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Abstract: The formation of reactive oxygen species (ROS) during metabolism is a normal process
usually compensated for by the antioxidant defense system of an organism. However, ROS can cause
oxidative damage and have been proposed to be the main cause of age-related clinical complications
and diseases such as cancer. In recent decades, the relationship between diet and cancer has
been more studied, especially with foods containing antioxidant compounds. Eugenol is a natural
compound widely found in many aromatic plant species, spices and foods and is used in cosmetics
and pharmaceutical products. Eugenol has a dual effect on oxidative stress, which can action as
an antioxidant or prooxidant agent. In addition, it has anti-carcinogenic, cytotoxic and antitumor
properties. Considering the importance of eugenol in the area of food and human health, in this
review, we discuss the role of eugenol on redox status and its potential use in the treatment and
prevention of cancer.

Keywords: reactive oxygen species; metabolism; antitumor activity; antioxidant activity;
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1. Introduction

Reactive oxygen species (ROS) are a heterogeneous group of molecules that are, along with
endogenous antioxidants, ubiquitously present in all organisms. They are implicated in various
diseases including malignant transformations [1]. The term “oxidative stress” refers to an imbalance
in which pro-oxidants overwhelm the capacity of antioxidant defense systems [2]; it has been shown
to contribute to the development of some types of cancer [3].

The report of anticancer potential of aromatic compounds found in foods and plants have
increased in the recent decades [4–8] and there are advanced studies of mechanisms of action and
clinical approaches in progress. This chemical class of natural products show interesting potential
as health promoting agents and, consequently, with application to improving the quality of life.
These include the polyphenols that are important components of human diet. Interestingly, some of
these compounds may act as either antioxidants or pro-oxidants to exert protective effects against
cancer [9–11]. Eugenol (4-allyl-2-methoxyphenol) (Figure 1) is an aromatic phenylpropanoid phenol
contained in clove (Syzygium aromaticum, Myrtaceae), which is well-known for its culinary uses.
Eugenol also occurs in soybeans, mung beans [12], coffee [13], bananas [14] and in herbs such as
nutmeg (Myristica fragrans, Myristicaceae), cinnamon (Cinnamomum verum, Lauraceae) and basil
(Ocimum basilicum, Lamiaceae); however, Syzygium aromaticum can be considered the principal natural
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source of this compound (45% or 90% of the total oil) [15]. Clove has been used for a long time by
civilizations because of its flavor and its properties make it important for culinary and medicinal
uses. Eugenol has been included as a spicy flavoring in whisky, ice cream, baked goods and candy
in restricted concentrations [16–18]. Eugenol has dual effect on the oxidative stress, which can action
as an antioxidant or prooxidant agent. In addition, it has anti-carcinogenic, cytotoxic and antitumor
properties. Considering the importance of eugenol in the area of food and human health, in this review,
we discuss the role of eugenol on redox status and its potential use in the treatment and prevention of
cancer. Searches were performed in the scientific literature database PubMed comprising all papers
in English published until September 2017 using the following key words: eugenol with oxidant;
antioxidant; cancer; cytotoxic; or antitumor. No exclusion criteria were performed.
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Figure 1. Chemical structure of eugenol.

2. Anti-Carcinogenic/Chemopreventive Effect of Eugenol and Its Relation to the Inhibition of
Oxidative Stress

The ability to inhibit oxidative stress has been described as a protective effect against cancer
formation (carcinogenesis or tumorigenesis); on the other hand, once a cancer has already formed,
the antioxidant effect can contribute to the cancer’s development, while the pro-oxidant effect can
induce cancer cell death by several signaling pathways [19]. Interestingly, eugenol has been described
as an agent with a double effect, antioxidant and pro-oxidant, presenting beneficial effects in the
prevention of cancer formation and in cancer treatment (Figure 2). Despite some contradictory studies,
there are many articles evaluating these biochemical and pharmacologic aspects.
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Figure 2. The dual effect of eugenol in the oxidative stress and its action in cancer development
and treatment.
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The anti-carcinogenic effect of eugenol had been investigated in several models [20–28].
The anti-carcinogenic effect of eugenol against skin carcinogenesis was investigated by Kaur et al. [20].
Skin cancer was initiated by applying 160 nmol 7,12-dimethylbenz[a]anthracene (DMBA) and
promoted by twice weekly applications of 8.5 nmol 12-otetradecanoylphorbol-13-acetate (TPA) for
28 weeks and was followed by eugenol treatment. DMBA is a polycyclic aromatic hydrocarbon
pro-carcinogen that requires metabolic conversion to its ultimate carcinogenic diol epoxide metabolites
by oxidation, which is carried out through cytochrome P450 family 1 subfamily A member 1 (CYP1A1)
and cytochrome P450 family 1 subfamily B member 1 (CYP1B1). Therefore, the carcinogenic effect
of DMBA depends on the level of the oxidative metabolism of cytochrome P450 family 1. Two
protocols were established: an anti-initiation protocol (topical application of 200 µL eugenol at
15% v/v in acetone one week before, one hour prior and two times after DMBA application);
and an anti-promotion protocol (topical application of 30 µL eugenol at 15% v/v in acetone, 30 min
prior to every TPA application). The treatment with eugenol did not prevent tumor formation but
led to a reduction in tumor size. The control group presented tumor size of 9.7 g, and eugenol
treatment showed tumor size of 5.6 g in the anti-initiation protocol and 2.8 g in the anti-promotion
protocol. In addition, topical application of eugenol prior to TPA exposure led to the development of
papillomatous keratoacanthoma with minimal cell proliferation but without squamous cell carcinoma.
The anti-carcinogenic effect of eugenol was attributed to its anti-inflammatory activity, because some
markers of inflammation, including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2
(COX-2) expression and the levels of pro-inflammatory cytokines interleukin-6 (IL-6), tumor necrosis
factor alpha (TNF-α) and prostaglandin E2 (PGE2), were reduced in DMBA/TPA-exposed animals
after treatment with eugenol. Furthermore, eugenol was found to suppress the activation of nuclear
factor kappa B (NF-κB) in mouse skin with TPA-induced inflammation [20].

Additionally, eugenol treatment (~100 mg/kg) inhibited the tumor formation in mouse skin model
induced by application of DMBA as initiator and croton oil as promotor via radical scavenging activity
of eugenol, downregulation of Myc (proto-oncogene), H-ras (harvey rat sarcoma virus oncogene) and
Bcl-2 (B-cell lymphoma 2, apoptosis regulator) expression along with upregulation of p53, Bax (BCL2
associated X, apoptosis regulator) and active caspase-3 expression in the skin lesions [21,22]. Topical
administration of eugenol also partially inhibited the benzo[a]pyrene-induced skin carcinogenesis
in Swiss mice [23]. However, topical application of eugenol had minimal protection in reducing
DMBA-induced skin carcinogenesis in Swiss mice [24].

The chemopreventive effect of eugenol on N-methyl-N′-nitro-N-nitrosoguanidine
(MNNG)-induced gastric carcinogenesis in Wistar rats was also performed [25,26]. MNNG
(150 mg/kg) was administered by intragastric intubation three times with a gap of two weeks in
between the treatments and eugenol (100 mg/kg) was administered by intragastric route, three times
per week starting on the day following the first exposure to MNNG and continued until the end of the
experimental period. The incidence of gastric tumors in MNNG-treated rats was 100% with a mean
tumor burden of 274.38 mm3 and eugenol treatment decreased the tumor incidence to 16.66% with
a tumor burden of 14.78 mm3. Administration of eugenol induced apoptosis via the mitochondrial
pathway by modulating the Bcl-2 family proteins, apoptotic protease activating factor 1 (Apaf-1),
cytochrome c and caspases and inhibiting of invasion and angiogenesis as evidenced by changes
in the activities of matrix metalloproteinases (MMP) and the expression of MMP-2 and -9, vascular
endothelial growth factor (VEGF), vascular endothelial growth factor receptor 1 (VEGFR1), tissue
inhibitor of metalloproteinase-2 (TIMP-2) and reversion-inducing-cysteine-rich protein with kazal
motifs (RECK). Moreover, reduction in the NF-κB activation along with increasing of its inhibitor
family members, IκB kinase α (IκBα) and inhibitor of kappa B (IKKβ), reduction of cyclin D1, cyclin B
and proliferating cell nuclear antigen (PCNA) and increasing of p53, p21waf1 and growth arrest and
DNA damage-inducible 45 (Gadd45) were observed in eugenol-treated animals [25,26].

Using MCF 10A breast epithelial cells and H-ras transfected MCF 10A (MCF 10A-ras) as a model
of cancer progression, eugenol exhibited cytotoxicity in µM range to MCF 10A-ras cells but not
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in MCF 10A cells [27]. In addition, eugenol reduced the ATP generation and inhibited oxidative
phosphorylation and fatty acid oxidation via downregulating of c-Myc/PGC-1β/ERRα signaling
pathway and inhibiting ROS production in H-ras transfected MCF 10A breast epithelial cells, indicating
that eugenol can prevent breast cancer progression by regulation of cellular energy metabolism [27].
On the other hand, eugenol treatment does not exert modifying effects on lung carcinogenesis induced
by urethane [28]. No significant differences in the incidences and multiplicities of lung lesions were
observed between eugenol and control groups. In this model of lung carcinogenesis, transgenic mice
with the human prototype c-Ha-ras gene received a single intraperitoneal injection of 250 mg/kg
urethane, followed by a diet containing 6000 ppm eugenol or basal diet for 26 weeks [28]. The Table 1
summarize the anti-carcinogenic effect of eugenol.

Table 1. Summary of anti-carcinogenic effect of eugenol.

Carcinogenesis
Model Carcinogen Eugenol

Administration Effect References

Skin carcinogenesis DMBA + TPA Topical

Reduction in tumor incidence and
size; and/or development of
papillomatous keratoacanthoma with
minimal cell proliferation but without
squamous cell carcinoma

[20]

Skin carcinogenesis DMBA + croton oil Topical Inhibition of tumor formation ~60% [21,22]

Skin carcinogenesis benzo[a]pyrene Topical Inhibition of tumor formation ~50% [23]

Skin Carcinogenesis DMBA Topical Minimal protection [24]

Gastric carcinogenesis MNNG Intragastric Inhibition of tumor formation ~75% [25,26]

Lung carcinogenesis Urethane Oral No protection [28]

DMBA: 7,12-dimethylbenz[a]anthracene; TPA: 12-otetradecanoylphorbol-13-acetate; MNNG: N-methyl-N′-
nitro-N-nitrosoguanidine.

The anti-carcinogenic effect of eugenol can also be attributed to its antioxidant property. Eugenol
has been reported to have antioxidant activity, as assessed by diverse models [12,29–35]. Eugenol
reacts with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and shows high DPPH free radical-scavenging
activity [29–33]. The concentration of eugenol required for 50% DPPH scavenging (IC50: half maximal
inhibitory concentration) activity ranged from 98 to 138 µM [31,35]. Eugenol also exhibits effective
antioxidant activity in the linoleic acid emulsion system by inhibiting lipid peroxidation at 91 µM.
In addition, eugenol has ferric ion (Fe3+) reducing ability and electron donor properties for neutralizing
free radicals by forming stable products [31]. Eugenol inhibits malonaldehyde (MA) formation from
cod liver oil by 91% at ~1 mM [12]. Furthermore, eugenol inhibits microsomal lipid peroxidation (IC50

about 80 µM) as well as iron and OH radical-initiated lipid peroxidation in rat liver mitochondria,
with IC50 values of 10 and 14 µM, respectively. The antioxidant effect was determined by the inhibition
of thiobarbituric acid-reactive substances (TBARS) formation [29,30].

The effect of eugenol on in vivo lipid peroxidation mediated by carbon tetrachloride (CCl4) has
also been evaluated [30]. The CCl4 model has been used for many years to investigate the effect
of antioxidants in the liver xenobiotic metabolism. When eugenol was given at 5 mg/kg orally
at three different times—i.e., prior to (−1 h), along with (0 h), or after (+3 h)—in relation to the
time of CCl4 dosing (i.p. administration of 0.4 mg/kg), it prevented significantly the rise in serum
glutamic-oxaloacetic transaminase (SGOT) activity, lipid peroxidation and liver necrosis. However,
eugenol failed to prevent a decrease in glucose-6-phosphatase activity, suggesting that the damage to
endoplasmic reticulum (ER) is not protected by eugenol. Thus, the protective action of eugenol can be
explained by the interception of secondary radicals derived from ER lipids rather than interference
with the primary radicals of CCl4 (•CCl3/CCl3OO•) [30]. In addition, the in vivo antioxidant effect
of eugenol on liver danger induced by thioacetamide (TA) was also performed [36]. TA is frequently
used to produce liver danger in animals due to generation of ROS and instigation of oxidative stress,
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which causes liver damage. Adult male Wistar rats were treated with eugenol (10.7 mg/kg/day) orally
for 15 days. TA was administered (300 mg/kg, i.p.) for the last two days at 24 h intervals and the rats
were sacrificed on the 16th day. Pretreatment with eugenol controlled the levels of lipid peroxidation
and protein oxidation products with consequent reduction of TBARS, lipid hydroperoxides and
protein carbonyl formation in plasma and the liver. Increased expression of the COX-2 gene as well as
increases in pro-inflammatory cytokine TNF-α and IL-6 plasma levels induced by TA was also partially
reverted by eugenol pretreatment. The protective effect of eugenol can be attributed to the reduction
of cytochrome P450 family 2 subfamily E member 1 (CYP2E1) activity, the main enzyme responsible
for TA-induced hepatotoxicity and oxidative stress [36].

Genotoxicity and mutagenicity of xenobiotics are also involved in the carcinogenic process
and may occur as a result of oxidative stress. Interestingly, the antimutagenic and anti-genotoxic
effects of eugenol has been also reported. Eugenol suppressed the mutagenicity induced by
furylfuramide, 4-nitroquinoline 1-oxide, aflatoxin B in Salmonella typhimurium [37]. Eugenol also
inhibits detoxification enzymes and prevents DMBA-induced DNA damage in MCF-7 (human breast
adenocarcinoma) cell line [38,39]. Eugenol at dose of 50–500 mg/kg administered by gavage prevents
the genotoxicity-induced by cyclophosphamide, procarbazine, N-methyl-N′-nitro-N-nitrosoguanidine
and urethane [40]. In addition, the mutagenicity of benzo[a]pyrene but not DMBA and aflatoxin B1,
in the S. typhimurium mutagenicity assay was reduced in liver S-9 fractions prepared from rats treated
orally with eugenol (1000 mg/kg) [41]. In contrast, eugenol causes intrachromosomal recombination
in yeast Saccharomyces cerevisiae in logarithmic phase cultures [42] and although eugenol induces no
mutagenesis in Ames test, it causes chromosomal aberrations and increased the incidence of sister
chromatid exchanges in Chinese hamster ovary cells [43,44]. At µM range, eugenol is not able to
prevent the DNA lesions induced by hydrogen peroxide (H2O2) [33]. However, eugenol protected the
supercoiled pBR322 plasmid DNA oxidative damage induced by Fe2+ and H2O2 at mM range [35].
Moreover, eugenol, at concentrations above 50 µM, inhibited the DNA oxidative damage induced by
hydroxyl radicals produced by Fenton reactions using Fe2+ and H2O2 [32].

3. Cytotoxic and Antitumor Effects of Eugenol and Its Relation to the Induction of Oxidative Stress

Controversial results have been found for the cytotoxic activity of eugenol. Some studies have
shown that eugenol is capable of inducing cytotoxicity at concentrations in the µM range, whereas
other studies show that eugenol is capable of inducing cytotoxic effects only at concentrations in the
mM range. Nevertheless, eugenol is able to induce cytotoxicity to cancer cell lines with different
histological types, including skin, breast, colon, prostate, cervical, hepatocellular, lung, oral squamous
cells and leukemia. In addition, the ability to induce oxidative stress has been also ascribed to eugenol
in cell-based assays.

Eugenol in the µM range inhibits the growth of melanoma cells—Sbcl2 (primary melanoma),
WM3211 (primary radial growth phase), WM98-1 (primary vertical growth phase) and WM1205Lu
(metastatic melanoma)—accompanied by cell cycle arrest at the S phase, followed by apoptosis [45].
Using cDNA array analysis, it was demonstrated that eugenol modulates expression of E2F
family members. In addition, eugenol was able to inhibit the E2F1 transcriptional activity and,
as overexpression of E2F1 restores melanoma cell proliferation, this indicates that eugenol targets E2F
functions in melanoma cells [45]. In addition, eugenol in the µM range inhibits the growth of HL-60
(human promyelocytic leukemia), U-937 (human histiocytic lymphoma), HepG2 (human hepatocellular
carcinoma), 3LL (Lewis mouse lung carcinoma) and SNU-C5 (human colon carcinoma) lines [46].
Eugenol-treated HL-60 cells display DNA fragmentation, ROS production, loss of mitochondrial
transmembrane potential, bax translocation, Bcl-2 reduction, cytochrome c release and caspase-9 and -3
activation, suggesting that eugenol causes apoptotic cell death. Moreover, pretreatment of HL-60 cells
with N-acetyl-L-cysteine (an antioxidant), Z-VAD-FMK (a pan caspase inhibitor) and Z-DEVD-FMK
(a caspase-3 inhibitor) decreases the eugenol-induced apoptosis, indicating that eugenol activates the
caspase- and ROS-mediated apoptosis pathways [46]. Moreover, treatment of HL-60 cells with eugenol,
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produced formation of three DNA adducts and incubation of HL-60 cells with the combination of
100 µM eugenol and 100 µM H2O2 potentiated the levels of DNA adduct in HL-60 cells. Oxidative base
damage was also observed. The DNA adducts formed were inhibited by the addition of either ascorbic
acid or glutathione [47]. Eugenol in the µM range is also cytotoxic to DU-145 (androgen-insensitive
prostate cancer cells) and KB (oral squamous carcinoma cells) [48].

Using LNCaP (androgen responsive human prostate carcinoma) and PC-3 (androgen independent
human prostate carcinoma) cell lines, eugenol induces cytotoxicity in the µM range and causes
an increase in G2/M phase [49]. Apoptotic cell death was not detected at the concentrations
used; however, eugenol in combination with 2-methoxyestradiol causes apoptosis along with
a reduction of the expression of anti-apoptotic protein Bcl-2 and enhancement of the expression
of the pro-apoptotic protein Bax. The apoptosis induced by this combination is not affected in PC-3
cells with overexpression or lack of Bcl-2 but is associated with the loss of mitochondrial membrane
potential [49]. Eugenol in µM concentrations causes cytotoxicity to MCF-7, T47-D (human breast
carcinoma) and MDA-MB-231 (human breast adenocarcinoma) cells through down-regulation of E2F1
and its downstream anti-apoptosis target, surviving independently of the status of p53 and ERα [50].
Eugenol inhibits the breast cancer related oncogenes, NF-κB and cyclin D1 and up-regulates the
cyclin-dependent kinase inhibitor p21WAF1 protein; On the other hand, eugenol was also cytotoxic to
non-cancer cell line MCF 10A (human breast epithelial) with IC50 value of 2.2 µM [50]. Júnior et al. [51]
also assessed the cytotoxicity of eugenol in the µM range on MDA-MB-231, MCF-7, SIHA (human cervix
carcinoma), SK-Mel-28 (human melanoma) and A2058 (human melanoma) cells; it was accompanied
by ROS production, causing G2/M phase block and, consequently, clastogenesis. Eugenol also
induced downregulation of PCNA (proliferation cell nuclear antigen), decreased the mitochondria
transmembrane potential and upregulated Bax [51].

Controversially, some studies have indicated that eugenol has no cytotoxic activity or has
cytotoxicity only when present in the mM range [52–73]. In studies with HSG (human submandibular
gland adenocarcinoma) and HSC-2 (human oral squamous cell carcinoma) cells, eugenol caused
cytotoxicity when in the mM range but no ROS induction was observed [58,59]. On the other
hand, Atsumi et al. [60] stated that eugenol caused a biphasic ROS production that was enhanced at
5–10 µM and decreased at 500 µM in HSG, treated with H2O2 plus horseradish peroxidase or with
visible light irradiation. In HL-60 cells, eugenol presents IC50 of 0.38 mM that is accompanied by
internucleosomal DNA fragmentation. The expression of the mRNAs and the activity of manganese
superoxide dismutase and copper- and zinc-containing superoxide dismutase are inhibited by eugenol,
suggesting that eugenol targets the oxidative stress in cancer cells. In contrast, eugenol-induced
cytotoxicity is enhanced by N-acetyl-L-cysteine or glutathione treatment [58,61]. On the other hand,
eugenol induces cytotoxicity and ROS generation in HSG cells in which glutathione or cysteine are
protecting from damage [62,63].

Pisano et al. [64] demonstrated that eugenol has no cytotoxic effect at 100 µM in malignant
melanoma cell lines WM266-4, SK-Mel-28, LCP-Mel, LCM-Mel, PNP-Mel, CN-MelA, 13443 and
GR-Mel. In human melanoma G361 cells, eugenol in the mM range inhibits the viability of G361
cells. Eugenol-treated G361 cells present caspase-3 and -6 cleavage and activation. The caspase-3
substrates poly(ADP-ribose)polymerase (PARP) and DNA fragmentation factor 45 (DFF45) are cleaved
in eugenol-induced apoptosis, suggesting induction of caspase-dependent apoptosis [65]. Interestingly,
similar results were found in human osteosarcoma HOS cells, suggesting that eugenol can also induce
caspase-dependent apoptosis pathways in HOS cells [66].

In a study with human cervical carcinoma cell line (HeLa), eugenol presented cytotoxicity in
the mM range and in a synergistic combination with sulforaphane, downregulated the expression of
Bcl-2, COX-2 and IL-β. It also produced a synergistic effect when combined with gemcitabine, causing
downregulation of the expression of Bcl-2, COX-2 and IL-β [67,68]. Also, in the mM range, eugenol
was cytotoxic and induced apoptosis to colon carcinoma cell lines HCT-15 and HT-29. The loss of the
membrane mitochondrial potential and generation of ROS were accompanied in the eugenol-induced
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apoptosis. Augmented ROS generation resulted in the DNA fragmentation and activation of PARP,
p53 and caspase-3 [69]. Eugenol in the mM range also inhibits the growth of human breast carcinoma
MCF-7 cells, accompanied by cell shrinkage and an increase in the percentage of apoptotic cells
and DNA fragments. A depleted level of intracellular glutathione and increased level of lipid
peroxidation are also observed [70]. In another study with MCF-7 cells, eugenol presented an IC50

value of 0.9 mM, increased the ROS production, decreased the ATP level and induced the loss of the
mitochondrial membrane potential and release of the cytochrome c and lactate. Cell viability and
ROS production were restored by pretreatment with the antioxidants. On the other hand, the eugenol
effect was not affected in MCF-7 cells with overexpression of Bcl-2 [71]. Human oral squamous cell
carcinoma cell line HSC-2 treated with a concentration of eugenol in the mM range presented metabolic
changes including reduction of ATP utilization, oxidative stress and an increase in the polyamines and
glycolytic metabolites [72]. In HepG2 and Caco-2 (human colon carcinoma) cells, the treatment with
eugenol-loaded nanoemulsions and free eugenol caused increasing in the cell death by apoptosis and
ROS generation [73]. The Table 2 summarize the in vitro cytotoxic effect of eugenol.

Table 2. Summary of in vitro cytotoxic effects of eugenol against cancer and non-cancer cell lines.

Cell Lines Histological Type Origin IC50 (µM) References

Cancer cells

Sbcl2 Primary melanoma Human ~0.5 [45]

WM3211 Primary melanoma Human ~0.5 [45]

WM98-1 Primary melanoma Human ~0.5 [45]

WM1205Lu Metastatic melanoma Human ~0.5 [45]

SK-Mel-28 Melanoma Human 7.2 [51]

A2058 Melanoma Human 12.2 [51]

WM266-4 Melanoma Human >100 [64]

SK-Mel-28 Melanoma Human >100 [64]

LCP-Mel Melanoma Human >100 [64]

LCM-Mel Melanoma Human >100 [64]

PNP-Mel Melanoma Human >100 [64]

CN-MelA Melanoma Human >100 [64]

13443 Melanoma Human >100 [64]

GR-Mel Melanoma Human >100 [64]

HSG Submandibular gland
adenocarcinoma

Human
~100 [59]

396 [60]

T47-D Breast carcinoma Human 0.9 [50]

MDA-MB-231 Breast adenocarcinoma Human
1.7 [50]

15.1 [51]

~1600 [71]

MCF-7 Breast adenocarcinoma Human

1.5 [50]

22.8 [51]

~400 [70]

900 [71]
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Table 2. Cont.

Cell Lines Histological Type Origin IC50 (µM) References

HCT-15 Colon adenocarcinoma Human 300 [69]

HT-29 Colon adenocarcinoma Human 500 [69]

Caco-2 Colon carcinoma Human ~750 [73]

SNU-C5 Colon carcinoma Human 129.4 [46]

LNCaP Prostate adenocarcinoma Human ~550 [49]

PC-3 Prostate carcinoma Human ~180 [49]

DU-145 Prostate carcinoma Human 30.4 [48]

SIHA Cervical carcinoma Human 18.3 [51]

HeLa Cervical carcinoma Human 500 [72]

HepG2 Hepatocellular carcinoma Human
118.6 [46]

~500 [73]

3LL Lewis lung carcinoma Mouse 89.6 [46]

KB Oral squamous cell carcinoma Human 28.5 [48]

HSC-2 Oral squamous cell carcinoma Human ~700 [72]

HOS Osteosarcoma Human 1500 [66]

HL-60 Promyelocytic leukemia Human
23.7 [46]

380 [61]

U-937 Histocytic lymphoma Human 39.4 [46]

Non-cancer cells

MCF 10A Breast epithelial Human 2.2 [50]

IC50: half maximal inhibitory concentration.

In vivo antitumor effects of eugenol have been also investigated [45,50,74]. Using B6D2F1 mice
bearing B16 melanoma, eugenol treatment (125 mg/kg/i.p. of body weight twice a week) caused the
in vivo antitumor effect [45]. On day 15, the size of tumors in the eugenol-treated group was 62%
less than the control group, with an increase of 19% in the survival rate. At the end of the treatment,
50% of the animals in the control group presented metastases but no eugenol-treated animals showed
any signs of invasion or metastasis [45]. Moreover, eugenol (100 mg/kg/i.p.) was able to inhibit the
growth of the Ehrlich ascites model by 28.88% and inhibited 24.35% tumor growth in the Ehrlich solid
tumor model [74].

In mice engrafted with human breast adenocarcinoma MDA-MB-231 cells subcutaneously, eugenol
treatment with a dose of 100 mg/kg every two days for four weeks inhibited tumor growth [50].
Moreover, eugenol downregulated E2F1, survivin, NF-κB and cyclin D1 and increased the levels of
p21WAF1, Bax, cleaved PARP-1 and the active form of caspase-9 in tumor xenografts [50]. The Table 3
summarize the in vivo antitumor effect of eugenol. Regarding the antimetastatic potential of eugenol,
it exerts inhibitory effects on matrix metallopeptidase 9 (MMP-9) via inhibition of extracellular
signal-regulated kinase (ERK) phosphorylation in human fibrosarcoma HT1080 cells [32].
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Table 3. Summary of in vivo antitumor effect of eugenol.

Tumor Histological
Type Origin Dose

(mg/kg) Treatment Route Inhibition
Rate (%) References

B16 Melanoma Mouse 125 Twice a week i.p. 62 [45]

Ehrlich
(ascites model) Carcinoma Mouse 100 Every two days

for four weeks i.p. 28.9 [74]

Ehrlich
(solid model) Carcinoma Mouse 100 Every two days

for four weeks i.p. 24.4 [74]

MDA-MB-231 Breast
adenocarcinoma Human 100 Every two days

for four weeks i.p. ~66 [50]

i.p.: intraperitoneal.

Although there are a large number of papers on the cytotoxic properties of eugenol, controversial
results delay the completion of preclinical efficacy and safety studies as well as clinical trials. However,
the ability of eugenol to induce oxidative stress, as observed in cell-based assays, appears to be related
to its cytotoxic and antitumor effect. Other compounds with dual antioxidant and prooxidant effect
have a dose/concentration-response relationship, for example, at low doses/concentrations present
antioxidant effect and at high doses/concentrations show prooxidant effect [75–78]; however, we do
not find this relationship with the data published with eugenol. Problems related to the degree of
purity of the compound, its evaporation (for volatile compounds for example) during the experiments,
the methods used to quantify these data (since different cellular and animal models may present
divergent results and interpretations) and some laboratory and interpretation errors (including the use
of cell lines contaminated with Mycoplasma sp., errors in cell line authentication, etc.) may contribute
to explain these controversial results.

In relation to the structure-activity relationship of eugenol, the cytotoxicity of eugenol-related
compounds has been associated with the activity of the production of phenoxyl radicals, their stability
of the subsequent quinonemethide and the hydrophobicity [79]. In relation to the antioxidant activity,
the number of hydroxyl groups in the phenol ring of eugenol enhanced it antioxidant action [31,80].
Moreover, the presence of bromine substituent in ortho-position to the OH-group increases its
antioxidant activity [81].

4. Conclusions

The studies presented in this review reveal the therapeutic potential of eugenol in cancer
prevention and treatment and the relationship with its antioxidant and pro-oxidant activities.
The Figure 3 summarize the molecular mechanisms of eugenol. Therefore, the consumption of
vegetables containing this compound in significant quantities might well be useful in inhibiting the
free radicals responsible for tumor development. In addition, the data reported are in accordance with
the scientific understanding that a better quality of life and increased longevity may be obtained via
healthy food, with the health promoting effects of its bioactive constituents.
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Figure 3. Molecular mechanisms of eugenol. ↑: upregulation; ↓: downregulation; Apaf-1: apoptotic
protease activating factor 1; Bax: BCL2 associated X, apoptosis regulator; Bcl-2: B-cell lymphoma 2,
apopstosis regulator; COX-2: cycloxygenase-2; Cu/ZnSOD: copper- and zinc-containing superoxide
dismutase; ERRα: estrogen-related receptor alpha; Gadd45: growth arrest and DNA damage-inducible
45: IKKβ: IκB kinase α; IL-6: interleukin 6; iNOS: inducible nitric oxide synthase; IκBα: inhibitor of
kappa B; MMP-2: matrix metalloproteinase-2; MMP-9: matrix metalloproteinase-9; MnSOD: manganese
superoxide dismutase; NF-κB: nuclear factor-kappa B; PCNA: proliferating cell nuclear antigen;
PGC-1β: peroxisome proliferator-activated receptor gamma coactivator 1-beta; PGE2: prostaglandin
E2; RECK: reversion-inducing-cysteine-rich protein with kazal motifs; ROS: reactive oxygen species;
TIMP-2: tissue inhibitor of metalloproteinase-2; TNF-α: tumor necrosis factor alpha; VEGF: vascular
endothelial growth factor; VEGFR1: vascular endothelial growth factor receptor 1.
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Abbreviations

Apaf-1 Apoptotic protease activating factor 1
Bax BCL2 associated X, apoptosis regulator
Bcl-2 B-cell lymphoma 2, apopstosis regulator
COX-2 Cyclooxygenase-2
CYP 1A1 Cytochrome P450 family 1 subfamily A member 1
CYP1B1 Cytochrome P450 family 1 subfamily B member 1
DFF45 DNA fragmentation factor 45
DMBA 7,12-dimethylbenz[a]anthracene
DNA Deoxyribonucleic acid
DPPH 2,2-diphenyl-1-picrylhydrazyl
ER Endoplasmic reticulum
Gadd45 Growth arrest and DNA damage-inducible 45
IC50 Half maximal inhibitory concentration
IKKβ Inhibitor of kappa B
IL-6 Interleukin-6
iNOS Inducible nitric oxide synthase
IκBα IκB Kinase α

MA Malonaldehyde
MCF 10A-ras H-ras transfected MCF 10A
MMP Matrix metalloproteinases
MNNG N-Methyl-N′-nitro-N-nitrosoguanidine
NF-κB Nuclear factor kappa B
PARP Poly(ADP-ribose)polymerase
PCNA Proliferating cell nuclear antigen
PGE2 Prostaglandin E2
RECK Reversion-inducing-cysteine-rich protein with kazal motifs
ROS Reactive Oxygen Species
SGOT Serum glutamic-oxaloacetic transaminase
TA Thioacetamide
TBARS Thiobarbituric acid-reactive substances
TIMP-2 Tissue inhibitor of metalloproteinase-2
TNF-α Tumor necrosis factor alpha
TPA 12-otetradecanoylphorbol-13-acetate
VEGF Vascular endothelial growth factor
VEGFR1 Vascular endothelial growth factor receptor 1
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