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Abstract: Among various factors, such as an unhealthy diet or a sedentarity lifestyle, excessive
fructose consumption is known to favor nonalcoholic fatty liver disease (NAFLD), as fructose
is both a substrate and an inducer of hepatic de novo lipogenesis. The present review presents
some well-established mechanisms and new clues to better understand the pathophysiology of
fructose-induced NAFLD. Beyond its lipogenic effect, fructose intake is also at the onset of hepatic
inflammation and cellular stress, such as oxidative and endoplasmic stress, that are key factors
contributing to the progression of simple steatosis to nonalcoholic steatohepatitis (NASH). Beyond
its hepatic effects, this carbohydrate may exert direct and indirect effects at the peripheral level.
Excessive fructose consumption is associated, for example, with the release by the liver of several key
mediators leading to alterations in the communication between the liver and the gut, muscles, and
adipose tissue and to disease aggravation. These multifaceted aspects of fructose properties are in
part specific to fructose, but are also shared in part with sucrose and glucose present in energy—dense
beverages and foods. All these aspects must be taken into account in the development of new
therapeutic strategies and thereby to better prevent NAFLD.
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1. Introduction

Nonalcoholic-fatty liver disease (NAFLD) represents a spectrum of disorders ranging from simple
steatosis to nonalcoholic steatohepatitis (NASH), which can progress to fibrosis, cirrhosis, and liver
cancer [1]. Its prevalence increases with that of type 2 diabetes, obesity, and metabolic syndrome [2]
and is considered to be on average 20%—25%. Although several factors may contribute to NAFLD [3],
fructose consumption is considered as a key player in the development of this disease [4,5], and
it has repeatedly been reported to induce NAFLD in humans [6,7] and rodents [8,9]. A significant
consumption of fructose leads to hepatic lipid accumulation and steatosis, steatosis being considered
pathological when an abnormal accumulation of lipid droplets is observed in the cytoplasm of at
least 5% of hepatocytes [4]. At this point, hepatic steatosis (HS) may be reversed through nutritional
and physical exercise approaches [10,11]. Adversely, chronic consumption of fructose promotes
several processes such as inflammation and cellular stress, which is responsible for the irreversibility
of hepatic disorders and the progression of the disease [4]. The current review also provides new
insights into the metabolic consequences of high fructose intake on peripheral tissues contributing to
NAFLD progression.
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2. Fructose and Hepatic Steatosis

An activation of the lipogenic program already occurs after a single load of fructose, leading to
hepatic lipid accumulation [12-14]. As described below, this is the consequence of facilitated hepatic
fructose metabolism for lipid synthesis and of the activation of signaling pathways whereby fructose
promotes de novo lipogenesis (DNL).

2.1. Fructose as a Substrate of Hepatic de novo Lipogenesis

Fructose is subjected to rapid unregulated entry into the liver mainly via the glucose transporter 2
(GLUT2). At cell level, this carbohydrate is preferentially converted into fructose-1-phosphate (F1P) by
fructokinase, which presents a high affinity for fructose, is not controlled by insulin, and is induced
by fructose [15]. Thereafter, phosphotrioses produced from F1P through the action of aldolase B can
be converted into glucose, lactate, and fatty acids [16]. While the lipogenic pathway is quantitatively
minor in physiological situations, it becomes very active after an acute fructose load [12,17] as the
flux of fructose carbons into lipogenic precursors increases, since the formation of F1P bypass the
glycolysis regulatory site of phosphofructokinasel. Unregulated entry and metabolism of fructose into
hepatocytes explain why, with high fructose diets, significant amounts of this carbohydrate continue
to enter glycolysis and lead to excess acetyl-CoA production, relative to liver oxidative capacities, thus
promoting DNL. High consumption of fructose also leads, by saturating the glycolytic pathway, to
an accumulation of glycolysis intermediates which can be converted to glycerol-3-phosphate used in
triglyceride (TG) synthesis.

2.2. Fructose as an Inducer of De Novo Lipogenesis

Chronic intake of fructose increases DNL by activating several key transcription factors [12]
such as Sterol Response Element Binding Protein 1c (SREBP1c) and Carbohydrate-Responsive
Element-Binding Protein (ChREBP) [17,18]. As a consequence, their key target enzymes regulating
lipid synthesis, such as Fatty Acid Synthase (FASN) and Acetyl-CoA Carboxylase (ACC), also increase
as shown for example in rodents submitted to a 60% high fructose diet for eight weeks [18] or to a
western diet where fructose is provided as a 30%-fructose containing beverage for eight weeks [19].

Thus, as fructose is both substrate and activator of DNL, it appears as the most potent lipogenic
carbohydrate contributing to the development of liver steatosis.

3. Fructose and Disease Progression

Fructose by itself or via increased DNL may promote oxidative stress, in part via mitochondrial
dysfunction and endoplasmic reticulum (ER) stress, both contributing to the development of an
inflammatory process and the progression of simple steatosis to NASH.

3.1. Fructose and Oxidative Stress

Fructose induces oxidative stress via several mechanisms. First, because fructose is structurally
different from glucose, it can promote more hepatocellular damage. Acute fructose load induces
protein fructosylation. This reaction is non-enzymatic and is seven times faster than glycation by
glucose. In addition, fructose generates 100 times more reactive oxygen species (ROS) than glucose [4].
Compared with glucose, prolonged fructose feeding in mice led to a higher hepatic accumulation
of carboxymethylysine, a glycation product that, for example, can interact with SREBP-cleavage
activating protein to induce sustained SREBP1c activation [20].

Second, fructose phosphorylation in the liver consumes adenosine triphosphate (ATP):
As phosphorylation by fructokinase is fast and the cleavage reaction by aldolase B relatively slow,
an excess of fructose could cause hepatic phosphate deficiency, leading to AMP accumulation with
resulting increased uric acid synthesis [7,21]. Uric acid in turn stimulates the production of ROS [22]
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via the activation of Transforming Growth Factor 3 and nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase 4 ([23].

Third, hepatic metabolism of fructose generates other molecules such as methylglyoxal (MG),
a potent glycating agent leading to cellular stress and altered insulin signaling [24]. In condition
of standard feeding, MG formation rate represents 0.1%—-0.4% of glycolytic flux [25] but accelerated
glycolytic flux with fructose increases MG formation.

Last, mitochondrial dysfunction may also be induced by the lipotoxicity related to the
fructose-induced perturbation of hepatic lipid metabolism [8]. Mechanisms involved may be
(i) a decrease in lipid degradation due to a lower expression of Peroxisome Proliferator-Activated
Receptor « (PPARx) that regulates genes involved in (3-oxidation such as Carnitine Palmitoyl
Transferase 1 (CPT1) [18], a lower expression of the peroxisomal proliferator-activated receptor-gamma
coactivator-lalpha (PGC-1«) (a mitochondrial-biogenic protein) [26]; and (ii) a decrease in lipid
clearance due to a lower expression of Microsomal Triglyceride Transfer Protein (MTP) [18] involved
in Very Low Density Lipoprotein (VLDL) production. However, the exact mechanisms remain
debated as, in some studies, an enhancement of beta-oxidation and VLDL-clearance after fructose
consumption has been reported, suggesting that hepatic lipid accumulation mainly results from
uncontrolled DNL [27]. As a result, the disequilibrium between DNL and VLDL release may promote
alterations of the respiratory chain and to the uncoupling of oxidative phosphorylation with excess
ROS production [28,29]. Mitochondria and ER being associated through mitochondria-associated
ER-membrane plays a key role in calcium signaling and lipids transfer, ROS overproduction by
mitochondria contributes to ER stress, and hepatic inflammation, two processes addressed in the
following sections.

3.2. Fructose and Endoplasmic Reticulum Stress

Studies pointed to ER stress as a mechanism favoring HS progression to NASH [30]. Chronic
fructose consumption leads to a higher solicitation of the ER via the stimulation of lipid metabolism and
of VLDL-TG production. ER membrane proteins may be fructosylated, or lipids may accumulate into
ER membrane leading to ER stress and the unfolded protein response (UPR). Although UPR activation
first allows the restoration of ER homeostasis, during sustained fructose exposure ER stress becomes
chronic leading, to inflammation, oxidative stress, and apoptosis [31,32]. This also contributes to the
progression of hepatic steatosis and of insulin resistance [33]: ER stress further interferes with lipid
metabolism in the liver by activating DNL, via the protein kinase activated by dsRNA (PKR)-related
Endoplasmic Reticulum Kinase (PERK)/eukaryotic translation Initiation Factor 2o (elF2«)/Activating
Transcription Factor 4 (ATF4) pathway and by limiting the formation and secretion of VLDL, via
Inositol Requiring Enzyme 1 (IRE1) pathway. ER stress also acts indirectly on the accumulation of
TG in the liver by inducing hepatic and adipose tissue insulin resistance. Furthermore, ER stress
promotes the activation of transcription factors Janus kinase (JNK), Nuclear Factor kB (NF«kB), ChREBP,
SREBP, and CCAAT/enhancer-binding protein homologous protein (CHOP), which are involved in
inflammatory processes and cell death and play an important role in the progression of NAFLD [33].

3.3. Fructose and Inflammation

The contribution of fructose diet to the inflammatory process is well established [34]. The
specific role of hepatic fructose metabolism in liver inflammation is suggested by the protective
effect of fructokinase knockout against high-fat high-sucrose-induced steatohepatitis [3]. Ectopic
liver fat accumulation increases hepatocytes vulnerability to cellular stress, therefore initiating an
inflammatory process [35]. In parallel, cellular stress can be exacerbated by toll-like receptor 4 (TLR4)
activation-induced inflammation in Kupffer cells since fructose has been shown to promote the
synthesis of saturated fatty acids such as palmitate, which are able to activate TLR4 receptors in
the liver [36]. The activation of the TLR4/inducible nitric oxide synthase (iNOS)/NF«B pathway
induces oxidative stress in hepatocytes via the production of pro-inflammatory cytokines, such as
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tumor necrosis factor (TNF) « by Kupffer cells. These phenomena are reinforced by the lipid-induced
increase in the proportion of “conventional” pro-inflammatory M1 macrophages relative to “alternate”
anti-inflammatory M2 macrophages [37]. In a study in 427 patients with NAFLD, fructose consumption
has been shown to be associated with increased hepatic fibrosis, in keeping with a fructose-induced
increase in hepatic inflammation and ER stress [7]. Last, fructose also modulates liver inflammation by
inducing dysbiosis as discussed in detail below.

The superimposition of ER stress and inflammation may lead to the production of various
mediators such as cytokines, hepatokines, carbohydrates, and lipid derivatives collectively known
as DAMPs (damage associated molecular pattern) that signal at the whole-body level and contribute
to alterations in whole body metabolism. Many studies, both in animal models [18,19] and more
recently in patients with NASH, show that abnormal hepatokines production also plays a key role in
the pathogenesis of NASH [38,39]. Hepatokines such as Fetuin A, Fibroblast growth factor 21 (FGF-21),
Leucocyte cell-derived chemotaxin 2 (LECT2), and Angiopoietin-like protein (ANGPTL) released by
the steatotic liver may contribute to peripheral organ dysfunction [40,41].

4. Fructose and Interorgan Cross-Talks

The following sections review some of the mechanisms whereby fructose directly or indirectly,
through the release of lipids, hepatokines, and uric acid into the blood, leads to alterations in gut,
muscle, and adipose tissue functions (Figure 1).
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Figure 1. Fructose and nonalcoholic fatty liver disease (NAFLD): the multifaceted aspects of fructose
metabolism. Excessive fructose consumption is associated with hepatic steatosis, cellular stress and
inflammation. This is responsible for the release by the liver of lipids, methyglyoxal, uric acid, and
hepatokines leading to alterations in the communication between the liver and the gut, muscles, and
adipose tissue and to disease aggravation. LPS, lipopolysaccharides; TNFw, tumor necrosis factor
o; IL6, interleukin-6; NEFA, non-esterified fatty acid; ATP, adenosine triphosphate; ADP, adenosine
diphosphate; FGF21, fibroblast growth factor 21; AA, amino acids.
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4.1. Fructose and the Gut/Liver Axis

The progression of HS to NASH is also influenced by gut function and the possible translocation
of bacterial compounds due to a compromised intestinal barrier [42,43]. First, insulin resistance
by itself is already associated with alterations in gut permeability [44]. In parallel, patients with
NAFLD present a dysbiosis characterized by an increase in Clostridium coccoides and a decrease in
Bacteroides/Prevotella [45]. Fructose-induced NAFLD is also associated with changes in microbiota
composition [46] that alters gut permeability by reducing expression of tight junction proteins [19,47].
As a consequence of this alteration in gut barrier function and of the dysbiosis, NASH, and cirrhotic
patients present an increase in endotoxin translocation [45,48]. The ensuing activation of TLR4
in Kupffer cells and infiltrated monocytes worsen innate and adaptive immune responses. Liver
exposition to endotoxins such as lipopolysaccharides (LPS) may induce a chronic inflammation
associated with a recruitment of neutrophils that release ROS, proteases, lipocalin-2, and enzymes
leading to an aggravation of liver injuries [8,49]. LPS and oxidative stress also activate stellar cells
leading to fibrosis. Thereafter, cytokines activate several signaling pathways such as the pro-apoptotic
pathways [50]. Gut barrier alteration also promotes hepatic macrophages polarization to M1 phenotype
further favoring inflammatory liver injury [51].

Last, enterocytes also metabolize a small part of fructose into lactate, glucose, and also TG.
Theytaz et al. [21] demonstrate an increase in both 3C-palmitate chylomicron and '*C-palmitate
VLDL-TG concentrations after a 1*C-fructose load in non-obese, young human subjects. This may
contribute to the alteration of metabolism and ultimately of liver function [21,52].

Thus, it seems important to consider the gut-liver axis in the management of NASH or of other
NAFLD stages.

4.2. Fructose and Adipose Tissue/Liver Axis

Visceral fat mass increases with fructose diet in humans [53] as well as in experimental
models [18,54]. This suggests either a direct fructose metabolism in visceral adipocytes, which may be
exposed to higher fructose concentrations than subcutaneous adipocytes due to anastomosis between
portal hepatic and systemic splanchnic circulation, or an indirect effect through an accumulation of
lipid originating from the liver. Vrana et al. [55] showed an inhibition of DNL in adipose tissue in
fructose-fed rats. The increase in fructose-derived MG production by the liver may play a role as
Masterjohn et al. [56] showed that fructose-fed rats display an accumulation of MG in epididymal
adipose tissue. MG alters insulin signaling pathway in visceral adipose tissue in vivo [57]. In vitro,
fructose increases adipogenesis and, conversely, the inhibition of fructose transport in mice is associated
with reduced epididymal adipose tissue [58]. Together these data underline fructose influence on
visceral adipose tissue but data in human are missing.

Owing to this adipogenic effects, adipokines and cytokines profile would also be changed by
fructose diet. The consequences of this increased visceral adiposity are elevated circulating free fatty
acids and proinflammatory mediators. Due to the anatomic proximity and the portal circulation,
this will clearly alter liver function but also other the function of peripheral organs leading to an
aggravation of the metabolic disorders [34].

4.3. Fructose and Muscle/Liver Axis

A high-fructose diet is associated with modifications in muscle function [59] in humans [26] and
in rodents [60]. Mechanisms involved in diet-induced sarcopenia may be (i) a decrease in mechanistic
target of rapamycine complex (nNTORC) 1 activity, and thereafter in protein synthesis [61]; and
(ii) inflammation [62]. Recent studies in fructose-fed rats have shown an association between NAFLD
and sarcopenia [63]. This is a key factor involved in disease progression to NASH as the muscle
heavily contributes to energy homeostasis [64]. Gatineau et al. [65] recently showed in aged rats that
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sucrose-fed animals lost significantly more lean body mass and retained more fat mass than starch-fed
rats and presented lower meal-induced stimulation of muscle protein synthesis.

Disorders of nitrogen homeostasis in situations of stimulated DNL may be an early event following
excessive fructose consumption [12,51] as excess fructose may alter liver-muscle axis via its metabolism
or via DNL-associated RE stress leading to increased production by the liver of catabolic effectors.
First, the increase in lipid flux observed with fructose-enriched diet contributes to alter muscle insulin
sensitivity [59,66,67]. Second, as previously described, excess fructose may lead to a saturation of its
normal metabolism with adverse consequences in terms of increased hepatic release of MG or uric
acid. In vitro studies show that MG inhibits insulin signaling in muscle [68]. High fructose diet under
hypercaloric feeding conditions has been shown to induce hyperuricemia that contributes to metabolic
disorders [69,70]. Uric acid inhibits muscle insulin signaling and induces insulin resistance in mice [71]
as well as in severely obese subjects [72]. Third, hepatic ER is associated with enhanced production
of pro-inflammatory cytokines and hepatokines suspected to be involved in alterations in energy
homeostasis and insulin-resistance. ER stress markedly stimulates liver production of Fetuin A [73]
and of insulin-like growth factor binding protein 1 (IGFBP1) [74]. Fetuin A is an endogenous inhibitor
of the insulin receptor tyrosine kinase in muscle [75], while IGFBP1 is a modulator of insulin-like
growth factor 1 (IGF-1) action associated with hyperinsulinemia and glucose intolerance [76]. ER stress
modulates fibroblast growth factor 21 (FGF21) expression in the liver [77]. FGF21 is a mediator mainly
produced by the liver that contributes to the regulation of peripheral energy metabolism and insulin
sensitivity [78]. It is now recognized as a key player in the adaptive response to starvation and
feeding [79]. Last, fructose consumption leads to decreased liver production of anabolic factors such
as insulin-like growth factor (IGF)1 [64].

Another factor contributing to these alterations of protein metabolism is a reorientation of
AA fluxes as suggested by NAFLD-associated changes in plasma amino acids (AAs) profile [18].
In hypertriglyceridemic patients, fructose increased plasma arterial AA concentrations but also their
splanchnic extraction [80]. These interorgan AA fluxes probably correspond to a reorientation of
AAs towards the liver in order to enable the synthesis of inflammatory proteins and the elevated
gluconeogenesis. In situations of fructose overfeeding, energy metabolism would be oriented towards
an increase in gluconeogenesis and DNL and a decrease in lipid catabolism. Conversely, a regulatory
role of AA availability on liver DNL has been shown in experimental and human studies as increased
AA availability prevents hepatic lipid accumulation via (i) a decrease in DNL through decreased
gene expression of ChREBP, SREBP-1c¢ and Fas (ii) an increase in 8-oxidation through increased gene
expression of PPARw; and (iii) an enhance in VLDL production through increased gene expression
of MTP [18]. AA supplementation has also been shown to decrease gene expression of TLR4
and interleukin-6 (IL6) in liver and to prevent the loss in lean body mass in fructose-fed rats [18].
The basis for this interaction between DNL, AA availability, and protein homeostasis needs to be
confirmed in humans. Interestingly, in healthy volunteers, essential AA supplementation decreased
fructose-induced intrahepatic lipid accumulation [21].

5. Specific or Indirect Effect of Fructose

The above-mentioned peripheral manifestations associated with fructose feeding and several
short-term studies, using '3C-fructose as metabolic tracer, suggest a specific effect of fructose.
Although it has long been taught that fructose is mainly metabolized in the liver [16], a small part
of this carbohydrate may bypass liver extraction and be metabolized in extrahepatic cells since
various cells, including neurons, express fructose transporter GLUT5 and enzymes involved in its
metabolism [20,56,81]. However, data in human are missing.

Moreover, the exact contribution of fructose intake is frequently blurred by the associated
imbalance in energy homeostasis. Fructose is often consumed in diets also rich in glucose and lipids.
Although this carbohydrate is more harmful than glucose as it is more lipogenic and its metabolism
differs from that of glucose [8,45], its effects are amplified when it is associated with glucose [82].



Nutrients 2017, 9, 230 7 of 13

Indeed, fructose effects are more severe when consumed in the form of disaccharides (i.e., sucrose
composed of equal parts of fructose and glucose) or associated with other macromolecules such as
lipids [19,83].

6. Fructose and NAFLD Management

Lifestyle changes, including physical activity and balanced diets, are the initial treatment of
steatosis, especially when they enable to lose weight. In NASH patients, a 3% to 7% weight loss is
associated with decreased hepatic steatosis [84]:

Exercise prevents fructose-induced hypertriglyceridemia in healthy subjects and promotes a
decrease in hepatic TG content [85]. In patients with NASH, markers of disease severity are decreased
after 200 min per week of moderate intensity physical activity for 48 weeks, associated with a balanced
diet [86].

Apart from limiting caloric intake, these patients should avoid a diet rich in saturated fatty acids,
sucrose, and alcohol [3,87]. For example, the Mediterranean diet rich in mono-unsaturated fatty acids
may be effective [88]. It has been shown to reduce liver steatosis and improve insulin sensitivity in
patients with NAFLD without diabetes [89]. Diets enriched with omega-3 polyunsaturated fatty acids
may also reduce steatosis [90].

A more dramatic strategy to induce weight loss is bariatric surgery. It is an effective procedure
to improve insulin resistance and glucose metabolism primarily by reducing calorie intake, thereby
reducing body weight and liver steatosis [91].

Other possible alternatives are pro- and prebiotics, which are of growing interest in the
management of these patients because of their effect on gut microbiota and/or gut barrier function.
For example, Lactobacillus rhamnosus GG protects against the development of fructose-induced NAFLD
via the preservation of gut microbiota thus restoring the intestinal barrier via increased expression of
Claudine-1 and Occludine tight junction proteins [47]. Last, there is an increasing interest in natural
products and plant extracts that could be effective on some aspects on fructose-induced NAFLD [92,93].
However, their clinical effectiveness remain to be evaluated.

In NAFLD patients with metabolic syndrome or type 2 diabetes, lipid-lowering therapy or
insulin-sensitizing agents have been proposed. Statins, fenofibrate, and ezetimibe treatments result
in only modest improvement to liver damage in NASH patients. The effects of the insulin-sensitizer
metformin are debated: while Bergheim showed that metformin protects mice against fructose-induced
NAFLD [94], metformin does not improve the histological alterations observed in people with
NASH [95]. Concerning thiazolidinediones, their side effects preclude their use in NAFLD [95].

7. Conclusions

Based on its specific splanchnic (predominantly hepatic) metabolism, on its lipogenic potential,
and on its high consumption in modern diets, fructose appears as one major factor not only of the
initiation of hepatic steatosis, but also of its progression to NASH and more severe stages of the disease.
Understanding its metabolism may provide novel opportunities for therapeutic intervention.
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AA: amino acid; ADP, Adenosine Diphosphate; ACC: Acetyl CoA Carboxylase; ANGPTL: Angiopoietin-like
protein; ATF4: Activating Transcription Factor 4; ATP: Adenosine Triphosphate; CHOP: CCA AT-enhancer-binding
protein homologous protein; ChREBP: Carbohydrate-Responsive Element-Binding Protein; CPT1: Carnitine
Palmitoyl Transferase 1, DAMP: damage associated molecular pattern; DNL: de novo lipogenesis; elF2o:
eukaryotic translation Initiation Factor 2c; ER: endoplasmic reticulum; F1P: fructose-1-phosphate; FASN: Fatty
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insulin-like growth factor; IGFBP: IGF binding protein1; iNOS: inducible nitric oxide synthase; IL6: Interleukin-6;
IRE1: Inositol Requiring Enzyme 1; JNK: Janus kinase; LECT2: Leucocyte cell-derived chemotaxin 2; MG:
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methylglyoxal; mTORC: mechanistic target of rapamycine complex complex; MTP: microsomal Triglyceride
transfer Protein; NADPH: Nicotinamide Adenine Dinucleotide Phosphate; NAFLD: nonalcoholic fatty liver
disease; NASH: nonalcoholic steatohepatitis; NEFA, Non-Esterified Fatty Acid; NF«B: Nuclear Factor kB; PERK:
PKR-related Endoplasmic Reticulum Kinase; PKR: Protein Kinase Activated by dsRNA; PPAR«x: Peroxisome
Proliferator-Activated Receptor o; ROS: reactive oxygen species; SREBP1c: Sterol Response Element Binding
Protein 1c; TG: triglycerides; TLR4: toll-like receptor 4; TNF: tumor necrosis factor; UPR: unfolded protein
response; VLDL: Very Low Density Lipoprotein.
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