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Abstract: Selenium (Se) is an essential micronutrient for human health. Its beneficial effects are
exerted by selenoproteins, which can be quantified in blood and used as molecular biomarkers of
Se status. We hypothesize that the presence of genetic polymorphisms in selenoprotein genes may:
(1) influence the gene expression of specific selenoproteins and (2) influence the pattern of global gene
expression after Brazil nut supplementation. The study was conducted with 130 healthy volunteers in
Sao Paulo, Brazil, who consumed one Brazil nut (300 µg/Se) a day for eight weeks. Gene expression
of GPX1 and SELENOP and genotyping were measured by real-time PCR using TaqMan Assays.
Global gene expression was assessed by microarray using Illumina HumanHT-12 v4 BeadChips.
Brazil nut supplementation significantly increased GPX1 mRNA expression only in subjects with CC
genotype at rs1050450 (p < 0.05). SELENOP mRNA expression was significantly higher in A-carriers
at rs7579 either before or after supplementation (p < 0.05). Genotype for rs713041 in GPX4 affected
the pattern of blood cell global gene expression. Genetic variations in selenoprotein genes modulated
both GPX1 and SELENOP selenoprotein gene expression and global gene expression in response to
Brazil nut supplementation.
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1. Introduction

There is a considerable evidence to indicate that nuts are an important component of a healthy
diet and this is thought to be at least partly due to their fatty acid composition and micronutrient
content [1–3]. Brazil nuts (Berthollethia excelsa, family Lecythidaceae) are unique in also containing
a high level of the micronutrient selenium (Se), and its use as a dietary supplement was able to increase
the concentrations of biomarkers of Se status in different populations [4–7]. Se is an essential trace
element that has an important role in human biology. There are 25 genes encoding selenoproteins
with a wide range of functions, including antioxidant defense, redox function, thyroid hormone
metabolism, immune function, reproduction and fertility [8,9]. Unlikely in most minerals that interact
as cofactors in the active site of enzymes, Se is inserted as the amino acid selenocysteine (Sec) during
translation. This process involves recoding the stop codon UGA to insert Sec and requires the presence
of a stem-loop structure in the 3′untranslated region (3′UTR) of selenoprotein mRNAs (Sec Insertion
Sequence or SECIS) and a specific tRNA for Sec (tRNA[Ser]Sec) [10].
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Selenoprotein expression is regulated by Se supply, but different selenoproteins respond
differently to available Se, depending on the specific tissue and the specific selenoprotein. As a result,
there is a hierarchy in the response of selenoproteins to Se supply. For example, under Se-deficient
conditions, Se is directed to the brain and endocrine tissues rather than to liver and kidneys [11].
Within the same tissue, some proteins have a preference for synthesis when the Se supply is limiting.
This difference in regulation of selenoprotein expression reflects their physiological importance, and
during deficiency states, the ones ranked high in the hierarchy have preference for synthesis [11].

The concept of hierarchy in the regulation of selenoprotein expression raises the possible use of
molecular biomarkers of Se status in supplementation studies using humans and rodents. In mouse
models, nine selenoprotein genes had reduced mRNA expression in the liver during Se-deficiency,
including GPX1, SELENOH, SELENOW, TXNRD1, TXNRD2, DIO1, and SELENOF. This reduction
ranked them low in the hierarchy and made them a possible target for use as molecular biomarkers
in rodents [12]. Nevertheless, several human studies have failed to demonstrate an association of Se
status and selenoproteins transcripts [13–15]. Only two studies have observed a positive relationship
between Se supplementation and increased selenoprotein expression [16,17].

Genetic polymorphisms are an important source of inter-individual variation in response to
nutritional supplementation [18]. Several single nucleotide polymorphisms (SNPs) in selenoproteins
genes have been shown to be functionally significant and to affect the response of biomarkers of
Se status to Se supplementation [19–22]. In particular, rs1050540 in GPX1, rs713041 in GPX4 and
rs7579 in the Selenoprotein P gene (SELENOP) are known to affect the expression of the respective
selenoproteins. In the case of rs713041, the variant is a C > T substitution located in the 3’UTR of
the GPX4 gene and it affects Se incorporation in a cell culture model [23] and the response to Se
supplementation in healthy adults [20]. It should be highlighted that rs713041 can modulate GPx4
activity by altering Sec insertion and protein binding to the 3′UTR [20]. rs7579 is a change G > A
present in the 3′UTR of SELENOP and has been shown to affect Selenoprotein P (SePP) concentrations
to Se supplementation in both European Americans and South Asians (12).

However, although Brazil nuts are a rich source of Se and therefore it is expected that Brazil nut
supplementation would affect selenoprotein expression, no studies have investigated the influence
of genetic polymorphisms on response to Brazil nut supplementation in healthy adults. In addition,
none of the studies investigating the effect of either Se or Brazil nut Se supplementation in humans
have considered the effect of genetic variants on the pattern of global gene expression. Therefore, the
aims of the present study were twofold: firstly, to investigate the influence of three functional SNPs in
selenoprotein genes (rs1050540, rs713041 and rs7579) on the expression of selenoproteins in response
to Brazil nut supplementation, and secondly to use microarray analysis to assess the influence of
rs713041, a well-characterized functional SNP in GPX4, on the pattern of global gene expression after
Brazil nut supplementation in healthy adults.

2. Materials and Methods

2.1. Brazil Nut Supplementation and Blood Sampling

The present study involved 130 unrelated healthy volunteers with a mean age of 29.8 years
old and a BMI of 23.3 kg/m2, who took part of the Supplementation with Brazil Nuts study
(SU.BRA.NUT) described previously [24]. Volunteers taking multivitamins and mineral supplements,
anti-inflammatory drugs, with excessive alcohol consumption, athletes, obese (BMI > 30) and with
chronic diseases such as cancer, diabetes and cardiovascular disease were not included in the
study. At the beginning of the study (baseline), 20 mL venous blood samples were drawn, and,
subsequently, the volunteers took a daily supplement of one Brazil nut for eight weeks. At the end
of four (4-week intervention) and eight weeks (8-week intervention) of supplementation, another
20 mL blood sample was taken, and then two more blood samples were taken after a further four
(4-week washout) and eight weeks without intervention (8-week washout) (see Figure 1). Volunteers
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were asked to complete a control calendar and mark with an “x” when they consumed each nut
throughout the intervention period. Written informed consent was signed by all volunteers before
blood sampling. The protocol was approved by the Faculty of Pharmaceutical Sciences Ethical
Committee (CAE: 00961112.3.0000.0067) and was conducted according to the Declaration of Helsinki.
The study was registered at clinicaltrials.gov under the number NCT03111355.

2.2. Genotyping

Total genomic DNA was extracted from whole blood using a Purelink Genomic DNA Minikit
(Invitrogen, Thermo Scientific, Carlsbad, CA, USA) and the final DNA concentration and purity
were measured by spectrophotometry at 260 and 280 nm (NanoDrop ND 1000, Thermo Scientific,
Wilmington, DE, USA). Genotyping was carried out by real-time PCR using the StepOne Plus Real
Time system with Taqman SNP Genotyping Assays (Applied Biosystems, Thermo Scientific, Fostercity,
CA, USA). The allelic discrimination was obtained by performing an endpoint read. The SNPs selected
were located in the GPX1 gene (rs1050450), the GPX4 gene (rs713041), the SELENOP gene (rs3877899
and rs7579), the SELENOS gene (rs34713741) and the SELENOF gene (rs5845).

2.3. Selenoprotein Gene Expression

Total RNA was extracted from whole blood using a Ribopure Blood Kit (Ambion, Thermo
Scientific, Austin, TX, USA) and final concentration and purity were measured spectrometrically in
a NanoDrop ND 1000 spectrophotometer (NanoDrop ND 1000, Thermo Scientific, Wilmington, DE,
USA). cDNA was synthesized by reverse trancriptase PCR using a High Capacity Reverse Transcriptase
kit (Applied Biosystems, Thermo Scientific, Fostercity, CA, USA). Analysis of gene expression was
performed by real-time quantitative PCR (qPCR) in the QuantStudio 12K Real-Time PCR System using
Taqman Gene Expression Assays for GPX1, SELENOP, SELENOS and SELENOF (Applied Biosystems,
Thermo Scientific, Fostercity, CA, USA). Glyceraldehyde phosphate dehydrogenase (GAPDH) mRNA
was used as a reference gene. Relative gene expression was calculated based on the 2−∆∆Cq method [25].

2.4. Microarray Analysis

Microarray analysis was carried out to investigate the influence of rs713041 in GPX4 on the pattern
of global gene expression after Brazil nut supplementation. Total RNA was extracted before and after
nut supplementation from the whole blood of 12 volunteers previously genotyped (see Figure 1):
6 with the common genotype CC and 6 with the rare genotype TT for rs713041. Total RNA was
extracted from whole blood using a Purelink Blood MiniKit (Ambion, Thermo Scientific, Austin, TX,
USA). The integrity of these samples was checked by capillary electrophoresis using Tape Station 2000
(Agilent Technologies, Santa Clara, CA, USA) with the Agilent RNA Nano kit. Samples with a RNA
integrity number (RIN) of above seven were used for whole genome microarray analysis by Service XS
(Leiden, The Netherlands) using the Illumina HumanHT-12 v4 BeadChip (Illumina, San Diego, CA,
USA). RNA quality control measurements were confirmed by Service XS using an Agilent Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA), and then RNA labeling, amplification, and hybridization
were performed. Raw microarray scan files were exported using the Illumina Beadstudio program and
loaded into R for downstream analysis using the BioConductor and specific packages for each step of
the bioinformatics analysis [26]. Probes with signals that fulfilled the criteria of the Illumina probe
detection p-value of 0.05 were considered different. The bioinformatics analysis was performed by the
Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne,
England, UK.
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Figure 1. Intervention protocol of the Supplementation with Brazil Nuts study (SU.BRA.NUT) 
Biological sample collection for the microarray experiment is shown. CC indicates common genotype 
and TT indicates rare genotype for rs713041 in GPX4 gene. 

2.5. Gene Set Enrichment Analysis (GSEA) 

The transcriptome data were analyzed by gene set enrichment analysis (GSEA), which ranks the 
genes in a list by their differential expression and tests for coordinated differences in a set of genes in 
response to a specific situation, rather than individual genes with increased or decreased expression 
in two conditions. One advantage of this integrated approach is the facility to interpret a large amount 
of data by identifying biological pathways and processes. In addition, GSEA considers the entire list 
of genes of the experiment, rather than only the ones that passed a fold-change cut-off. GSEA has 
been shown to be more sensitive than the traditional approach of single gene analyses [27]. The GSEA 
application from the Broad Institute, described previously [27], was used in the present work . Three 
files were created (dataset file.gct, phenotype file.cls and gene sets file.gmt) and loaded into the 
software. The dataset file contained the normalized microarray data, in our case with 19,835 probes 
and 23 arrays. The phenotype file contained the information about the experimental conditions, 
which were numbered. In this experiment, the genotypes for rs713041 and the supplementation were 
used. Therefore, four experimental conditions were created: 0 = CC_before, 1 = CC_after, 2 = 
TT_before and 3 = TT_after. The gene sets file was downloaded from the Molecular Signature 
Database v5.1 (MSigDB), an online collection of gene sets from different databases available for free 
to use with the GSEA application. The MSigDB has 8 different collections. Only two sets applicable 
to our context were used: C2, curated gene sets from online pathways databases and C5, Gene 
Ontology gene sets. 

2.6. Statistical Analysis 

Volunteers were selected for gene expression analysis based on their genotype that had been 
determined previously. For all statistical analysis, individuals who were homozygous and 

Figure 1. Intervention protocol of the Supplementation with Brazil Nuts study (SU.BRA.NUT)
Biological sample collection for the microarray experiment is shown. CC indicates common genotype
and TT indicates rare genotype for rs713041 in GPX4 gene.

2.5. Gene Set Enrichment Analysis (GSEA)

The transcriptome data were analyzed by gene set enrichment analysis (GSEA), which ranks
the genes in a list by their differential expression and tests for coordinated differences in a set of
genes in response to a specific situation, rather than individual genes with increased or decreased
expression in two conditions. One advantage of this integrated approach is the facility to interpret a
large amount of data by identifying biological pathways and processes. In addition, GSEA considers
the entire list of genes of the experiment, rather than only the ones that passed a fold-change cut-off.
GSEA has been shown to be more sensitive than the traditional approach of single gene analyses [27].
The GSEA application from the Broad Institute, described previously [27], was used in the present work
. Three files were created (dataset file.gct, phenotype file.cls and gene sets file.gmt) and loaded into the
software. The dataset file contained the normalized microarray data, in our case with 19,835 probes
and 23 arrays. The phenotype file contained the information about the experimental conditions, which
were numbered. In this experiment, the genotypes for rs713041 and the supplementation were used.
Therefore, four experimental conditions were created: 0 = CC_before, 1 = CC_after, 2 = TT_before
and 3 = TT_after. The gene sets file was downloaded from the Molecular Signature Database v5.1
(MSigDB), an online collection of gene sets from different databases available for free to use with the
GSEA application. The MSigDB has 8 different collections. Only two sets applicable to our context
were used: C2, curated gene sets from online pathways databases and C5, Gene Ontology gene sets.
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2.6. Statistical Analysis

Volunteers were selected for gene expression analysis based on their genotype that had
been determined previously. For all statistical analysis, individuals who were homozygous and
heterozygous for the rare alleles were combined together in one group, leaving the homozygous
dominant in another category. Relative gene expression of each gene was normalized by the GAPDH
reference gene using the 2−∆∆Cq method. The final fold-change was used for statistical comparisons
and submitted to normality tests using the Shapiro–Wilk test. The genotype effect before and after nuts
was assessed by the Mann–Whitney test. The supplementation effect of each genotype was assessed
by the Wilcoxon Test. Differences were considered significant if p < 0.05.

3. Results

The Supplementation with Brazil Nuts study (SU.BRA.NUT) was carried out to investigate the
influence of genetic variations on the response to Brazil nut supplementation in biochemical and
molecular biomarkers of Se status in healthy Brazilians. The study was conducted with 130 healthy
adults, of which 66 were selected according to their genotype for analysis of gene expression of four
selenoproteins and 12 were selected based on their genotype for rs713041 for microarray analysis.
The mean ± standard deviation for Se content of the four batches used for the supplementation was
100.4 ± 5.3 µg/g. The average weight of the nuts was from 3 to 4 g, therefore each nut provided
approximately 300 µg of Se, which is approximately five times higher than the Recommended Dietary
Allowance (RDA) for adults of 55 µg/day.

3.1. Selenoprotein Gene Expression

Gene expression of two selenoprotein genes (GPX1 and SELENOP) is shown in Figure 2. GPX1
mRNA expression was affected by genotype for rs1050450 with the increase in GPX1 expression
after supplementation observed only in CC individuals but not in CT or TT individuals (p = 0.026).
After Brazil nut consumption, GPX1 expression was lower in T-carriers compared to CC individuals
(Figure 2a). rs7579 in SELENOP affected SELENOP expression before and after nut supplementation:
SELENOP mRNA expression was higher in carriers of the rare allele A compared to GG individuals
either before or after supplementation (Figure 2b, p < 0.05). No differences were observed for SELENOS
and SELENOF mRNA expression in response to Brazil nut supplementation (results not shown).
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Figure 2. Selenoprotein expression in response to Brazil nut supplementation in previously 
genotyped volunteers. (a) GPX1 mRNA expression as a function of genotype for rs1050450; (b) 
SELENOP mRNA expression as a function of genotype for rs7579. * p < 0.05, Mann–Whitney test. ** p 
< 0.05, Wilcoxon test. 

3.2. Global Gene Expression 

The overall pattern of differential gene expression before and after nut supplementation and as 
a function of genotype for rs713041 is shown in Figure 3. Before supplementation, as illustrated by 
Volcano plots, there was no effect of genotype on gene expression (Figure 3a). On the contrary, after 

Figure 2. Selenoprotein expression in response to Brazil nut supplementation in previously genotyped
volunteers. (a) GPX1 mRNA expression as a function of genotype for rs1050450; (b) SELENOP mRNA
expression as a function of genotype for rs7579. * p < 0.05, Mann–Whitney test. ** p < 0.05, Wilcoxon test.
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3.2. Global Gene Expression

The overall pattern of differential gene expression before and after nut supplementation and
as a function of genotype for rs713041 is shown in Figure 3. Before supplementation, as illustrated
by Volcano plots, there was no effect of genotype on gene expression (Figure 3a). On the contrary,
after supplementation, there was some evidence of genes differentially expressed comparing both
genotypes, using a fold change of 1.0 and a p-value of 0.05 (Figure 3b). The pattern of differentially
expressed genes before and after supplementation in CC and TT individuals is shown in Figure 3c,d.
The effect of Brazil nut supplementation was significant only in individuals with the CC genotype
(Figure 3c). No effect was observed for individuals with the less common TT genotype (Figure 3d).
The heatmap in Figure 4 illustrates the gene expression pattern after supplementation comparing
CC and TT individuals (referent to volcano plot 3b), and shows an opposite pattern of response of
individuals with the different genotypes. Genes that were downregulated in TT individuals after nuts
were upregulated in CC individuals.

Nutrients 2017, 9, 739 6 of 11 

 

supplementation, there was some evidence of genes differentially expressed comparing both 
genotypes, using a fold change of 1.0 and a p-value of 0.05 (Figure 3b). The pattern of differentially 
expressed genes before and after supplementation in CC and TT individuals is shown in Figure 3c 
and d. The effect of Brazil nut supplementation was significant only in individuals with the CC 
genotype (Figure 3c). No effect was observed for individuals with the less common TT genotype 
(Figure 3d). The heatmap in Figure 4 illustrates the gene expression pattern after supplementation 
comparing CC and TT individuals (referent to volcano plot 3b), and shows an opposite pattern of 
response of individuals with the different genotypes. Genes that were downregulated in TT 
individuals after nuts were upregulated in CC individuals. 

 

Figure 3. Volcano plots for the four experimental conditions investigated in the SU.BRA.NUT study. 
(a) Before supplementation comparing the genotypes CC × TT; (b) after supplementation comparing 
the genotypes CC × TT; (c) effect of the supplementation in the CC genotype and (d) effect of the 
supplementation in TT genotype. 

Figure 3. Volcano plots for the four experimental conditions investigated in the SU.BRA.NUT study.
(a) Before supplementation comparing the genotypes CC × TT; (b) after supplementation comparing
the genotypes CC × TT; (c) effect of the supplementation in the CC genotype and (d) effect of the
supplementation in TT genotype.



Nutrients 2017, 9, 739 7 of 11Nutrients 2017, 9, 739 7 of 11 

 

 

Figure 4. Heatmap showing patterns of differential expression in TT and CC genotype after Brazil nut 
supplementation. Red indicates genes with higher expression levels and blue genes with lower 
expression levels. 

Gene set enrichment analysis was carried out using 19,835 probes and 23 arrays. Both genotypes 
and the supplementation were used as conditions for the comparisons. The collection of gene sets 
available in the Molecular Signatures Database (MSigDB) as C2, curated gene sets from online 
pathways databases, and C5, Gene Ontology gene sets, were tested. No gene sets from C2 pathways 
were enriched either in CC individuals before and after nuts or in between CC and TT genotypes 
after nuts. However, 13 gene sets from the Cellular Component list from Gene Ontology (C5) related 
to ribosomes, Endoplasmatic Reticulum (ER) and Golgi compartments, and mitochondria were found 
to be enriched in TT individuals after nuts (Table 1). This effect of rs713041 in GPX4 may reflect the 
importance of GPX4 in mitochondrial function [28] 

Figure 4. Heatmap showing patterns of differential expression in TT and CC genotype after Brazil
nut supplementation. Red indicates genes with higher expression levels and blue genes with lower
expression levels.

Gene set enrichment analysis was carried out using 19,835 probes and 23 arrays. Both genotypes
and the supplementation were used as conditions for the comparisons. The collection of gene sets
available in the Molecular Signatures Database (MSigDB) as C2, curated gene sets from online pathways
databases, and C5, Gene Ontology gene sets, were tested. No gene sets from C2 pathways were
enriched either in CC individuals before and after nuts or in between CC and TT genotypes after nuts.
However, 13 gene sets from the Cellular Component list from Gene Ontology (C5) related to ribosomes,
Endoplasmatic Reticulum (ER) and Golgi compartments, and mitochondria were found to be enriched
in TT individuals after nuts (Table 1). This effect of rs713041 in GPX4 may reflect the importance of
GPX4 in mitochondrial function [28]
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Table 1. Enriched gene sets from Gene Ontology (C5) in TT individuals for rs713041 in a GPX4 gene
after supplementation with Brazil nuts compared with CC individuals. Gene sets were considered to
be enriched at an (FDR) cut-off of 25%.

Name Size ES NES NOM p-Value FDR q-Value

Cellular component
Organellar ribosome 22 −0.69 −1.56 0.035 1.000

Mitochondrial ribosome 22 −0.69 −1.56 0.035 0.571
Early endosome 15 −0.74 −1.53 0.012 0.582

ER Golgi Intermediate compartment 20 −0.52 −1.52 0.004 0.496
Microtubule cytoskeleton 101 −0.41 −1.51 0.025 0.397

Ribosomal subunit 20 −0.66 −1.51 0.076 0.332
Intrinsic to endoplasmic reticulum membrane 23 −0.58 −1.50 0.035 0.320
Integral to endoplasmic reticulum membrane 23 −0.58 −1.50 0.035 0.280

Mitochondrial matrix 44 −0.55 −1.49 0.066 0.289
Mitochondrial lumen 44 −0.55 −1.49 0.066 0.260

Replication fork 16 −0.61 −1.48 0.014 0.242
Nuclear chromosome part 25 −0.55 −1.48 0.036 0.223

Golgi apparatus 166 −0.37 −1.45 0.008 0.280

ER: Endoplasmatic reticulum; ES: Enrichment Score; NES: Negative Enrichment Score; FDR: False Discovery Rate.

4. Discussion

Previous works have investigated possible associations between Se supplementation and
molecular biomarkers of Se status such as transcripts of selenoproteins in white blood cells in human
studies [13–16]. These studies were not able to find an association between plasma Se biomarkers and
selenoprotein expression after Se supplementation, except for one study conducted with healthy
adults in the UK, which could observe the upregulation of some selenoprotein genes after Se
supplementation [16]. The present study demonstrated that three genetic variants in selenoprotein
genes (rs1050450, rs7579 and rs713041) affected the response to supplementation with Se-rich Brazil
nuts at the transcriptional level. Furthermore, the results indicate that the SNP rs713041 in GPX4 gene
could modulate the pattern of global gene expression. This transcriptomic approach to investigating
the response to Brazil nut supplementation based on the genetic profile has not been observed before.

The supplementation with one unit of Brazil nut in other populations significantly increased blood
selenium levels [6,7], indicating that indeed the Brazil nuts are a rich source of dietary selenium. In our
study, GPX1 mRNA expression in whole blood was also increased by the nut supplementation. This
result was different from three previous human studies that have investigated if Se supplementation
affects selenoprotein transcript levels. A small study conducted in Denmark found no association of Se
supplementation as Se-enriched milk, yeast or selenate for one week with GPX1 mRNA expression [13].
Similarly, the five-year long PRECISE study and a longitudinal study conducted in the UK also found no
association [14,15]. Nevertheless, two studies are in agreement with our results. One study conducted
with healthy adults in the UK observed that the supplementation with 100 µg/day with sodium
selenite for six weeks increased the expression of Selenoprotein K (SELENOK) and Selenoprotein
15 (SELENOF), showing that these selenoproteins are sensible to alterations of Se status [16]. A second
study conducted with Alzheimer’s patients also found an increase in GPX1 mRNA expression after
supplementation with one unit of Brazil nuts for six months [17]. Possible explanations for this
variation in response to Se supplementation could be either the presence of genetic variants, which
most of the aforementioned works have not considered, the baseline Se status of the populations or
the high level of Se provided by Brazil nuts.

Interestingly, the increase in GPX1 mRNA expression observed in our study was dependent on
the presence of genetic polymorphisms. The increase in GPX1 mRNA expression was significant only
for individuals with the common CC genotype. No difference was observed in T-carriers. This genetic
variation was associated with increased GPX1 mRNA expression in other Brazilian work conducted
with Alzheimer’s patients, but the authors found an increase in T-carriers instead of CC [17]. Although



Nutrients 2017, 9, 739 9 of 11

some studies have investigated the association of this SNP with differences in GPx1 activity [22,29,30],
few studies have associated this variation with GPX1 mRNA expression.

The presence of SNPs in SELENOP gene influenced its mRNA expression. The presence of the
less common allele A for rs7579 was associated with an increase in SELENOP expression at baseline
and after supplementation. Previous works with humans have not found an association between Se
supplementation and SELENOP mRNA expression in white blood cells [13,15]. SePP is known to have
two different isoforms in human plasma, the 60 kDa and the 50 kDa, and the presence of SNPs in
SELENOP gene was associated with different proportions of the isoforms [31]. The 60 kDa isoform
is more abundant in plasma and is found in higher proportion in the presence of the less common
allele A for rs7579 [31]. One hypothesis was that the increase in SELENOP mRNA expression found
only in A-carriers for rs7579 in our study could be related to the 60 kDa isoform being expressed
more in plasma. Further studies are needed to confirm this association of rs7579 on SELENOP mRNA
expression and the proportion of the 60 kDa in plasma.

Our work also had the goal of determining if genetic variants would influence the pattern of global
gene expression in response to a natural source of Se, such as Brazil nuts. The SNP rs713041 in the
GPX4 gene was selected to test this hypothesis, as there is evidence that this SNP is functional [20,23,32].
It was observed that, although not statistically significant, the heatmap and volcano plots suggested
the opposite response to Brazil nut supplementation based on genotype. To our knowledge, the
association of rs713041 genotypes with the profile of global gene expression has not been observed
previously. Moreover, GSEA showed that the biological processes and cellular compartments altered
by the supplementation were related to protein synthesis, mitochondria and endoplasmatic reticulum.
This supports the findings of previous humans studies that used microarrays to investigate the effect
of Se supplementation [16,33]. These studies observed that processes related to protein biosynthesis
were upregulated after Se supplementation. This could be explained by the molecular biosynthesis of
selenoproteins, which needs the synthesis of a specific tRNA[Ser]Sec for the amino acid selenocysteine,
inserted in the proteins during translation. In addition, the effect of rs713041 in GPX4 on mitochondrial
pathways may reflect the importance of GPX4 in mitochondrial function [28]. One of the limitations of
this study includes the small number of individuals to perform the analysis of the pattern of global
gene expression, considering this a pilot study. Therefore, further work conducted with a higher
sample size is needed to confirm our results.

5. Conclusions

In conclusion, the present study suggested that supplementation with Brazil nuts can modify
the gene expression of some selenoproteins depending upon the presence of genetic polymorphisms.
In addition, it has been demonstrated that the use of microarrays to investigate the pattern of global
gene expression in response to a nutritional intervention with nuts is feasible, and that a genetic
profile for a particular variant in GPX4 (rs713041) possibly modulates global gene expression and is
an important source of inter-individual variation. This could be relevant to direct future nutritional
interventions for the use of molecular and biochemical biomarkers considering the interaction with
the genetic variations.
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