------|
| 166 | t449  | 10 | 0.3 | 0.3 | 80.9                |
| 167 | t4570 | 1  | 0.0 | 0.0 | 81.0                |
| 168 | t466  | 1  | 0.0 | 0.0 | 81.0                |
| 169 | t4870 | 1  | 0.0 | 0.0 | 81.0                |
| 170 | t488  | 1  | 0.0 | 0.0 | 81.1                |
| 171 | t491  | 6  | 0.2 | 0.2 | 81.3                |
| 172 | t493  | 2  | 0.1 | 0.1 | 81.3                |
| 173 | t4989 | 31 | 1.0 | 1.0 | 82.3                |
| 174 | t499  | 14 | 0.4 | 0.4 | 82.7                |
| 175 | t505  | 16 | 0.5 | 0.5 | 83.2                |
| 176 | t5088 | 5  | 0.2 | 0.2 | 83.4                |
| 177 | t509  | 6  | 0.2 | 0.2 | 83.6                |
| 178 | t514  | 16 | 0.5 | 0.5 | 84.1                |
| 179 | t5152 | 8  | 0.3 | 0.3 | 84.3                |
| 180 | t5154 | 2  | 0.1 | 0.1 | 84.4                |
| 181 | t521  | 3  | 0.1 | 0.1 | 84.5                |
| 182 | t5210 | 2  | 0.1 | 0.1 | 84.6                |
| 183 | t524  | 3  | 0.1 | 0.1 | 84.7                |
| 184 | t5306 | 1  | 0.0 | 0.0 | 847                 |
| 185 | t539  | 8  | 0.3 | 0.3 | 84.9                |
| 186 | +5430 | 13 | 0.4 | 0.4 | 85.3                |
| 187 | t548  | 46 | 1.4 | 1.4 | 86.8                |
| 188 | t550  | 40 | 0.1 | 0.1 | 86.9                |
| 180 | +5520 | 1  | 0.1 | 0.0 | 86.9                |
| 109 | 4550  | 0  | 0.0 | 0.0 | 80.9<br>97 <b>2</b> |
| 190 | 1009  | 9  | 0.3 | 0.3 | 07.2                |
| 191 | 15662 | 10 | 0.2 | 0.2 | 07.4                |
| 192 | 13003 | 10 | 0.5 | 0.3 | 07.7                |
| 193 | 15684 | 1  | 0.0 | 0.0 | 07.0                |
| 194 | 15685 | 1  | 0.0 | 0.0 | 87.8                |
| 195 | 15686 | 1  | 0.0 | 0.0 | 87.8                |
| 196 | 15687 | 1  | 0.0 | 0.0 | 87.9                |
| 197 | t5688 | 1  | 0.0 | 0.0 | 87.9                |
| 198 | t5689 | 4  | 0.1 | 0.1 | 88.0                |
| 199 | t5690 | 7  | 0.2 | 0.2 | 88.2                |
| 200 | t571  | 25 | 0.8 | 0.8 | 89.0                |
| 201 | t5721 | 3  | 0.1 | 0.1 | 89.1                |
| 202 | t5758 | 3  | 0.1 | 0.1 | 89.2                |
| 203 | t5759 | 10 | 0.3 | 0.3 | 89.5                |
| 204 | t5760 | 4  | 0.1 | 0.1 | 89.7                |
| 205 | t5761 | 1  | 0.0 | 0.0 | 89.7                |
| 206 | t5775 | 1  | 0.0 | 0.0 | 89.7                |
| 207 | t589  | 14 | 0.4 | 0.4 | 90.2                |
| 208 | t5894 | 1  | 0.0 | 0.0 | 90.2                |
| 209 | t591  | 11 | 0.3 | 0.3 | 90.5                |
| 210 | t605  | 12 | 0.4 | 0.4 | 90.9                |
| 211 | t617  | 6  | 0.2 | 0.2 | 91.1                |
| 212 | t6172 | 1  | 0.0 | 0.0 | 91.1                |
| 213 | t6191 | 1  | 0.0 | 0.0 | 91.2                |

| 214 | t6192 | 1  | 0.0 | 0.0 | 91.2 |
|-----|-------|----|-----|-----|------|
| 215 | t6193 | 9  | 0.3 | 0.3 | 91.5 |
| 216 | t6194 | 8  | 0.3 | 0.3 | 91.7 |
| 217 | t6195 | 5  | 0.2 | 0.2 | 91.9 |
| 218 | t630  | 16 | 0.5 | 0.5 | 92.4 |
| 219 | t6372 | 20 | 0.6 | 0.6 | 93.0 |
| 220 | t6373 | 1  | 0.0 | 0.0 | 93.1 |
| 221 | t6374 | 7  | 0.2 | 0.2 | 93.3 |
| 222 | t6375 | 1  | 0.0 | 0.0 | 93.3 |
| 223 | t6376 | 1  | 0.0 | 0.0 | 93.3 |
| 224 | t645  | 3  | 0.1 | 0.1 | 93.4 |
| 225 | t647  | 5  | 0.2 | 0.2 | 93.6 |
| 226 | t676  | 10 | 0.3 | 0.3 | 93.9 |
| 227 | t6762 | 2  | 0.1 | 0.1 | 94.0 |
| 228 | t6763 | 1  | 0.0 | 0.0 | 94.0 |
| 229 | t681  | 1  | 0.0 | 0.0 | 94.0 |
| 230 | t686  | 1  | 0.0 | 0.0 | 94.1 |
| 231 | t688  | 2  | 0.1 | 0.1 | 94.1 |
| 232 | t693  | 5  | 0.2 | 0.2 | 94.3 |
| 233 | t701  | 14 | 0.4 | 0.4 | 94.7 |
| 234 | t7064 | 3  | 0.1 | 0.1 | 94.8 |
| 235 | t7065 | 2  | 0.1 | 0.1 | 94.9 |
| 236 | t7066 | 8  | 0.3 | 0.3 | 95.1 |
| 237 | t7067 | 23 | 0.7 | 0.7 | 95.8 |
| 238 | t712  | 4  | 0.1 | 0.1 | 96.0 |
| 239 | t7170 | 1  | 0.0 | 0.0 | 96.0 |
| 240 | t7267 | 1  | 0.0 | 0.0 | 96.0 |
| 241 | t7271 | 2  | 0.1 | 0.1 | 96.1 |
| 242 | t7272 | 1  | 0.0 | 0.0 | 96.1 |
| 243 | t728  | 12 | 0.4 | 0.4 | 96.5 |
| 244 | t746  | 1  | 0.0 | 0.0 | 96.5 |
| 245 | t774  | 25 | 0.8 | 0.8 | 97.3 |
| 246 | t779  | 1  | 0.0 | 0.0 | 97.4 |
| 247 | t790  | 8  | 0.3 | 0.3 | 97.6 |
| 248 | t796  | 1  | 0.0 | 0.0 | 97.6 |
| 249 | t8027 | 1  | 0.0 | 0.0 | 97.7 |
| 250 | t803  | 1  | 0.0 | 0.0 | 97.7 |
| 251 | t837  | 4  | 0.1 | 0.1 | 97.8 |
| 252 | t840  | 8  | 0.3 | 0.3 | 98.1 |
| 253 | t884  | 5  | 0.2 | 0.2 | 98.2 |
| 254 | t891  | 8  | 0.3 | 0.3 | 98.5 |
| 255 | t909  | 1  | 0.0 | 0.0 | 98.5 |
| 256 | t930  | 16 | 0.5 | 0.5 | 99.0 |
| 257 | t950  | 3  | 0.1 | 0.1 | 99.1 |
| 258 | t9883 | 1  | 0.0 | 0.0 | 99.2 |
| 259 | t9884 | 10 | 0.3 | 0.3 | 99.5 |
| 260 | t9886 | 7  | 0.2 | 0.2 | 99.7 |
| 261 | t9887 | 1  | 0.0 | 0.0 | 99.7 |
| 262 | t9888 | 1  | 0.0 | 0.0 | 99.7 |

| 263 | t9889 | 1    | 0.0   | 0.0   | 99.8  |
|-----|-------|------|-------|-------|-------|
| 264 | t9894 | 5    | 0.2   | 0.2   | 99.9  |
| 265 | t9896 | 1    | 0.0   | 0.0   | 100.0 |
| 266 | t9897 | 1    | 0.0   | 0.0   | 100.0 |
|     | Total | 3180 | 100.0 | 100.0 |       |

Table S2. Most prevalent *spa*-types among the 3180 isolates.

| Spa-Type | Number of Isolates | Prevalence |
|----------|--------------------|------------|
| t084     | 182                | 7.2%       |
| t012     | 111                | 4.4%       |
| t091     | 110                | 4.3%       |
| t008     | 91                 | 3.6%       |
| t015     | 83                 | 3.3%       |
| t002     | 63                 | 2.5%       |

Table S3. IgG levels against S. aureus antigens in patients vs. healthy controls and estimated effect on

FEV1%.

|         | Mean IgG Level All           | Mean IgG Level               | <i>v</i> Value | Estimated Effect on | <i>p</i> Value |
|---------|------------------------------|------------------------------|----------------|---------------------|----------------|
| Antigen | Patients (± SE) <sup>a</sup> | Controls (± SE) <sup>a</sup> | b.c            | FEV1% d             | c              |
| CHIPS   | 11492 (±220)                 | 11019 (±349)                 | 0.104          | -0.00073            | 0.0185         |
| ClfA    | 5168 (±237)                  | 4302 (±436)                  | 0.081          | 0.000514            | 0.1104         |
| ClfB    | 4587 (±222)                  | 4092 (±338)                  | 0.3809         | 0.002079            | < 0.0001       |
| ETA     | 3999 (±447)                  | 2043 (±424)                  | 0.1180         | -0.00061            | 0.0033         |
| ETB     | 613 (±113)                   | 320 (±94)                    | 0.0032         | -0.00700            | < 0.0001       |
| FnbpA   | 2922 (±201)                  | 2534 (±300)                  | 0.6167         | 0.000222            | 0.6310         |
| FnbpB   | 967 (±79)                    | 1327 (±215)                  | 0.1306         | -0.00199            | 0.1150         |
| HlgB    | 13621 (±174)                 | 9878 (±407)                  | < 0.0001       | -0.00109            | 0.0088         |
| LukF    | 4079 (±133)                  | 2718 (±243)                  | < 0.0001       | -0.00305            | < 0.0001       |
| LukS    | 14097 (±133)                 | 7134 (±524)                  | < 0.0001       | -0.00169            | < 0.0001       |
| SasG    | 569 (±70)                    | 636 (±132)                   | 0.1847         | 0.001484            | 0.1590         |
| SdrD    | 1084 (±80)                   | 694 (±76)                    | 0.0507         | -0.00145            | 0.1950         |
| SdrE    | 3139 (±201)                  | 1992 (±221)                  | 0.0253         | -0.00179            | < 0.0001       |
| SEA     | 3835 (±320)                  | 3613 (±425)                  | 0.2544         | -0.00007            | 0.7599         |
| SEC     | 7390 (±441)                  | 8714 (±809)                  | 0.1350         | 0.000269            | 0.1366         |
| SED     | 1106 (±118)                  | 1292 (±268)                  | 0.0498         | 0.001490            | 0.0377         |
| SEE     | 1333 (±183)                  | 879 (±136)                   | 0.8113         | -0.00057            | 0.2779         |
| SEG     | 2047 (±184)                  | 1225 (±270)                  | 0.0544         | -0.00108            | 0.0264         |
| SEH     | 2290 (±291)                  | 2174 (±359)                  | 0.0113         | -0.00047            | 0.0986         |
| TSST1   | 7981 (±487)                  | 9076 (±646)                  | 0.499          | 0.000148            | 0.3554         |

<sup>a</sup> Significant difference of results between 182 patients and 53 healthy controls; <sup>b</sup> *p* values of difference between patient and controls groups (Mann–Whitney U test); <sup>c</sup> adjusted *p*-values (Bonferroni correction); and <sup>d</sup> IgG levels are modelled as continuous factors. Estimated effects are therefore interpreted as mean change in FEV1% predicted.

| Virulence | Primer               | Sequence (5'–3')                 | Reference |
|-----------|----------------------|----------------------------------|-----------|
| Gene      |                      | -                                |           |
| chp       | <i>chp</i> forward   | TTTACTTTTGAACCGTTTCCTAC          | [1]       |
| ·         | <i>chp</i> reverse   | CGTCCTGAATTCTTAGTATGCATATTCATTAG | -         |
| clf A     | <i>clfA</i> forward  | ATGGGACAACGAAGTAGCA              | [2]       |
| r.        | <i>clfA</i> reverse  | GCTTCATCTTCAGAACCTG              |           |
| clf B     | <i>clfB</i> forward  | GTTATGGTGGTGGAAGTGCTG            | [2]       |
| ·         | <i>clfB</i> reverse  | CGCTCTTATCTCCTGTTTCTGG           |           |
| fnb A     | fnbAB forward        | TAGGAACTGAAAATGGTCAC             | [2]       |
| -         | fnbA reverse         | GAAGCAATCAGAAAACACTC             | <u>.</u>  |
| fnb B     | fnbAB forward        | TAGGAACTGAAAATGGTCAC             | [2]       |
|           | fnbB reverse         | GAGTATGTAATTATTTCTTGG            | -         |
| sdr C     | sdrC forward         | ACGACTATTAAACCAAGAAC             | [3]       |
|           | sdrC reverse         | GTACTTGAAATAAGCGGTTG             | -         |
| sdr D     | sdrD forward         | GGAAATAAAGTTGAAGTTTC             | [3]       |
|           | sdrD reverse         | ACTTTGTCATCAACTGTAAT             | -         |
| sdr E     | sdrE forward         | CAGTAAATGTGTCAAAAGA              | [3]       |
|           | sdrE reverse         | TTGACTACCAGCTATATC               | -         |
| спа       | cna forward          | AGTGGTTACTAATACTG                | [3]       |
|           | cna reverse          | CAGGATAGATTGGTTTA                | -         |
| сар       | <i>cap5</i> forward  | GAAAGTGAACGATTAGTAGAA            | [4]       |
|           | <i>cap5</i> reverse  | GTACGAAGCGTTTTGATAGTT            | _         |
|           | cap8 forward         | GTGGGATTTTTGTAGCTTTT             | _         |
|           | <i>cap8</i> reverse  | CGCCTCGCTATATGAACTAT             | -         |
| sas G     | sasG forward         | GGGAACTCAACAAGAGGCAG             | [5]       |
|           | sasG reverse         | CAGAACGAGCTTTTCTAACC             |           |
| sas H     | sasH forward         | GTGTAATGGGATTATGGCAAG            | [5]       |
|           | sasH reverse         | CGTTGCTGTGTGAGTTGG               |           |
| sea       | sea-3 forward        | CCTTTGGAAACGGTTAAAACG            | [6]       |
|           | sea-4 reverse        | TCTGAACCTTCCCATCAAAAAC           |           |
| seb       | seb-1 forward        | TCGCATCAAACTGACAAACG             | [6]       |
|           | seb-4 reverse        | GCAGGTACTCTATAAGTGCCTGC          |           |
| sec       | sec-3 forward        | CTCAAGAACTAGACATAAAAGCTAGG       | [6]       |
|           | sec-4 reverse        | TCAAAATCGGATTAACATTATCC          |           |
| sed       | sed-3 forward        | CTAGTTTGGTAATATCTCCTTTAAACG      | [6]       |
|           | sed-4 reverse        | TTAATGCTATATCTTATAGGGTAAACATC    |           |
| see       | see-2 forward        | TAACTTACCGTGGACCCTTC             | [6]       |
|           | see-3 reverse        | CAGTACCTATAGATAAAGTTAAAACAAGC    |           |
| eta       | eta-3 forward        | CTAGTGCATTTGTTATTCAAGACG         | [6]       |
|           | eta-4 reverse        | TGCATTGACACCATAGTACTTATTC        |           |
| etb       | etb-3 forward        | ACGGCTATATACATTCAATTCAATG        | [6]       |
|           | etb-4 reverse        | AAAGTTATTCATTTAATGCACTGTCTC      |           |
| tst       | tst-3 foward         | AAGCCCTTTGTTGCTTGCG              | [6]       |
|           | <i>tst-6</i> reverse | ATCGAACTTTGGCCCATACTTT           |           |
| seg       | seg-1 forward        | AATGCTCAACCCGATCCTA              | [7]       |
|           | seg-4 reverse        | CTTCCTTCAACAGGTGGAGAC            |           |

Table S4 Primers for single and multiplex PCRs.

| seh | seh-1 forward         | TTAGAAATCAAGGTGATAGTGGC         | [7]  |
|-----|-----------------------|---------------------------------|------|
|     | seh-2 reverse         | TTTTGAATACCATCTACCCAAAC         |      |
| sei | sei-1 forward         | GCCACTTTATCAGGACAATACTT         | [7]  |
|     | sei-2 reverse         | AAAACTTACAGGCAGTCCATCTC         |      |
| sej | sej-1 forward         | CTCCCTGACGTTAACACTACTAATAA      | [7]  |
|     | <i>sej-</i> 2 reverse | TTGTCTGGATATTGACCTATAACATT      |      |
| agr | agrSA-KON1            | ATGCACATGGTGCACATGC             | [8]  |
|     | forward               |                                 |      |
|     | agrSA1-2 reverse      | GTCACAAGTACTATAAGCTGCGAT        |      |
|     | agrSA2-2 reverse      | TATTACTAATTGAAAAGTGCCATAGC      |      |
|     | agrSA3-2 reverse      | GTAATGTAATAGCTTGTATAATAATACCCAG |      |
|     | agrSA4-2 reverse      | CGATAATGCCGTAATACCCG            |      |
| pvl | <i>pvl-</i> 1 forward | ATCATTAGGTAAAATGTCTGGACATGATCCA | [9]  |
|     | <i>pvl-2</i> reverse  | GCATCAASTGTATTGGATAGCAAAAGC     |      |
| hlg | hlg-1 forward         | GCCAATCCGTTATTAGAAAATGC         | [9]  |
|     | hlg-2 reverse         | CCATAGAAGTAGCAACGGAT            |      |
| eap | eap-CON1 forward      | TACTAACGAAGCATCTGCC             | [10] |
|     | eap-CON2 reverse      | TTAAATCGATATCACTAATACCTC        |      |
| emp | emp-1 forward         | AATAATCGCGTGAATGTAG             | [11] |
|     | emp-2 reverse         | CGTAGTAATGAAGTGGTGGT            |      |

## References

- van Wamel, W.J.B.; Rooijakkers, S.H.M.; Ruyken, M.; van Kessel, K.P.M.; van Strijp, J.A.G. The Innate Immune Modulators Staphylococcal Complement Inhibitor and Chemotaxis Inhibitory Protein of Staphylococcus aureus Are Located on -Hemolysin-Converting Bacteriophages. J. Bacteriol. 2006, 188, 1310–1315.
- Gomes, a R.; Vinga, S.; Zavolan, M.; Lencastre, H. De Analysis of the Genetic Variability of Virulence-Related Loci in Epidemic Clones of Methicillin-Resistant Staphylococcus aureus. *Antimicrob. Agents Chemother.* 2005, 49, 366– 379.
- 3. Peacock, S.J.; Moore, C.E.; Justice, A.; Kantzanou, M.; Story, L.; Mackie, K.; O'Neill, G.; Day, N.P.J. Virulent Combinations of Adhesin and Toxin Genes in Natural Populations of Staphylococcus aureus. *Infect. Immun.* **2002**, *70*, 4987–4996.
- 4. Goerke, C.; Esser, S.; Kümmel, M.; Wolz, C. Staphylococcus aureus strain designation by agr and cap polymorphism typing and delineation of agr diversification by sequence analysis. *Int. J. Med. Microbiol.* **2005**, *295*, 67–75.
- Roche, F.M.; Massey, R.; Peacock, S.J.; Day, N.P.J.; Visai, L.; Speziale, P.; Lam, A.; Pallen, M.; Foster, T.J. Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. *Microbiology* 2003, 149, 643–654.
- 6. Becker, K.; Roth, R.; Peters, G. Rapid and specific detection of toxigenic Staphylococcus aureus: Use of two multiplex PCR enzyme immunoassays for amplification and hybridization of staphylococcal enterotoxin genes, exfoliative toxin genes, and toxic shock syndrome toxin 1 gene. *J. Clin. Microbiol.* **1998**, *36*, 2548–2553.
- 7. Becker, K.; Friedrich, A.W.; Lubritz, G.; Weilert, M.; Peters, G.; Eiff, C. Von Prevalence of Genes Encoding Pyrogenic Toxin Superantigens and Exfoliative Toxins among Strains of. *Microbiology* **2003**, *41*, 1434–1439.
- 8. Lina, G.; Boutite, F.; Tristan, A.; Bes, M.; Etienne, J.; Vandenesch, F. Bacterial competition for human nasal cavity colonization: Role of Staphylococcal agr alleles. *Appl. Environ. Microbiol.* **2003**, *69*, 18–23.
- 9. Von Eiff, C.; Friedrich, A.W.; Peters, G.; Becker, K. Prevalence of genes encoding for members of the staphylococcal leukotoxin family among clinical isolates of Staphylococcus aureus. *Diagn. Microbiol. Infect. Dis.* **2004**, *49*, 157–162.
- 10. Hussain, M.; Von Eiff, C.; Sinha, B.; Joost, I.; Herrmann, M.; Peters, G.; Becker, K. eap gene as novel target for specific identification of Staphylococcus aureus. *J. Clin. Microbiol.* **2008**, *46*, 470–476.
- 11. Hussain, M.; Becker, K.; Von Eiff, C.; Schrenzel, J.; Peters, G.; Herrmann, M. Identification and characterization of

a novel 38.5-Kilodalton cell surface protein of Staphylococcus aureus with extended-spectrum binding activity for extracellular matrix and plasma proteins. *J. Bacteriol.* **2001**, *183*, 6778–6786.