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Abstract: Peptide toxins isolated from venomous creatures, long prized as research tools due to their
innate potency for ion channels, are emerging as drugs as well. However, it remains challenging to
understand why peptide toxins bind with high potency to ion channels, to identify residues that are key
for activity, and to improve their affinities via mutagenesis. We use WaterMap, a molecular dynamics
simulation-based method, to gain computational insight into these three questions by calculating the
locations and thermodynamic properties of water molecules in the peptide toxin binding sites of five
ion channels. These include an acid-sensing ion channel, voltage-gated potassium channel, sodium
channel in activated and deactivated states, transient-receptor potential channel, and a nicotinic
receptor whose structures were recently determined by crystallography and cryo-electron microscopy
(cryo-EM). All channels had water sites in the peptide toxin binding site, and an average of 75%
of these sites were stable (low-energy), and 25% were unstable (medium or high energy). For the
sodium channel, more unstable water sites were present in the deactivated state structure than the
activated. Additionally, for each channel, unstable water sites coincided with the positions of peptide
toxin residues that previous mutagenesis experiments had shown were important for activity. Finally,
for the sodium channel in the deactivated state, unstable water sites were present in the peptide toxin
binding pocket but did not overlap with the peptide toxin, suggesting that future experimental efforts
could focus on targeting these sites to optimize potency.

Keywords: peptide toxin; ion channel; WaterMap; cryo-EM; drug discovery

Key Contribution: The thermodynamics and positions of water sites in the peptide toxin binding
pockets of ion channel structures solved by crystallography and cryo-EM were computed using
inhomogeneous solvation theory implemented in WaterMap. These WaterMaps demonstrate that
peptide toxins displace unstable waters to bind potently to ion channels, explain existing mutagenesis
data in the literature, and suggest avenues for increasing potency further.

1. Introduction

Neuroscientists, pharmacologists, medicinal chemists, and others have long recognized that the
natural potency of peptide toxins isolated from venomous creatures for ion channels can be repurposed
for scientific exploration and medicine [1,2]. The modern era of peptide toxins as research tools began
in the late 1960s and early 1970s, when Changeux and colleagues used «-bungarotoxin from the
Taiwanese banded krait to purify the nicotinic acetylcholine receptor, the first isolated ion channel [3].
Peptide toxins have since become ubiquitous, commercially available reagents employed to investigate
topics ranging from addiction [4] to the dynamics of ion channels [5]. In 2004, peptide toxins arrived in
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the clinic with the FDA approval of Prialt, a voltage-gated calcium channel blocker from the cone snail
Conus magus, to treat intractable pain [6]. More recently, peptide toxins have served as a rich source of
lead compounds for efforts to drug the voltage-gated sodium channel Nav1.7, a target for non-opioid
analgesics [7,8]. Common to all efforts to optimize peptides from venomous creatures is the need to
understand three questions: why do peptide toxins so potently inhibit ion channels? Can existing
structure—activity relationships be rationalized? How can one find mutations that increase affinities of
peptide toxins for their targets?

Computational mutagenesis of the peptide toxin in combination with docking it to the target
ion channel (commonly a homology model) is currently a widely used approach for answering these
questions [9,10]. While this framework can be successful [11], especially when accounting for the innate
flexibility of both the toxin and channel [12], the limitations of deciphering affinity in terms of specific
interactions (salt-bridges, hydrogen bonds, hydrophobic contacts) have also been well-documented [13].
Furthermore, the limited predictive power of docking studies coupled with the need to manually
inspect binding modes often relegates this work to a purely retrospective role [7]. This leads to a
high fraction of synthesized peptides being measured as equipotent or less potent than the starting
material [14], which is onerous given the time, expense, and specialized expertise needed to make
these molecules [15]. New approaches for understanding the structural basis of peptide toxin potency
at channels as a way to guide more productive structure-activity relationship (SAR) exploration would
be useful.

We hypothesized that tight binding of peptide toxins to ion channels could be explained
by their displacement of thermodynamically unstable waters in the vicinity of the channel.
Such thermodynamics can be calculated computationally with inhomogeneous solvation theory [16,17]
using analysis of explicit solvent molecular dynamics (MD) simulations in which the protein is
heavily restrained [18,19] or the 3D reference interaction site model (3D-RISM) [20-22]. Here, we use
WaterMap implemented in the Schrodinger suite of software (Schrodinger, New York, NY, USA) [23]
to spatially cluster water molecules from MD trajectories into localized water sites and then compute
the excess free-energy (AG) of those sites relative to bulk solvent [24]. These water sites can be
classified as low (AG < 1.5 kcal/mol), medium (1.5 < AG < 3.5 kcal/mol), or high (AG > 3.5 kcal/mol)
energy [25], with low-energy sites referred to as “stable” and medium and high-energy water sites
interchangeably called “unstable.” The positions of these water sites have been shown to closely match
key crystallographic waters in high-resolution structures in many cases [26]. Moreover, extensive
retrospective work has established that these water site free energies correlate with experimentally
measured binding free energies for both small molecules [18,27,28] and peptides [25], as was predicted
from theory [23], although in practice prediction of free energies is now performed using free-energy
perturbation [29,30]. Nonetheless, prospective studies from drug discovery programs have since
demonstrated that displacement or replacement of a water molecule from an unstable site will reliably
contribute favorably to binding, and thus these water sites can serve to guide the placement of
functional groups for optimizing potency [31,32]. As a result, interpreting peptide toxin interactions
with ion channels in terms of the water sites they displace or replace upon binding might present a
new framework for understanding peptide toxin potency and SAR. For example, mutations that confer
a loss in potency could result from the mutated side chain no longer being large enough to displace
unstable waters upon binding, as the native residue does. A prerequisite for running WaterMap is a
good structure of the protein and a defined binding site.

Obtaining and solving structures of ion channels with or without peptide toxins has historically
been challenging [33], notwithstanding some outstanding crystal (Xtal) structure exceptions [34,35].
This situation has changed dramatically with recent advances in cryo-electron microscopy (cryo-EM),
particularly regarding sample preparation [36], that have made determination of ion channel structures
that were previously difficult, such as nicotinic acetylcholine receptors (nAChRs), more facile [37].
In turn, breakthrough structures of peptide toxins with therapeutically relevant, human ion channels
have begun to appear [38]. These structures present an unprecedented opportunity to learn how
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peptide toxins take advantage of the water site thermodynamics of ion channels to bind potently
to them.

In this work, we compute and analyze the water site thermodynamics of the apo peptide toxin
binding sites (peptide toxin not present) for five diverse ion channels. The channels that were analyzed
include the acid-sensing ion channel 1 (ASIC1a) with psalmotoxin-1 (PcTx1) [35]; the Kv1.2-2.1 paddle
chimera channel (Kv) with charybdotoxin (CTX) [34]; the Nav1.7 VSD2-NavAb channel chimera
protein (Nav) with protoxin-1I (ProTx2) in the activated and deactivated states [8]; the transient receptor
potential cation channel subfamily V member 1 (TRPV1) with double-knot toxin (DkTx) [39]; and the
muscle-subtype nAChR with a-bungarotoxin (BTX) [40] (Figure 1, Table 1). First, the water site
thermodynamics of each binding site are computed with WaterMap and analyzed. Second, the existing
SAR from mutagenesis studies is re-interpreted by comparing these water sites to experimentally
characterized mutants to understand when water displacement could play a role in the differential
affinity of the mutant. These mutants can serve as a blind test of WaterMap’s ability, without any
parameter tuning or re-training, to recover residues that have previously and independently been
shown to be key for activity. Third, opportunities to virtually and experimentally screen for ProTx2
mutants that could have enhanced affinity for the Nav channel, guided by analysis of the holo
WaterMap (with ProTx2 present), are pointed out and discussed.

C)
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Figure 1. Ion channels and peptide toxin complexes examined in this study. Transmembrane and
extracellular (inset) views are displayed of the complexes analyzed in this study. These are (A) PcTx1
and ASICla, (B) CTX and Ky, (C) ProTx2 and activated Nav, (D) ProTx2 and deactivated Nav, (E) DkTx
and TRPV1, and (F) BTX and nAChR. The ion channel is shown as a blue ribbon and the peptide toxin
as an orange ribbon with semi-transparent surface. For clarity, only the copy of the peptide toxin used
to define the peptide toxin/ion channel interface for the WaterMap simulation is shown.
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Table 1. Overview of peptide toxin and ion channel systems in this study.

Ion Channel

Peptide Toxin

Structure Information

Potency of Peptide at
Channel

Gallus gallus Acid-sensing

Psalmopoeus cambridgei

Xtal, 3.4A, (PDB:

IC5¢ = 3 nM (Human

ion channel 1 (ASIC1a) Psalmotoxin-1 (PcTx1) 4FZ1) [35] ASICla) [41]
Rattus norvegicus Kv1.2-2.1 Leiurus hebraeus Xtal, 2.5A, (PDB: _
paddle chimera channel (Kv) Charybdotoxin (CTX) 4]TA) [34] Kp =19nM [34,42]

Homo sapiens/Arcobacter

Thrixopelma pruriens B/w

Activated: Cryo-EM,
3.6A (PDB: 6N4Q)

SN TR e ot 190702070
4.2A (PDB: 6N4R) [8]
Rattus norvegicus o
. . Haplopelma schmidti <
Transient receptor potential . Cryo-EM, 3.0A, (PDB: _
cation channel subfamily V DOUbigt{;i; toxin 5IRX) [39] ECs0 =023 uM [43]

member 1 (TRPV1)

Tetronarce californica
Nicotinic receptor (nAChR)

Bungarus multicinctus
a-bungarotoxin (BTX)

Cryo-EM, 2.7A, (PDB:
6UWZ) [40]

Kp = 0.4 nM [44]

2. Results

2.1. Apo WaterMaps of Peptide Toxin Binding Sites on Ion Channels

For each ion channel, the number of water sites that overlap with the coordinates of the peptide
toxin were identified (the peptide toxin is not present during the simulations; the WaterMaps are

“apo”) (Figure 2). On average, 75% of the waters were low-energy, 22% were medium-energy, and 4%
were high-energy. As WaterMap simulations converge rapidly, a single simulation for each system
is considered representative. To verify this, the WaterMap for ASICla was run in triplicate with
randomized starting velocities and produced nearly identical statistics across runs (Supplementary
Table S1). The detailed results for each WaterMap are presented in the following paragraphs.
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Figure 2. Total number of water sites and their energetics. The number of water sites in the apo

WaterMap that overlap with the peptide toxin (overlap factor > 0.1) are shown for each ion channel.

Water sites were classified as low-energy (AG < 1.5 kcal/mol), medium-energy (1.5 < AG < 3.5 kcal/mol),

or high-energy (AG > 3.5 kcal/mol) with corresponding bars colored gray, yellow, or red, respectively.
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For ASICla, WaterMap identified a total of 276 water sites in the pocket where PcTx1 binds
(Figure 3A). Of these, 50 overlapped with the position of PcTx1 when bound (and thus were displaced
upon binding). Forty-one of the overlapping sites were low-energy (82%), seven were medium-energy
(14%), and two were high-energy (4%) (Figures 2 and 3B). One medium-energy site overlapped with P35
and T37 (Figure 3B). Four medium-energy water sites and one high-energy water site overlapped with
W7 of PcTx1 (Figure 3C). One medium-energy water site and one high-energy water site overlapped
with R27 of PcTx1 (Figure 3D). Examination of the literature revealed that the PcTx1 W7A mutation
has been shown to result in a >318 fold loss in potency at ASIC1a, whereas the PcTx1 R27A mutation
results in a 11-fold loss in potency (Table 2). The loss in potency of these mutants may be due to the lack
of high-energy water displacement (i.e., the mutated sidechain is no longer large enough to displace
the unstable waters).

A)

Figure 3. Water sites in the PcTx1 binding site on ASICla. (A) ASIC1a is shown in blue ribbons, PcTx1
in orange ribbons, and water sites as gray (low-energy), yellow (medium-energy), or red (high-energy)
spheres. The lipid bilayer is shown in wire representation, with carbon colored gray, oxygen red,
nitrogen blue, and phosphorus purple. (B) Medium and high-energy water sites at the protein interface
and those that overlap with (C) W7 and (D) R27 of PcTx1. A blue mesh denotes the surface of the ion
channel, an orange mesh shows the van der Waals surface of the peptide, and peptide sidechain and
mainchain atoms are shown in thick tube representation with carbon orange, oxygen red, nitrogen
blue, oxygen red, and hydrogen white. For clarity, only the peptide toxin used to define the interface
for the WaterMap calculation is shown (chain D).
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Table 2. Literature mutagenesis data for selected residues.

Selected Peptide Toxin Overlap with Fold Loss in Potency of Mutant

Residue Unstable Water Site? Mutation or Presumed Functional Role
W7 Yes W7A >318X [41]1
R27 Yes R27A 11X [41] !
PcTx1 [35]
W24 No W24A >318X [41] !
R26 No R26A 52X [41] 1
CTX [34] K27 Yes K27M 33X [34]
W7 Yes W7Y 112X [45] 2
W24 Yes W24Y 181X [45] 2
L29 Yes N/A Anchors ProTx2 in membrane [8]
ProTx2 [8] W5 No W5Y 292X [45] 2
R22 No R22E >1000X [8]
K26 No K26D >100X [8]
W30Y 6X [45] 2
W30 No
W30L 22X [45] 2
WI1A 80X [46]
W11 Yes WI1L 43X [46]
WI1Y 9X [46]
DKTx [39] F27 Yes F27A 7X [46]
W53A >100X [46]
W53 Yes W53L >100X [46]
W53Y 8X [46]
F67 Yes F67A 13X [46]
F32 Yes N/A Cation-7t stack with R36 [40]
BTX [40]
R36 Yes R36A 90X [47]

! Data measured using Human ASICla 2 Data measured using Human Nav 1.7.

For the Kv channel, WaterMap identified a total of 249 water sites in the pocket where CTX binds
at the mouth of the selectivity filter (Figure 4A). Thirty-eight water sites overlapped with the position
of CTX when bound. Twenty-six were low-energy (68%), 11 were medium-energy (29%), and one was
high-energy (3%) (Figures 2 and 4B). One medium-energy water site and one high-energy water site
overlapped with K27 of CTX, which is also known from mutagenesis data to be important for potency
(Figure 4C, Table 2). Two medium-energy sites also overlapped with M29. One medium-energy site
overlapped with K31, N30, C28, R34, Y36, 537, R25, and 524, respectively (Figure 4B).

WaterMap was run on both the activated and deactivated Nav channel structures. For the
activated channel structure, a total of 257 water sites were identified in the site where ProTx2 binds to
the voltage sensing domain (VSD) (Figure 5A). Twenty-four of these water sites overlapped directly
with the position of ProTx2. Of these, 19 were low-energy (79%) and five were medium-energy (21%);
no high-energy water sites were identified with WaterMap (Figures 2 and 5B). One medium-energy
water site overlapped with 123, K27, W7, W24, and L29 of ProTx2 (Figure 5B-E, respectively).
In the equivalent binding pocket on the deactivated Nav channel structure, WaterMap identified
a total of 268 water sites with 29 overlapping with the ProTx2 binding pose (Figure 5F). Of these,
21were low-energy (72%), five were medium-energy (17%) and three were high-energy (10%) (Table 2,
Figure 5G). In contrast to the activated state, W7 overlapped with a high-energy water site in the
deactivated structure (Figure 5H). W24 and L29 each overlapped with two medium-energy water
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sites and one high-energy water site, more than in the activated structure (Figure 51]). L23 remained
overlapping with a medium-energy site (Figure 5G). A search of the literature found that mutational
studies have identified W7 and W24 as being important for ProTx2 inhibition of Nav1.7, while L29 is
hypothesized to play a key role (Table 2).

A)

Figure 4. Water sites in the CTX binding site on a Kv channel. (A) The Kv channel is shown in
blue ribbons, CTX in orange ribbons, and water sites as gray (low-energy), yellow (medium-energy),
or red (high-energy) spheres. The lipid bilayer is shown in wire representation, with carbons colored
gray, oxygens colored red, nitrogen colored blue, and phosphorus colored purple. (B) Medium and
high-energy water sites that overlap at the protein interface and specifically with (C) K27 of CTX.
Interface residue K27 makes key hydrogen bonds (dashed yellow) with Y373 channel residues. A blue
mesh denotes the surface of the ion channel, an orange mesh shows the van der Waals surface of the
peptide and peptide sidechain, and mainchain atoms are shown in thick tube representation with
carbon orange, nitrogen blue, oxygen red, and hydrogen white. For clarity, only the peptide toxin used
to define the interface for the WaterMap calculation is shown (chain Y).
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Figure 5. Water sites in the ProTx2 binding site on a Nav channel in activated and deactivated states.
Nav channel (A) activated and (F) deactivated structures are shown in blue ribbons, ProTx2 in orange
ribbons, and water sites as gray (low-energy), yellow (medium-energy), or red (high-energy) spheres.
The lipid bilayer is shown in wire representation, with carbons colored gray, oxygens red, nitrogen
blue, and phosphorus purple. (B,G) Medium and high-energy water sites at the protein interface and
those that overlap with (C) W7, (D) W24, (E) L29 in the activated state and (H) W7, (I) W24, (J) L29 in
the deactivated state. A blue mesh denotes the surface of the ion channel, an orange mesh shows the
van der Waals surface of the peptide, and peptide sidechain and mainchain atoms are shown in thick
tube representation with carbon orange, oxygen red, nitrogen blue, and hydrogen white. For clarity,
only the peptide toxin used to define the interface for the WaterMap calculation is shown (chain H for
the activated state structure and chain F for the deactivated state structure).

WaterMap identified 507 water sites in the binding site on TRPV1 defined by DkTx, of which
79 overlapped with the coordinates of the peptide toxin (Figure 6A). Amongst this subset of water
sites, 50 were low-energy (63%), 28 were medium-energy (35%) and one was high-energy (1%)
(Figures 2 and 6B). DkTx has two “lobes” or “knots”. On knot 1, four medium-energy water sites
and one high-energy water site overlapped W11, and three medium-energy water sites overlapped
F27 (Figure 6C,D). On knot 2, four medium-energy water sites overlapped the corresponding W53,
and two medium-energy water sites overlapped the corresponding F67 (Figure 6E,F). Mutants of all
four of these residues have reduced activity at TRPV1 (Table 2). Beyond those four residues, four
medium-energy sites overlapped L65 and M25 each, two medium-energy sites overlapped 128, and Y70,
A66, G54, D1, and E26 each overlapped with one medium-energy site. (Figure 6B).
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F67 (Knot 2)

Figure 6. Water sites in the DkTx binding site of TRPV1. (A) TRPV1 is shown in blue ribbons, DkTx in
orange ribbons, and water sites as gray (low-energy), yellow (medium-energy), or red (high-energy)
spheres. The lipid bilayer is shown in wire representation, with carbons colored gray, oxygens red,
nitrogen blue, and phosphorus purple. (B) Medium and high-energy water sites at the protein interface
and those that overlap with (C) W11, (D) F27 in Knot 1 and (E) W53, (F) F67 in Knot 2 of DkTx. A blue
mesh denotes the surface of the ion channel, an orange mesh shows the van der Waals surface of the
peptide, and peptide sidechain, and mainchain atoms are shown in thick tube representation with
carbon orange, oxygen red, nitrogen blue, and hydrogen white. For clarity, only the peptide toxin used
to define the interface for the WaterMap calculation is shown (chain F).

WaterMap identified 279 water sites in and around the muscle-type nAChR orthosteric binding
site at the interface of the « and y subunits (Figure 7A). Fifty-nine water sites overlapped with the
coordinates of BTX. Of these, 49 were low-energy (83%), eight were medium-energy (14%) and two were
high-energy (3%) (Figures 2 and 7B). One medium and high-energy water site overlap with F32, while
two medium-energy water sites and one high-energy water site overlap R36 (Figure 7C,D). Mutational
studies have implicated these residues in the activity of BTX at the nAChR (Table 2). Beyond these
two residues, S9 overlapped with two medium-energy sites and 111, A31, and C33 each overlapped
with a single, medium-energy site (Figure 7B). Finally, the muscle-type nAChR structure has a second,
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non-identical BTX binding site at the interface of the « and 6 subunits [40]. The WaterMap for this
-0 interface exhibited a pattern of medium and high-energy water sites similar to the x-y interface
described above (Supplementary Figure S1). This result is consistent with the fact that although the
a-y and -0 interfaces are non-identical, they nonetheless possess similar sensitivity for BTX [40].

A)

Figure 7. Water site in the BTX binding site on the o-y interface of the muscle-type nAChR. (A) nAChR
is shown in blue ribbons, BTX in orange ribbons, and water sites as gray (low-energy), yellow
(medium-energy), or red (high-energy) spheres. The lipid bilayer is shown in wire representation, with
carbons colored gray, oxygens red, nitrogen blue, and phosphorus purple. (B) Medium and high-energy
water sites at the protein interface and those that overlap with (C) F32 and (D) R36 of BTX. R36 makes
a cation-7t interaction with Y190 (dashed green line) and a H-bond with C192 (dashed yellow line).
A blue mesh denotes the surface of the ion channel, an orange mesh shows the van der Waals surface of
the peptide, and peptide sidechain and mainchain atoms are shown in thick tube representation with
carbon orange, nitrogen blue, oxygen red, and hydrogen white. For clarity, only the peptide toxin used
to define the interface for the WaterMap calculation is shown (chain G).

2.2. Frequency Analysis of Residues That Overlap Unstable Waters

WaterMap results of the chemical identities of peptide toxin residues that overlap with unstable
water sites were analyzed (Figure 8). It was found that 17 of the 20 standard amino acids overlapped
with unstable water sides (valine, glutamine, and histidine residues did not). Each of the aliphatic
amino acids (A, I, M, L, and V) overlapped twice with unstable water sites, with the exception of
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methionine, which overlapped four times, and valine, which did not overlap with an unstable water
site. For the hydrophobic, aromatic amino acids (F, W, and Y), the frequency of overlap was three,
seven, and two, respectively. Within the polar, neutral amino acids (N, C, Q, S, and T), asparagine
and threonine overlapped once, cysteine twice, and serine three times. Within the charged amino
acids (D, E, R, H, and K), the frequency of aspartic acid and glutamic acid overlap was one each, while
arginine and lysine each overlapped four times. Lastly, the frequency of unique amino acids (glycine,
proline) was one each (Figure 8).

Hydrophobic, Hydrophobic, Polar, Charged, Charged,

. . . . " Unique
aliphatic aromatic neutral negative positive

Number

AILMVFEFWYNCQSTDERHKGP
Amino Acid

Figure 8. Frequency of amino acid types that overlap with unstable water sites. Bars indicate the
number of times each amino acid was found to overlap with a medium or high-energy water site.
The standard single letter abbreviation for each amino acid is used.

2.3. Holo WaterMap of ProTx2 Bbound to a Nav Channel

For the deactivated Nav channel, WaterMap identified 373 water sites surrounding ProTx2 when
ProTx2 was included (holo) during the simulation (Figure 9A). Of these, 77 were medium-energy
and 34 were high-energy. Unstable waters were present at the interface between ProTx2 and the Nav
channel VSD. Two high-energy water sites and one medium-energy water site were located in a small,
deep cleft in the vicinity of W24 (Figure 9B). All three sites were positioned along vectors that are
synthetically accessible from positions 6 and 7 on the indole ring. Positions 6 and 7 on the indole ring
are on average 4.56A from the high-energy water sites. A loose constellation of five medium-energy
and four high-energy sites surrounded K26, but only two of these medium-energy sites were near the
terminal ammonium group with an average distance of 2.78A from the ammonium group. It was also
5.41A from the closest high-energy water site (Figure 9C).
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Figure 9. Holo WaterMap of a Nav channel. (A) The deactivated state Nav channel is shown in blue
ribbon, ProTx2 in an orange ribbon, and water sites as gray (low-energy), yellow (medium-energy),
or red (high-energy) spheres. Medium and high-energy water sites near (B) W24 and (C) K26
demonstrate potential water sites to displace to increase toxin potency. A blue solid surface denotes the
surface of the ion channel, an orange mesh shows the van der Waals surface of the toxin, and peptide
sidechain and mainchain atoms are shown in thick tube representation with carbon orange, nitrogen
blue, oxygen red, and hydrogen white.

3. Discussion

Peptide toxins have long been recognized as valuable tools for basic science purposes, such as
investigating the structure and function of ion channels [48]. More recently, major efforts by
biopharmaceutical companies to identify, characterize, and optimize inhibitors of the pain target
Navl.7 from peptide toxin starting points [7,8,14] suggest that for certain important drug targets,
peptide toxins might even be the preferred therapeutic avenue as opposed to more common small
molecules. As a result, there is an urgent need to better understand three questions common to any
effort to engineer a peptide toxin into a drug. First, why does the peptide toxin potently inhibit its ion
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channel target? Second, can existing structure—-activity relationships in the form of mutagenesis data
be readily understood? Third, how can one find mutations that increase affinity of the peptide toxin
for the target? We discuss our computational findings regarding these three questions below.

3.1. Unstable Water Sites Are Present in the Peptide Toxin Binding Sites of lon Channels

One of the most remarkable features of peptide toxins is their high affinity for ion channels
(Table 1); the Kp of BTX for the mammalian muscle nAChR subtype, for example, has been measured to
be pM [49]. Our results provide an explanation for the high potency of toxin peptides for ion channels.
We found that for each ion channel, around a quarter of the water sites in the peptide toxin binding
pocket were unstable (Figure 2). Of these unstable water sites, a majority were medium-energy and a
minority high-energy. It is displacement of waters from these sites upon peptide toxin binding that
could account for the strong affinity of peptide toxins for their ion channel targets. These findings mirror
a previous study in which unstable waters displaced by a potent kinase inhibitor series explained the
experimentally determined binding free energies [50]. One caveat is that the resolution of the structures
is too low (2.69 A—-4.2 A) for structural waters to have been determined, meaning that experimental
corroboration of the positioning of these water sites is not currently possible. However, that limitation
should not obscure the main conclusion, which is that displacement of these unstable waters upon
peptide toxin binding is likely a major contributing factor to their potency for ion channels.

The WaterMap of the Nav channel merits special discussion. One enduring question regarding
this channel is why its gating modifier toxin, ProTx2, traps the channel in a deactivated or closed
state [51]. Our findings, utilizing the breakthrough cryo-EM structures of ProTx2 bound to Nav channel
activated and deactivated states, provide an explanation (Figure 5). Specifically, the deactivated Nav
channel has more medium- and high-energy water sites than the activated Nav channel, and these
sites also have significantly higher energies in the deactivated state (Figure 5). Taken together, these
results suggest that ProTx2 might preferentially target the deactivated state, because it presents a
more “attractive” binding site than the activated state by virtue of its more and higher energy water
sites. More broadly, these findings also imply that targeting the differential water sites between ion
channel states could be a rational strategy for developing peptide toxins into tool compounds that trap
ion channels state specifically, an important goal given that elucidating the gating mechanism of ion
channels is a fundamental aim in the field of neuroscience [52].

3.2. Unstable Water Sites Overlap With Most, but Not All, Residues Identified by Mutagenesis Efforts as
Functionally Important

One central challenge in working with peptide toxins is their steep activity cliffs. Despite their
size—the toxins in this study range from 30 to 75 residues—mutation of a single residue can commonly
abrogate activity despite the absence of clear structural interactions. Our findings provide a possible
explanation for this phenomenon, because we found that for every ion channel, unstable water
sites were present in the locations where the peptide toxins position residues known to be key for
activity. For example, the PcTx1 W7A mutant has a >318-fold loss in potency for ASIC1a, despite
forming limited hydrophobic contact with the channel and being somewhat solvent exposed (Table 2).
Four medium-energy water sites and one high-energy water site overlap with PcTx1 W7 when the
peptide toxin is superimposed in its crystallographic binding mode (Figure 3A). However, if this
residue were mutated to alanine, then the methyl group would be too small to displace waters at
these sites, and a concomitant loss in potency would result. In another example, for the Kv channel,
a high-energy water site sits in the location occupied by K27 when CTX is bound to the channel.
This residue is well known to form an electrostatic “plug” with the selectivity filter of the channel,
and its mutation to the shorter methionine, which cannot reach this water site, leads to a 33-fold loss in
potency (Table 2, Figure 4). As for TRPV1, there is a high-energy water site that overlaps with W11 of
DkTx knot 1, but none that overlap with a similar tryptophan residue, W53, on knot 2. This finding is
consistent with the functional property differences that are seen between the two cysteine knots [46]
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(Table 2, Figure 6). However, not all residues known to be important for activity overlapped with
unstable sites. For example, neither R22 or K26 on ProTx2, both of whose mutation to anionic residues
leads to a profound loss in binding affinity, overlap with unstable waters. Taken together, these findings
suggest that while water thermodynamics cannot rationalize all of the key mutations, it does appear to
be an important driver for enough of them to play an important role in screening and design efforts.

Our results also have implications for deciding which residues should be selected for mutagenesis
efforts. Charge change mutations (e.g., lysine to glutamate or vice versa) are often tested first during
mutational screens, because they are expected to dramatically impact affinity, despite the fact that
hydrogen bonds and electrostatic interactions, particularly in solvent exposed regions, are not always
major contributors to affinity [53]. However, analyzing the chemical identities of the peptide toxin
amino acids that overlapped with unstable water sites revealed that charged residues (D, E, R, H,
and K) were not the most common to overlap with unstable water sites (Figure 8). In fact, hydrophobic,
aromatic sidechains (F, W, and Y) were the majority, with tryptophan the most frequent residue overall
(Figure 8). Furthermore, hydrophobic, aliphatic sidechains (A, I, M, L, and V) were just as common as
charged residues. In summary, these data suggest that mutating aromatic amino acids and especially
tryptophans on peptide toxins may be a fruitful strategy for uncovering the determinants of toxin
affinity. By the same token, mutating residues to aromatics to displace unstable waters could also be
a productive way to rapidly gain potency. Lending credence to this conclusion is a recent effort to
develop mutants of ReglIA selective for the «332 nAChR, which found that replacement of N9 with F,
W, or Y, but not R, improved the potency and selectivity of the peptide [54].

3.3. Additional Unstable Water Sites Exist on the Nav Channel Near ProTx2 and Could Be Targeted by Virtual
and Experimental Screening

How can one systematically improve the potency of a peptide toxin for its target without
falling back on expensive, laborious, and time-consuming “brute force” mutagenesis? We found
that for ProTx2, the most therapeutically relevant peptide toxin examined in this study, unstable
waters were present along synthetically feasible vectors (positions 6 and 7 on the phenyl ring of the
indole) and distances from W24 and K26, but did not actually overlap with these residues (Figure 9).
This immediately suggests two strategies for finding more potent analogues of ProTx2. The first and
most straightforward would be to either enumerate or virtually screen analogues of ProTx2 containing
non-standard amino acid (NSAA) mutants of Trp and/or Lys, which contain additional hydrophobic
bulk capable of displacing waters at these sites. Promising analogues could then be subsequently
rescored with free energy methods and ultimately tested experimentally [29,55,56]. If the desired
therapeutic modality is a small molecule, then another possibility would be to use the spatial positions
of these residues and water sites as constraints to guide the docking process, thus improving the odds
of discovering potent lead compounds. Given the high commonality between Nav1.7 small-molecule
inhibitors that target the VSD via an aryl sulfonamide motif [57], small molecules identified via
this approach could serve as an important source of diversity in medicinal chemistry campaigns.
Regardless of the specific approach taken, leveraging the thermodynamics of water sites to understand
and guide peptide toxin mutational studies appears to be a promising avenue for improving the
potency of these molecules, which continue to grow in therapeutic importance [58].

4. Materials and Methods

4.1. Protein Preparation

In general, the ion channel and peptide toxin systems were prepared using the default Protein
Preparation Wizard (PPW) settings using the Maestro 2019-4 release (Schrodinger Inc., New York, NY,
USA). Briefly, Protein Data Bank (PDB) structures were downloaded from the Orientations of Proteins
in Membranes (OPM) database, loaded into Maestro, and heteroatoms removed. Bond orders were
assigned, hydrogens added, and disulfide bonds created using the PPW. Missing side chains and loops
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were filled-in using Prime. Protonation states were assigned using PROPKA at pH 7.0, and hydrogen
bond networks were optimized using the “H-bond assignment” panel. Restrained minimization was
carried out using the OPLS3e forcefield with heavy atoms converged to an RMSD of 0.3 A. Subsequently,
an explicit membrane was added to each system using the Desmond System Builder panel in Maestro.
The POPC (300K) membrane option was used and the “Place on Prealigned Structure” option chosen.
No ions or water molecules were added to the system.

4.2. WaterMap Calculations

All WaterMap calculations were set up and run up using the WaterMap panel in Maestro.
The residues that define the binding site were selected using the built-in protein—protein interface
selection and then intersecting those residues with the peptide chain. Waters within 10 A of this
selection were analyzed. Although the peptide toxin was used to define the binding site, it was not
included in the calculations (i.e., these were “apo” WaterMaps; the one exception was 6N4R, for which
a holo map was also run). Additionally, the truncate protein option was used to avoid out of memory
errors. All simulations were carried out using the default OPLS3e forcefield for a total of 2.0 ns, using
an in-house graphical processing unit (GPU) cluster with NVIDIA GeForce GTX 1080 and 1080ti GPUs.
WaterMap simulations generally took a few hours of wall-clock time to complete.

4.3. WaterMap Analysis

Upon completion, WaterMaps were copied down from the compute cluster to a local machine for
visualization and analysis using the WaterMap Analyze Results panel in Maestro. A custom script was
then used to categorize water sites based on their free energy. Low-energy water sites were colored
gray (AG < 1.5 kcal/mol), medium-energy water sites were colored yellow (1.5 < AG < 3.5 kcal/mol),
and high-energy water sites were colored red (AG > 3.5 kcal/mol).

4.4. Plotting
All data were plotted and analyzed using Prism 8 (GraphPad Software, San Diego, CA, USA).

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/12/10/652/s1,
Table S1: Frequency of hydration site categories during independent WaterMap runs of 4FZ1, Figure S1: Water
sites in the BTX binding site at the «-6 interface of a nAChR.
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