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Abstract: Non-alcoholic fatty liver disease (NAFLD) covers a spectrum of disorders ranging from
simple steatosis (non-alcoholic fatty liver, NAFL) to non-alcoholic steatohepatitis (NASH) and
cirrhosis. NAFL increases the risk of liver fibrosis. If the liver is fatty due to causes of insulin
resistance such as obesity and physical inactivity, it overproduces glucose and triglycerides leading
to hyperinsulinemia and a low high-density lipoprotein (HDL) cholesterol concentration. The
latter features predispose to type 2 diabetes and cardiovascular disease (CVD). Understanding the
impact of nutritional modulation of liver fat content and insulin resistance is therefore of interest
for prevention and treatment of NAFLD. Hypocaloric, especially low carbohydrate ketogenic diets
rapidly decrease liver fat content and associated metabolic abnormalities. However, any type of
caloric restriction seems effective long-term. Isocaloric diets containing 16%–23% fat and 57%–65%
carbohydrate lower liver fat compared to diets with 43%–55% fat and 27%–38% carbohydrate. Diets
rich in saturated (SFA) as compared to monounsaturated (MUFA) or polyunsaturated (PUFA) fatty
acids appear particularly harmful as they increase both liver fat and insulin resistance. Overfeeding
either saturated fat or carbohydrate increases liver fat content. Vitamin E supplementation decreases
liver fat content as well as fibrosis but has no effect on features of insulin resistance.

Keywords: saturated fat; carbohydrate; fructose; liver fat; steatosis

1. Introduction

NAFLD Definitions. Non-alcoholic fatty liver disease (NAFLD) is defined as steatosis (over 5%
to 10% of hepatocytes have macroscopic steatosis) [1], which is not due to excess use of alcohol
(defined in the most recent guideline from American Association for the Study of Liver Diseases as
alcohol consumption exceeding 21 drinks on average per week in men and 14 drinks in women) [2],
or other conditions as determined by careful family and medical history, and laboratory tests to
exclude at least steatosis due to viral and autoimmune causes and iron overload [2]. NAFLD is
usually asymptomatic and most patients have normal transaminases (ALT <30–40 U/L for men and
<20–30 U/L for women) [3,4] although NAFLD is the most common cause of incidentally discovered
elevated liver function tests [5]. Some patients with NAFLD have non-alcoholic steatohepatitis
(NASH), which can only be diagnosed by a liver biopsy. NASH is characterized in addition to
steatosis by ballooning necrosis in the vicinity of steatotic hepatocytes, mild inflammation and
possibly fibrosis [6]. Fibrosis is staged on a scale from 0 to 4, where 4 is cirrhosis [6]. While NAFLD
is as common as the metabolic syndrome (MetS), the prevalence estimates of NASH range from 3%
to 6% [7,8].
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Heterogeneity of NAFLD. Although NAFLD is commonly observed in insulin-resistant obese
and sometimes insulin-resistant non-obese subjects with the MetS (“Metabolic NAFLD”) (Figure 1),
at least two common genetic forms of NAFLD also exist. An allele in PNPLA3 (rs738409[G], encoding
I148M, prevalence 30%–50% worldwide) increases liver fat (“PNPLA3 NAFLD”) and the risk of
hepatic inflammation and fibrosis, cirrhosis and hepatocellular carcinoma (HCC) [9–12]. “PNPLA3
NAFLD” is not associated with insulin resistance [10,13]. Another fairly common polymorphism,
an E167K variant in (E167K) in TM6SF2 (prevalence 15%) also confers susceptibility to NAFLD
(“TM6SF2 NAFLD”) [14]. Carriers with “TM6SF2 NAFLD” are at increased risk of NASH but are
not insulin-resistant and their circulating concentrations of triglycerides are normal or subnormal
rather than increased [14,15]. Hepatic knockdown of TM6SF2 decreases very low-density lipoprotein
(VLDL) secretion [14,16].
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(LPS), which may contribute to inflammation in both adipose tissue and the liver [18]. Overeating 
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Figure 1. Pathophysiology of “Metabolic NAFLD”, which causes and consequences resemble those
of the insulin resistance/metabolic syndrome (MetS). Overeating and physical inactivity predispose
to both conditions. Excess glucose, fructose and amino acids are converted to triglyceride (TG) in the
liver via de novo lipogenesis (DNL), which pathway is increased in NAFLD [17]. Alterations in gut
microbiota in obesity increase gut permeability to bacterial components such as lipopolysaccharide
(LPS), which may contribute to inflammation in both adipose tissue and the liver [18]. Overeating
leads to adipose tissue expansion, hypoxia, increased fibrosis and cell death. Dead adipocytes are
surrounded by macrophages, which produce cytokines such as tumor-necrosis alpha and chemokines
such as monocyte chemoattractant protein-1. This impairs the ability of insulin to inhibit lipolysis
i.e., inhibit release of free fatty acids (FFA) and leads to deficiency of the insulin-sensitizing cytokine
adiponectin. The latter two changes promote synthesis of intrahepatocellular TG. The ability of
insulin to suppress glucose and VLDL production is impaired resulting in mild hyperglycemia
and hyperinsulinemia, hypertriglyceridemia (TGÒ) and a low HDL cholesterol concentration (HDL
cholÓ). The fatty liver also overproduces many other factors such as the liver enzymes alanine
aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyltransferase (GGT),
C-reactive protein (CRP) and coagulation factors [13].
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While the PNPLA3 or TM6SF2 variants increase liver fat content and the risk of NASH, they
do not increase the risk of type 2 diabetes or cardiovascular disease (CVD), consistent with lack of
insulin resistance. This implies that the objective of treatment of patients with “PNPLA3 NAFLD”
and TM6SF2 NAFLD’ is to prevent liver disease rather than metabolic complications. However, the
same person may have “Metabolic NAFLD” and NAFLD attributable to genetic variants [15]. The
etiology of NAFLD might impact the response of the liver to dietary interventions (vide infra).

Significance. Patients with NAFLD have an increased risk of mortality from CVD, cirrhosis
and hepatocellular carcinoma (HCC) [19]. Recent prospective studies with paired liver biopsies
contradicted the old dogma that NAFL is benign by showing that NAFL can progress to NASH and
clinically significant fibrosis [8]. A recent meta-analysis of 411 patients with biopsy-proven NAFLD
defined the average rate of progression. The rate of 1 stage fibrosis progression was 14.3 years for
NAFL and 7.1 years for patients with NASH [20]. Given this slow rate of progression and lack
of approved pharmacotherapies for NAFLD, there is abundant time for lifestyle changes to impact
progression of NAFLD.

NAFLD and insulin resistance. The liver is the site of production of two key components of
the insulin resistance/MetS, fasting serum glucose and very-low density lipoprotein (VLDL), which
contains most of circulating triglycerides. In subjects with NAFLD attributable to being overweight
and inactive (“Metabolic NAFLD”), the ability of insulin to normally suppress production of glucose
and VLDL is impaired [21,22]. Hyperglycemia stimulates insulin secretion and thereby induces
hyperinsulinemia (Figure 1). The high concentration of VLDL leads to lowering of high-density
lipoprotein (HDL) cholesterol and to generation of small dense LDL particles, which are known to be
highly atherogenic (see [23] for review). The liver, once fatty, also overproduces many other markers
of cardiovascular risk such as C-reactive protein and coagulation factors [13] (Figure 1).

The ensuing review is focused on analyzing studies comparing effects of different diets on
liver fat content and insulin sensitivity in the face of a similar total caloric content. The studies are
subgrouped based on their caloric content (isocaloric/hypocaloric/hypercaloric). Studies comparing
low fat/high carbohydrate to high fat/low carbohydrate diets are shown in Table 1 and studies
comparing effects of different types of sugars on liver fat content and insulin sensitivity in Table 2.
The influence of dietary fat on liver fat accumulation has recently been analyzed in an excellent
review [24].

Table 1. Studies comparing effects of low fat-high carbohydrate and high fat-low carbohydrate on
liver fat and insulin sensitivity.

N BMI
(kg/m2)

Age
(Years) Duration Design Cal % Fat % Carb

Liver Fat
(%)

Before-After

Insulin
Sensitivity

Method Change

Year of
Reference

10 33 43 2 weeks C ISO
16% 61%
56% 31%

10–8 *
10–13

fS-Ins Improved
Worsened

2005 [25]

20 29 34 3 weeks P ISO
20% 65% 4.0–3.5 * Clamp NS

NS
2011 [26]55% 30% 2.2–2.6

61 31 30–65 10
weeks P ISO

40% a 39% 3.2–2.3 * fS-Ins NS
Worsened

2012 [27]
43% b 40% 3.2–3.5

45 30 35–70 8 weeks P ISO
28% 53% 17.7–16.1 fS-Ins NS

NS
2012 [28]42% c 40% 7.4–5.2 Ó*

35 27 69 4 weeks P ISO
23% 57% 2.2–1.7Ó fS-Ins NS

NS
2013 [29]43% 38% 1.2–1.6
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Table 1. Cont.

12 32 55 6 weeks C ISO
21% d 49% 11.2–10.0 Clamp NS *

Improved 2013 [30]44% e 34% 14.2–8.6Ó *

22 37 44 11
weeks P HYPO

20% 65%
75% 10%

11.2–6.2Ó

12.4–7.7Ó

fS-Ins Improved *
Improved 2009 [31]

18 35 45 2 weeks P HYPO
34% 50% 19–8.6Ó * fS-Ins NS

NS
2011 [32]59% 8% 22–15.8Ó

102 32 45 6
months P HYPO

fS-Ins Improved
Improved 2011 [33]“reduced fat”

“reduced carb”
9.6–5.6Ó

7.6–4.0Ó

39 23 25 7 days P HYPER
+fructose 12–14h Ò fS-Ins NS

NS
2010 [34]

+fat 11–21h Ò

39 18–27 20–38 7 weeks P HYPER
40% f 43% 0.75–0.79 fS-Ins NS

NS
2014 [35]36% g 48% 0.96–1.5 *

Abbreviations: N = number of completers, BMI = body mass index, yrs = years, wks = weeks, mos = months,
C = crossover, P = parallel, Cal = caloric content relative to baseline diet, ISO = isocaloric, HYPO = hypocaloric,
HYPER = hypercaloric, % Fat % Carb = % fat and % carbohydrate. Ò Significant increase, Ó significant
decrease before vs. after, * significant difference in change between the two different diets, fS-Ins = fasting
serum insulin, Clamp = euglycemic hyperinsulinemic insulin clamp technique. a = 10% SFA, 13% POLY;
b = 20% SFA, 8% POLY; c enriched with MONO, saturated fat as in control arm; d 36% SFA/39% MONO/24%
POLY; e 31% SFA/51% MONO/18% POLY; f 11% SFA and 13% POLY; g 16% SFA and 4% POLY, h Units for
liver fat mmol/kg. NS = no significant change. Changes in liver fat in the table calculated based on mean
changes. +fructose = addition of 3.5 grams/day of fructose/kg fat free mass, +fat = addition of 30% of total
calories as fat.

Table 2. Effects of fructose as compared to other carbohydrates on liver fat and insulin sensitivity.

N BMI
(kg/m2)

Age
(Years) Duration Design Cal Fructose Diet Other

CARB Diet

Liver Fat
(%)

Before-After

Insulin
Sensitivity

Method Change

Year of
Reference

32 29 34 2 weeks P ISO
FRU 25% b 7.2–7.5 fS-Ins Worsened

NS c 2013 [36]
GLU 25% b 8.0–7.9

11 75 kg b 25 7 days C HYPER
FRU 35% b 2.1–3.2Ò fS-Ins NS

NS
2010 [37]

GLU 35% b 2.1– 3.3Ò

20 25 30 10
weeks P HYPER

FRU +600 cal/day 1.3–1.8 fS-Ins NS
NS

2012 [38]GLU +600 cal/day 1.6–2.1

22 32 39 6
months P HYPER

SSB +430 cal/day 3.7–5.0Ò* fS-Ins NS
NS

2012 [39]Milk +454 cal/day 12.7–11.6

64 27 42
10

weeks P HYPER
HFCS 8%–30% b 11.8–13.7 fS-Ins NS

NS 2013 [40]SUCROSE 8%–30% b 14.9–13.0

32 29 34 2 weeks P HYPER
FRU +25% b 7.2–8.9Ò fS-Ins NS

NS
2013 [36]

GLU +25% b 8.0–10.1Ò

28 22 23
6–7

days P HYPER
FRU 3 g/kg day
GLU 3 g/kg day

9.0–18.5Ò

12.9–16.1
fS-Ins Worsened

NS
2013 [41]

Abbreviations: N = number of completers, BMI = body mass index, yrs = years, wks = weeks, mos = months,
d = day, C = crossover, P = parallel, Cal = caloric content relative to baseline diet, FRU = fructose, HFCS = high
fructose corn syrup, GLU = glucose, NS = no significant change (before vs. after diet), ISO = isocaloric, HYPER
= hypercaloric, SSB = sugar sweetened beverage, Ò Significant increase after vs. before, * significant difference
in change between the two diets, fS-Ins = fasting serum insulin, Clamp = euglycemic hyperinsulinemic insulin
clamp technique. a = body weight, b = % of total energy intake, c NS = no significant change. Changes in liver
fat in the table calculated based on mean changes.

2. Effect of Different Diets on NAFLD and Insulin Sensitivity

Overall, as shown by Figure 2, the energy content of the diet is the most important factor
influencing liver fat content, which is why weight loss is recommended to all overweight or obese
patients with NAFLD [2] Given that conventional hypocaloric diets are unable to achieve persistent
weight loss in morbidly obese patients, bariatric surgery is becoming increasingly important in the
management of NAFLD. Weight loss following bariatric surgery induces improvements in steatosis,
necroinflammation and fibrosis and insulin resistance. NASH is not a contraindication for surgery
unless complicated by cirrhosis or portal hypertension (see [42–45] for reviews).
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Figure 2. Effect of dietary composition on liver fat content, expressed as relative change from baseline
measured by proton magnetic resonance spectroscopy (1H-MRS). Diets comparing isocaloric low
fat/high carbohydrate (Low Fat High Carb) to high fat/low-carbohydrate (High Fat Low Carb) diets
(upper panel on the left, 1 = [25], 2 = [26], 3 = [29]), isocaloric low saturated fat/high polyunsaturated
fat (Low SFA High PUFA) to high saturated/low polyunsaturated fat (High SFA Low PUFA) or
isocaloric high monounsaturated (High MUFA) to low monounsaturated fat (Low MUFA) (upper
panel on the right, 4 = [27], 5 = [28], 6 = [30]) diets. The bottom panels depict effects of hypocaloric
Low Fat High Carb compared to High Fat Low Carb diets (panel on the left, 7 = [31], 8 = [32], 9 = [33])
and hypercaloric Low Fat High Carb vs. High Fat Low Carb (10 = [34]) and High PUFA Low SFA vs.
Low PUFA High SFA (11 = [35]) diets on liver fat content.

Genetic etiology of NAFLD may influence the response to a hypocaloric diet. We observed a
greater reduction in liver fat in response to a six-day ketogenic diet in subjects homozygous for the
PNPLA3 I148M variant as compared to non-carriers [46]. This finding was recently confirmed in
a larger post hoc analysis of 154 patients [47]. In this study, liver fat content measured by 1H-MRS
decreased significantly and 3-fold more in subjects with the GG as compared to CC genotype
(11.3% vs. 3.7%).

Isocaloric comparisons (Figure 2, Table 1). In three of the studies shown in Table 1, a low fat
(16%–23% of total calories)–high carbohydrate (57%–65%) diet was compared to a low carbohydrate
(31%–38%)–high fat (43%–56%) diet. Quite consistently, liver fat content decreased during the low
fat-high carbohydrate diet and increased during the high fat-low carbohydrate diet (Figure 2). The
high fat rather than the low carbohydrate component in the diet is the likely cause of the increase in
liver fat since low carbohydrate diets seem particularly effective in reducing liver fat (vide infra).

In the isocaloric comparisons of a high fat–low carbohydrate vs. a low fat–high carbohydrate
diets, there were no convincing changes in insulin sensitivity. However, the studies were small and
hepatic insulin sensitivity was not assessed directly.

Hypocaloric comparisons (Figure 2, Table 1). Even small amounts of weight loss decrease liver
fat content. For example, two to six days of a hypocaloric diet (´1000 cal/day) decreases liver
fat by 30%–45% in the face of trivial amounts of weight loss [31,46]. Two studies have compared
changes in liver fat during ketogenic low-carbohydrate and standard hypocaloric diets in the face of
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similar decrease in body weight. In these studies lasting two days and two weeks, the ketogenic diet
decreased liver fat content more than the standard hypocaloric diet [31,32]. However, in the study of
Kirk et al [31], repeat study of the subjects after 11 weeks no longer showed a significant difference in
the decrease in liver fat content (Table 1). Patients are commonly placed on a hypocaloric diet prior
to bariatric surgery to reduce liver volume. Low-carbohydrate ketogenic diets decrease liver volume
more than standard hypocaloric diets, most likely because low carbohydrate diets rapidly deplete
liver glycogen [48].

Hypercaloric comparisons (Figure 2, Table 1). Rosqvist et al. [35] compared a diet enriched with
SFAs at the expense of PUFAs to a diet rich in PUFAs but poor in SFAs. The extra calories were
served as similar looking muffins. Macronutrient composition of the diets was comparable. After
seven weeks, weight gain was identical in both groups (1.6 kg) but liver fat content had increased in
the high SFA-low PUFA group but not in the other group (Figure 2). In the other study including
39 subjects, seven days of high fat overfeeding (30% caloric excess from fat) increased liver fat
content by 86% while fructose overfeeding only increased liver fat by 16% [34]. The difference in
the increments in liver fat was not statistically significant.

3. Effect of Type of Fat on NAFLD and Insulin Sensitivity

High SFA–Low PUFA vs. Low SFA–High PUFA. In the largest of the isocaloric studies [27],
macronutrient composition was maintained essentially unchanged but the quality of the fat differed.
Liver fat content decreased during the diet high in PUFA and low in SFA compared to the high
SFA–low PUFA diet. This suggests that either SFAs or PUFAs regulate liver content. Fasting insulin
increased in the high SFA-low PUFA group and remained unchanged in the high PUFA-low SFA
group (Table 1). This result supports previous data such as the KANWU study in 162 subjects
showing that isocaloric substitution of dietary SFA for MUFA for three months impairs insulin
sensitivity and lowers LDL cholesterol [49]. The impairment in insulin sensitivity was due to the
SFA rather than the MUFA diet, consistent with several smaller studies [50].

High MUFA. Two isocaloric studies compared the effect of increasing total fat content using
mainly MUFAs [28,30]. Although total fat content was higher both in the study of Bozzetto et al.
(42% vs. 28%) [28] and the study of Ryan et al. (44% vs. 21%) [30], liver fat content decreased with the
diets enriched with MUFAs. However, the lower carbohydrate content of the MUFA could also have
contributed to the lowering of liver fat content.

As summarized in an extensive review, MUFAs do not impair insulin sensitivity as do SFAs [50].
For example, MUFAs did not affect insulin sensitivity In the “KANWU” study [49] or in the more
recent large 24-week “RISCK” study where subjects were randomized to consume either a high SFA
or a high MUFA diet [51].

4. Effect of Type of Carbohydrate on NAFLD and Insulin Sensitivity

In contrast to glucose, fructose bypasses the rate-limiting step of glycolysis catalyzed by
phosphofructokinase in the liver (see [52] for review). It therefore can provide more substrates for
de novo lipogenesis (DNL) than glucose and could be predicted to increase intrahepatic triglycerides
and VLDL production more than glucose [52]. Five studies have compared effects of fructose or high
fructose corn syrup to glucose or sucrose overfeeding on liver fat content (Table 2). Of these, only
one short-term study found fructose but not glucose to increase liver fat [41]. Fructose did not induce
insulin resistance in any of the studies. Maersk et al. found six months of sugar-sweetened beverage
(SSB) to increase liver fat more than milk [39]. However, milk contains only half as much carbohydrate
as SSB the rest being protein and fat. These data and the systematic review and meta-analysis by
Chung et al. [53] imply that there is not enough evidence to draw conclusions regarding effects of
fructose and HFCS compared to sucrose consumption on NAFLD. However, even if a difference in
changes in liver fat between the fructose and glucose was not demonstrated, excess carbohydrate
calories increased liver fat content in many of the comparative studies as has also been found in high
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sugar overfeeding studies without another carbohydrate comparator arm [34,46,54,55]. Although not
found in studies quantifying liver fat (Table 2), isocaloric fructose (25% of total daily caloric intake for
10 weeks) as compared to glucose consumption has been shown to impair insulin sensitivity [56].

5. Effect of Other Nutritional Interventions on NAFLD and Insulin Sensitivity

Vitamin E. Vitamin E is an antioxidant which, at a dose of 800 IU/day was shown to improve
steatosis, inflammation and ballooning in a 96-week trial in NASH [57]. The vitamin E arm included
84 subjects and placebo arm 83 subjects with NASH but with no diabetes. Vitamin E did not change
insulin sensitivity or lipid concentrations. Vitamin E at a dose of 800 IU/day compared to placebo
has also been shown to resolve NASH in children aged 8–17 years with biopsy-proven NAFLD [58].

6. Mechanisms Underlying Nutritional Modulation of Liver Fat Content in Humans

Fatty acids in intrahepatocellular triglycerides can originate from adipose tissue lipolysis, DNL,
uptake of fatty acids from chylomicron remnants and from fatty acids released during intravascular
hydrolysis of triglyceride-rich lipoproteins [59]. Studies using stable isotopes to trace pathways of
hepatic triglyceride synthesis have shown that both adipose tissue lipolysis and DNL are increased
in NAFLD [17,60–62] (Figure 1).

Nutritional modulation of lipolysis. Short-term fasting lowers glucose and insulin concentrations
and increases the rate of basal lipolysis [46,63,64]. The increase rate of lipolysis, as measured
by a stable isotope glycerol tracer is closely related to decreases in fasting insulin [63]. After an
overnight fast, approximately 40% of the FFA are taken up by the splanchnic bed. These FFA can
be used for ketone body production, oxidation or secreted in VLDL. Over six days of a hypocaloric
low-carbohydrate diet, liver fat decreases despite an increase in lipolysis as FFA as are oxidized and
used for ketone body production rather than stored as triglycerides in the liver [46]. Whether these
changes were due to the decrease in energy content of the diet or the low carbohydrate content is
unclear as very few data comparing effects of different diets on liver fat content and lipolysis are
available. In the study of Haufe et al. comparing low and high carbohydrate hypocaloric diets [33],
fasting FFA increased during the low carbohydrate diet but remained unchanged during the high
carbohydrate diet [33]. As reviewed by Jensen et al., isoenergetic diets do not seem to change basal
FFA flux or oxidation [65].

Nutritional modulation of DNL. Short-term overfeeding with carbohydrate as compared to
fat markedly increases DNL [66,67], which in relative terms is the most increased pathway in
NAFLD [17]. However, in absolute terms, lipolysis is the main source of intrahepatocellular
triglycerides both in normal subjects and those with NAFLD [17]. There are no studies comparing
effects of different diets on liver fat content and DNL.

7. Concluding Remarks

Studies comparing effects of different diets on liver fat content and insulin sensitivity have
included a low number of subjects and lasted a maximum of six months. Nevertheless, some
conclusions seem justified. Hypocaloric diets decrease while overfeeding increases liver fat content.
Low fat–high carbohydrate as compared to high fat–low carbohydrate diets seem to decrease liver fat
and enhance insulin sensitivity in the face of similar isocaloric or hypocaloric total caloric contents.
The deleterious effect of high fat seems to be due to SFAs while PUFA or MUFA containing diets
may be beneficial. Hypercaloric high carbohydrate diets increase liver fat content, but there are no
convincing data to show fructose is worse than glucose, although the metabolism of fructose can be
predicted to have more harmful effects on the liver than glucose. The sources of intrahepatocellular
triglycerides or impact of genetic forms of NAFLD during different diets have not been systematically
studied. Given the high prevalence of both “Metabolic NAFLD”, “PNPLA3 NAFLD” and “TM6SF2
NAFLD” and the associated risks of type 2 diabetes and CVD (“Metabolic NAFLD”) and advanced
liver disease (all forms increase the risk of NASH, cirrhosis and HCC), there is a need for large
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multicenter studies with sufficient numbers of patients to define the composition of a diet which
can prevent or reverse these problems.
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NASH non-alcoholic steatohepatitis
PNPLA3 patatin-like phospholipase domain containing 3
PUFA polyunsaturated fatty acid
SFA saturated fatty acid
SSB sugar-sweetened beverages
TM6SF2 transmembrane 6 superfamily member 2
VLDL very low-density lipoprotein

References

1. Neuschwander-Tetri, B.A.; Caldwell, S.H. Nonalcoholic steatohepatitis: Summary of an AASLD Single
Topic Conference. Hepatology 2003, 37, 1202–1219. [CrossRef] [PubMed]

2. Chalasani, N.; Younossi, Z.; Lavine, J.E.; Diehl, A.M.; Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J.
The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the American
Gastroenterological Association, American Association for the Study of Liver Diseases, and American
College of Gastroenterology. Gastroenterology 2012, 142, 1592–1609. [CrossRef] [PubMed]

3. Browning, J.D.; Szczepaniak, L.S.; Dobbins, R.; Nuremberg, P.; Horton, J.D.; Cohen, J.C.; Grundy, S.M.;
Hobbs, H.H. Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity.
Hepatology 2004, 40, 1387–1395. [CrossRef] [PubMed]

4. Kotronen, A.; Westerbacka, J.; Bergholm, R.; Pietilainen, K.H.; Yki-Jarvinen, H. Liver fat in the metabolic
syndrome. J. Clin. Endocrinol. Metab. 2007, 92, 3490–3497. [CrossRef] [PubMed]

5. Clark, J.M.; Brancati, F.L.; Diehl, A.M. The prevalence and etiology of elevated aminotransferase levels in
the United States. Am. J. Gastroenterol. 2003, 98, 960–967. [CrossRef] [PubMed]

6. Brunt, E.M.; Kleiner, D.E.; Wilson, L.A.; Belt, P.; Neuschwander-Tetri, B.A.; Network, N.C.R. Nonalcoholic
fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: Distinct
clinicopathologic meanings. Hepatology 2011, 53, 810–820. [CrossRef] [PubMed]

7. Vernon, G.; Baranova, A.; Younossi, Z.M. Systematic review: The epidemiology and natural history of
non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment. Pharmacol. Ther. 2011,
34, 274–285. [CrossRef] [PubMed]

8. Anstee, Q.M.; Targher, G.; Day, C.P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or
cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 330–344. [CrossRef] [PubMed]

9. Romeo, S.; Kozlitina, J.; Xing, C.; Pertsemlidis, A.; Cox, D.; Pennacchio, L.A.; Boerwinkle, E.; Cohen, J.C.;
Hobbs, H.H. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease.
Nat. Genet. 2008, 40, 1461–1465. [CrossRef] [PubMed]

10. Sookoian, S.; Pirola, C.J. Meta-analysis of the influence of I148M variant of patatin-like phospholipase
domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty
liver disease. Hepatology 2011, 53, 1883–1894. [CrossRef] [PubMed]

9134

http://dx.doi.org/10.1053/jhep.2003.50193
http://www.ncbi.nlm.nih.gov/pubmed/12717402
http://dx.doi.org/10.1053/j.gastro.2012.04.001
http://www.ncbi.nlm.nih.gov/pubmed/22656328
http://dx.doi.org/10.1002/hep.20466
http://www.ncbi.nlm.nih.gov/pubmed/15565570
http://dx.doi.org/10.1210/jc.2007-0482
http://www.ncbi.nlm.nih.gov/pubmed/17595248
http://dx.doi.org/10.1111/j.1572-0241.2003.07486.x
http://www.ncbi.nlm.nih.gov/pubmed/12809815
http://dx.doi.org/10.1002/hep.24127
http://www.ncbi.nlm.nih.gov/pubmed/21319198
http://dx.doi.org/10.1111/j.1365-2036.2011.04724.x
http://www.ncbi.nlm.nih.gov/pubmed/21623852
http://dx.doi.org/10.1038/nrgastro.2013.41
http://www.ncbi.nlm.nih.gov/pubmed/23507799
http://dx.doi.org/10.1038/ng.257
http://www.ncbi.nlm.nih.gov/pubmed/18820647
http://dx.doi.org/10.1002/hep.24283
http://www.ncbi.nlm.nih.gov/pubmed/21381068


Nutrients 2015, 7, 9127–9138

11. Trepo, E.; Nahon, P.; Bontempi, G.; Valenti, L.; Falleti, E.; Nischalke, H.D.; Hamza, S.; Corradini, S.G.;
Burza, M.A.; Guyot, E.; et al. Association between the PNPLA3 (rs738409 C>G) variant and hepatocellular
carcinoma: Evidence from a meta-analysis of individual participant data. Hepatology 2014, 59, 2170–2177.
[CrossRef] [PubMed]

12. Zhang, L.; You, W.; Zhang, H.; Peng, R.; Zhu, Q.; Yao, A.; Li, X.; Zhou, Y.; Wang, X.; Pu, L.; Wu, J.
PNPLA3 polymorphisms (rs738409) and non-alcoholic fatty liver disease risk and related phenotypes:
A meta-analysis. J. Gastroenterol. Hepatol. 2015, 30, 821–829. [CrossRef] [PubMed]

13. Yki-Jarvinen, H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome.
Lancet Diabetes Endocrinol. 2014, 2, 901–910. [CrossRef]

14. Kozlitina, J.; Smagris, E.; Stender, S.; Nordestgaard, B.G.; Zhou, H.H.; Tybjaerg-Hansen, A.; Vogt, T.F.;
Hobbs, H.H.; Cohen, J.C. Exome-wide association study identifies a TM6SF2 variant that confers
susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 2014, 46, 352–356. [CrossRef] [PubMed]

15. Zhou, Y.; Llaurado, G.; Oresic, M.; Hyotylainen, T.; Orho-Melander, M.; Yki-Jarvinen, H. Circulating
triacylglycerol signatures and insulin sensitivity in NAFLD associated with the E167K variant in TM6SF2.
J. Hepatol. 2015, 62, 657–663. [CrossRef] [PubMed]

16. Mahdessian, H.; Taxiarchis, A.; Popov, S.; Silveira, A.; Franco-Cereceda, A.; Hamsten, A.; Eriksson, P.;
van't Hooft, F. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic
lipid droplet content. Proc. Natl. Acad. Sci. USA 2014, 111, 8913–8918. [CrossRef] [PubMed]

17. Lambert, J.E.; Ramos-Roman, M.A.; Browning, J.D.; Parks, E.J. Increased de novo lipogenesis is a distinct
characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 2014, 146, 726–735.
[CrossRef] [PubMed]

18. Cani, P.D.; Osto, M.; Geurts, L.; Everard, A. Involvement of gut microbiota in the development of low-grade
inflammation and type 2 diabetes associated with obesity. Gut Microbes 2012, 3, 279–288. [CrossRef]
[PubMed]

19. Ekstedt, M.; Hagstrom, H.; Nasr, P.; Fredrikson, M.; Stal, P.; Kechagias, S.; Hultcrantz, R. Fibrosis stage is
the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology
2015, 61, 1547–1554. [CrossRef] [PubMed]

20. Singh, S.; Allen, A.M.; Wang, Z.; Prokop, L.J.; Murad, M.H.; Loomba, R. Fibrosis progression in nonalcoholic
fatty liver vs. nonalcoholic steatohepatitis: A systematic review and meta-analysis of paired-biopsy studies.
Clin. Gastroenterol. Hepatol. 2015, 13, 643–654. [CrossRef] [PubMed]

21. Seppala-Lindroos, A.; Vehkavaara, S.; Hakkinen, A.M.; Goto, T.; Westerbacka, J.; Sovijarvi, A.; Halavaara, J.;
Yki-Järvinen, H. Fat accumulation in the liver is associated with defects in insulin suppression of glucose
production and serum free fatty acids independent of obesity in normal men. J. Clin. Endocrinol. Metab.
2002, 87, 3023–3028. [CrossRef] [PubMed]

22. Adiels, M.; Westerbacka, J.; Soro-Paavonen, A.; Hakkinen, A.M.; Vehkavaara, S.; Caslake, M.J.; Packard, C.;
Olofsson, S.O.; Yki-Järvinen, H.; Taskinen, M.R.; et al. Acute suppression of VLDL1 secretion rate by insulin
is associated with hepatic fat content and insulin resistance. Diabetologia 2007, 50, 2356–2365. [CrossRef]
[PubMed]

23. Tchernof, A.; Despres, J.P. Pathophysiology of human visceral obesity: An update. Physiol. Rev. 2013, 93,
359–404. [CrossRef] [PubMed]

24. Green, C.J.; Hodson, L. The influence of dietary fat on liver fat accumulation. Nutrients 2014, 6, 5018–5033.
[CrossRef] [PubMed]

25. Westerbacka, J.; Lammi, K.; Hakkinen, A.M.; Rissanen, A.; Salminen, I.; Aro, A.; Yki-Järvinen, H. Dietary fat
content modifies liver fat in overweight nondiabetic subjects. J. Clin. Endocrinol. Metab. 2005, 90, 2804–2809.
[CrossRef] [PubMed]

26. Van Herpen, N.A.; Schrauwen-Hinderling, V.B.; Schaart, G.; Mensink, R.P.; Schrauwen, P. Three weeks
on a high-fat diet increases intrahepatic lipid accumulation and decreases metabolic flexibility in healthy
overweight men. J. Clin. Endocrinol. Metab. 2011, 96, E691–E695. [CrossRef] [PubMed]

27. Bjermo, H.; Iggman, D.; Kullberg, J.; Dahlman, I.; Johansson, L.; Persson, L.; Berglund, J.; Pulkki, K.; Basu, S.;
Uusitupa, M.; et al. Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation
in abdominal obesity: A randomized controlled trial. Am. J. Clin. Nutr. 2012, 95, 1003–1012. [CrossRef]
[PubMed]

9135

http://dx.doi.org/10.1002/hep.26767
http://www.ncbi.nlm.nih.gov/pubmed/24114809
http://dx.doi.org/10.1111/jgh.12889
http://www.ncbi.nlm.nih.gov/pubmed/25641744
http://dx.doi.org/10.1016/S2213-8587(14)70032-4
http://dx.doi.org/10.1038/ng.2901
http://www.ncbi.nlm.nih.gov/pubmed/24531328
http://dx.doi.org/10.1016/j.jhep.2014.10.010
http://www.ncbi.nlm.nih.gov/pubmed/25457209
http://dx.doi.org/10.1073/pnas.1323785111
http://www.ncbi.nlm.nih.gov/pubmed/24927523
http://dx.doi.org/10.1053/j.gastro.2013.11.049
http://www.ncbi.nlm.nih.gov/pubmed/24316260
http://dx.doi.org/10.4161/gmic.19625
http://www.ncbi.nlm.nih.gov/pubmed/22572877
http://dx.doi.org/10.1002/hep.27368
http://www.ncbi.nlm.nih.gov/pubmed/25125077
http://dx.doi.org/10.1016/j.cgh.2014.04.014
http://www.ncbi.nlm.nih.gov/pubmed/24768810
http://dx.doi.org/10.1210/jcem.87.7.8638
http://www.ncbi.nlm.nih.gov/pubmed/12107194
http://dx.doi.org/10.1007/s00125-007-0790-1
http://www.ncbi.nlm.nih.gov/pubmed/17849096
http://dx.doi.org/10.1152/physrev.00033.2011
http://www.ncbi.nlm.nih.gov/pubmed/23303913
http://dx.doi.org/10.3390/nu6115018
http://www.ncbi.nlm.nih.gov/pubmed/25389901
http://dx.doi.org/10.1210/jc.2004-1983
http://www.ncbi.nlm.nih.gov/pubmed/15741262
http://dx.doi.org/10.1210/jc.2010-2243
http://www.ncbi.nlm.nih.gov/pubmed/21252252
http://dx.doi.org/10.3945/ajcn.111.030114
http://www.ncbi.nlm.nih.gov/pubmed/22492369


Nutrients 2015, 7, 9127–9138

28. Bozzetto, L.; Prinster, A.; Annuzzi, G.; Costagliola, L.; Mangione, A.; Vitelli, A.; Mazzarella, R.;
Longobardo, M.; Mancini, M.; Vigorito, C. Liver fat is reduced by an isoenergetic MUFA diet in a controlled
randomized study in type 2 diabetic patients. Diabet. Care 2012, 35, 1429–1435. [CrossRef] [PubMed]

29. Utzschneider, K.M.; Bayer-Carter, J.L.; Arbuckle, M.D.; Tidwell, J.M.; Richards, T.L.; Craft, S. Beneficial
effect of a weight-stable, low-fat/low-saturated fat/low-glycaemic index diet to reduce liver fat in older
subjects. Br. J. Nutr. 2013, 109, 1096–1104. [CrossRef] [PubMed]

30. Ryan, M.C.; Itsiopoulos, C.; Thodis, T.; Ward, G.; Trost, N.; Hofferberth, S.; O’Dea, K.; Desmond, P.V.;
Johnson, N.A.; Wilson, A.M. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in
individuals with non-alcoholic fatty liver disease. J. Hepatol. 2013, 59, 138–143. [CrossRef] [PubMed]

31. Kirk, E.; Reeds, D.N.; Finck, B.N.; Mayurranjan, S.M.; Patterson, B.W.; Klein, S. Dietary fat and
carbohydrates differentially alter insulin sensitivity during caloric restriction. Gastroenterology 2009, 136,
1552–1560. [CrossRef] [PubMed]

32. Browning, J.D.; Baker, J.A.; Rogers, T.; Davis, J.; Satapati, S.; Burgess, S.C. Short-term weight loss and
hepatic triglyceride reduction: Evidence of a metabolic advantage with dietary carbohydrate restriction.
Am. J. Clin. Nutr. 2011, 93, 1048–1052. [CrossRef] [PubMed]

33. Haufe, S.; Engeli, S.; Kast, P.; Bohnke, J.; Utz, W.; Haas, V.; Hermsdorf, M.; Mähler, A.; Wiesner, S.;
Birkenfeld, A.L.; et al. Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets
on intrahepatic fat in overweight and obese human subjects. Hepatology 2011, 53, 1504–1514. [CrossRef]
[PubMed]

34. Sobrecases, H.; Le, K.A.; Bortolotti, M.; Schneiter, P.; Ith, M.; Kreis, R.; Boesch, C.; Tappy, L. Effects of
short-term overfeeding with fructose, fat and fructose plus fat on plasma and hepatic lipids in healthy
men. Diabet. Metab. 2010, 36, 244–246. [CrossRef] [PubMed]

35. Rosqvist, F.; Iggman, D.; Kullberg, J.; Cedernaes, J.; Johansson, H.E.; Larsson, A.; Johansson, L.;
Ahlström, H.; Arner, P.; Dahlman, I. Overfeeding polyunsaturated and saturated fat causes distinct effects
on liver and visceral fat accumulation in humans. Diabetes 2014, 63, 2356–2368. [CrossRef] [PubMed]

36. Johnston, R.D.; Stephenson, M.C.; Crossland, H.; Cordon, S.M.; Palcidi, E.; Cox, E.F.; Taylor, M.A.;
Aithal, G.P.; Macdonald, I.A. No difference between high-fructose and high-glucose diets on liver
triacylglycerol or biochemistry in healthy overweight men. Gastroenterology 2013, 145, 1016–1025.
[CrossRef] [PubMed]

37. Ngo Sock, E.T.; Le, K.A.; Ith, M.; Kreis, R.; Boesch, C.; Tappy, L. Effects of a short-term overfeeding with
fructose or glucose in healthy young males. Br. J. Nutr. 2010, 103, 939–943. [CrossRef] [PubMed]

38. Silbernagel, G.; Machann, J.; Unmuth, S.; Schick, F.; Stefan, N.; Haring, H.U.; Fritsche, A. Effects of 4-week
very-high-fructose/glucose diets on insulin sensitivity, visceral fat and intrahepatic lipids: An exploratory
trial. Br. J. Nutr. 2011, 106, 79–86. [CrossRef] [PubMed]

39. Maersk, M.; Belza, A.; Stodkilde-Jorgensen, H.; Ringgaard, S.; Chabanova, E.; Thomsen, H.; Pedersen, S.B.;
Astrup, A.; Richelsen, B. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral
fat depot: A 6-mo randomized intervention study. Am. J. Clin. Nutr. 2012, 95, 283–289. [CrossRef] [PubMed]

40. Bravo, S.; Lowndes, J.; Sinnett, S.; Yu, Z.; Rippe, J. Consumption of sucrose and high-fructose corn syrup
does not increase liver fat or ectopic fat deposition in muscles. Appl. Physiol. Nutr. Metab. 2013, 38, 681–688.
[CrossRef] [PubMed]

41. Lecoultre, V.; Egli, L.; Carrel, G.; Theytaz, F.; Kreis, R.; Schneiter, P.; Boss, A.; Zwygart, K.; Le, K.-A.;
Bortolotti, M.; et al. Effects of fructose and glucose overfeeding on hepatic insulin sensitivity and
intrahepatic lipids in healthy humans. Obesity 2013, 21, 782–785. [CrossRef] [PubMed]

42. Thoma, C.; Day, C.P.; Trenell, M.I. Lifestyle interventions for the treatment of non-alcoholic fatty liver
disease in adults: A systematic review. J. Hepatol. 2012, 56, 255–266. [CrossRef] [PubMed]

43. Dyson, J.; Day, C. Treatment of non-alcoholic fatty liver disease. Dig. Dis. 2014, 32, 597–604. [CrossRef]
[PubMed]

44. Mummadi, R.R.; Kasturi, K.S.; Chennareddygari, S.; Sood, G.K. Effect of bariatric surgery on nonalcoholic
fatty liver disease: Systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2008, 6, 1396–1402.
[CrossRef] [PubMed]

45. Chavez-Tapia, N.C.; Tellez-Avila, F.I.; Barrientos-Gutierrez, T.; Mendez-Sanchez, N.; Lizardi-Cervera, J.;
Uribe, M. Bariatric surgery for non-alcoholic steatohepatitis in obese patients. The Cochrane database of
systematic reviews. 2010, 1, CD007340. [CrossRef] [PubMed]

9136

http://dx.doi.org/10.2337/dc12-0033
http://www.ncbi.nlm.nih.gov/pubmed/22723581
http://dx.doi.org/10.1017/S0007114512002966
http://www.ncbi.nlm.nih.gov/pubmed/22849970
http://dx.doi.org/10.1016/j.jhep.2013.02.012
http://www.ncbi.nlm.nih.gov/pubmed/23485520
http://dx.doi.org/10.1053/j.gastro.2009.01.048
http://www.ncbi.nlm.nih.gov/pubmed/19208352
http://dx.doi.org/10.3945/ajcn.110.007674
http://www.ncbi.nlm.nih.gov/pubmed/21367948
http://dx.doi.org/10.1002/hep.24242
http://www.ncbi.nlm.nih.gov/pubmed/21400557
http://dx.doi.org/10.1016/j.diabet.2010.03.003
http://www.ncbi.nlm.nih.gov/pubmed/20483648
http://dx.doi.org/10.2337/db13-1622
http://www.ncbi.nlm.nih.gov/pubmed/24550191
http://dx.doi.org/10.1053/j.gastro.2013.07.012
http://www.ncbi.nlm.nih.gov/pubmed/23872500
http://dx.doi.org/10.1017/S0007114509992819
http://www.ncbi.nlm.nih.gov/pubmed/19930762
http://dx.doi.org/10.1017/S000711451000574X
http://www.ncbi.nlm.nih.gov/pubmed/21396140
http://dx.doi.org/10.3945/ajcn.111.022533
http://www.ncbi.nlm.nih.gov/pubmed/22205311
http://dx.doi.org/10.1139/apnm-2012-0322
http://www.ncbi.nlm.nih.gov/pubmed/23724887
http://dx.doi.org/10.1002/oby.20377
http://www.ncbi.nlm.nih.gov/pubmed/23512506
http://dx.doi.org/10.1016/j.jhep.2011.06.010
http://www.ncbi.nlm.nih.gov/pubmed/21723839
http://dx.doi.org/10.1159/000360511
http://www.ncbi.nlm.nih.gov/pubmed/25034293
http://dx.doi.org/10.1016/j.cgh.2008.08.012
http://www.ncbi.nlm.nih.gov/pubmed/18986848
http://dx.doi.org/10.1002/14651858.CD007340.pub2
http://www.ncbi.nlm.nih.gov/pubmed/20091629


Nutrients 2015, 7, 9127–9138

46. Sevastianova, K.; Kotronen, A.; Gastaldelli, A.; Perttila, J.; Hakkarainen, A.; Lundbom, J.; Suojanen, L.;
Orho-Melander, M.; Lundbom, N.; Ferrannini, E.; et al. Genetic variation in PNPLA3 (adiponutrin) confers
sensitivity to weight loss-induced decrease in liver fat in humans. Am. J. Clin. Nutr. 2011, 94, 104–111.
[CrossRef] [PubMed]

47. Shen, J.; Wong, G.L.; Chan, H.L.; Chan, R.S.; Chan, H.Y.; Chu, W.C.; Cheung, B.H.; Yeung, D.K.; Li, L.S.;
Sea, M.M.; et al. PNPLA3 gene polymorphism and response to lifestyle modification in patients with
nonalcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2015, 30, 139–146. [CrossRef] [PubMed]

48. Bian, H.; Hakkarainen, A.; Lundbom, N.; Yki-Jarvinen, H. Effects of dietary interventions on liver volume
in humans. Obesity 2014, 22, 989–995. [CrossRef] [PubMed]

49. Vessby, B.; Uusitupa, M.; Hermansen, K.; Riccardi, G.; Rivellese, A.A.; Tapsell, L.C.; Nälsén, C.; Berglund, L.;
Louheranta, A.; Rasmussen, B.M.; et al. Substituting dietary saturated for monounsaturated fat impairs
insulin sensitivity in healthy men and women: The KANWU Study. Diabetologia 2001, 44, 312–319.
[CrossRef] [PubMed]

50. Riccardi, G.; Giacco, R.; Rivellese, A.A. Dietary fat, insulin sensitivity and the metabolic syndrome.
Clin. Nutr. 2004, 23, 447–456. [CrossRef] [PubMed]

51. Jebb, S.A.; Lovegrove, J.A.; Griffin, B.A.; Frost, G.S.; Moore, C.S.; Chatfield, M.D.; Bluck, L.J.; Williams, C.M.;
Thomas AB Sanders on behalf of the RISCK Study Group. Effect of changing the amount and type of fat
and carbohydrate on insulin sensitivity and cardiovascular risk: The RISCK (Reading, Imperial, Surrey,
Cambridge, and Kings) trial. Am. J. Clin. Nutr. 2010, 92, 748–758. [CrossRef] [PubMed]

52. Tappy, L.; Le, K.A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev. 2010,
90, 23–46. [CrossRef] [PubMed]

53. Chung, M.; Ma, J.; Patel, K.; Berger, S.; Lau, J.; Lichtenstein, A.H. Fructose, high-fructose corn syrup,
sucrose, and nonalcoholic fatty liver disease or indexes of liver health: A systematic review and
meta-analysis. Am. J. Clin. Nutr. 2014, 100, 833–849. [CrossRef] [PubMed]

54. Le, K.A.; Ith, M.; Kreis, R.; Faeh, D.; Bortolotti, M.; Tran, C.; Boesch, C.; Tappy, L. Fructose overconsumption
causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of
type 2 diabetes. Am. J. Clin. Nutr. 2009, 89, 1760–1765. [CrossRef] [PubMed]

55. Theytaz, F.; Noguchi, Y.; Egli, L.; Campos, V.; Buehler, T.; Hodson, L.; Patterson, B.W.; Nishikata, N.;
Kreis, R.; Mittendorfer, B.; et al. Effects of supplementation with essential amino acids on intrahepatic lipid
concentrations during fructose overfeeding in humans. Am. J. Clin. Nutr. 2012, 96, 1008–1016. [CrossRef]
[PubMed]

56. Stanhope, K.L.; Schwarz, J.M.; Keim, N.L.; Griffen, S.C.; Bremer, A.A.; Graham, J.L.; Hatcher, B.; Cox, C.L.;
Dyachenko, A.; Zhang, W.; et al. Consuming fructose-sweetened, not glucose-sweetened, beverages
increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans.
J. Clin. Investig. 2009, 119, 1322–1334. [CrossRef] [PubMed]

57. Sanyal, A.J.; Chalasani, N.; Kowdley, K.V.; McCullough, A.; Diehl, A.M.; Bass, N.M.;
Neuschwander-Tetri, B.A.; Lavine, J.E.; Tonascia, J.; Unalp, A.; et al. Pioglitazone, vitamin E, or
placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 2010, 362, 1675–1685. [CrossRef] [PubMed]

58. Lavine, J.E.; Schwimmer, J.B.; van Natta, M.L.; Molleston, J.P.; Murray, K.F.; Rosenthal, P.; Abrams, S.H.;
Scheimann, A.O.; Sanyal, A.J.; Chalasani, N.; et al. Effect of vitamin E or metformin for treatment of
nonalcoholic fatty liver disease in children and adolescents: The TONIC randomized controlled trial. Jama
2011, 305, 1659–1668. [CrossRef] [PubMed]

59. Jacome-Sosa, M.M.; Parks, E.J. Fatty acid sources and their fluxes as they contribute to plasma triglyceride
concentrations and fatty liver in humans. Curr. Opin. Lipidol. 2014, 25, 213–220. [CrossRef] [PubMed]

60. Donnelly, K.L.; Smith, C.I.; Schwarzenberg, S.J.; Jessurun, J.; Boldt, M.D.; Parks, E.J. Sources of fatty acids
stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Investig.
2005, 115, 1343–1351. [CrossRef] [PubMed]

61. Kotronen, A.; Juurinen, L.; Tiikkainen, M.; Vehkavaara, S.; Yki-Jarvinen, H. Increased liver fat, impaired
insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology
2008, 135, 122–130. [CrossRef] [PubMed]

62. Gastaldelli, A.; Cusi, K.; Pettiti, M.; Hardies, J.; Miyazaki, Y.; Berria, R.; Buzzigoli, E.; Sironi, A.M.;
Cersosimo, E.; Ferrannini, E.; et al. Relationship between hepatic/visceral fat and hepatic insulin resistance
in nondiabetic and type 2 diabetic subjects. Gastroenterology 2007, 133, 496–506. [CrossRef] [PubMed]

9137

http://dx.doi.org/10.3945/ajcn.111.012369
http://www.ncbi.nlm.nih.gov/pubmed/21525193
http://dx.doi.org/10.1111/jgh.12656
http://www.ncbi.nlm.nih.gov/pubmed/25040896
http://dx.doi.org/10.1002/oby.20623
http://www.ncbi.nlm.nih.gov/pubmed/24115747
http://dx.doi.org/10.1007/s001250051620
http://www.ncbi.nlm.nih.gov/pubmed/11317662
http://dx.doi.org/10.1016/j.clnu.2004.02.006
http://www.ncbi.nlm.nih.gov/pubmed/15297079
http://dx.doi.org/10.3945/ajcn.2009.29096
http://www.ncbi.nlm.nih.gov/pubmed/20739418
http://dx.doi.org/10.1152/physrev.00019.2009
http://www.ncbi.nlm.nih.gov/pubmed/20086073
http://dx.doi.org/10.3945/ajcn.114.086314
http://www.ncbi.nlm.nih.gov/pubmed/25099546
http://dx.doi.org/10.3945/ajcn.2008.27336
http://www.ncbi.nlm.nih.gov/pubmed/19403641
http://dx.doi.org/10.3945/ajcn.112.035139
http://www.ncbi.nlm.nih.gov/pubmed/23034968
http://dx.doi.org/10.1172/JCI37385
http://www.ncbi.nlm.nih.gov/pubmed/19381015
http://dx.doi.org/10.1056/NEJMoa0907929
http://www.ncbi.nlm.nih.gov/pubmed/20427778
http://dx.doi.org/10.1001/jama.2011.520
http://www.ncbi.nlm.nih.gov/pubmed/21521847
http://dx.doi.org/10.1097/MOL.0000000000000080
http://www.ncbi.nlm.nih.gov/pubmed/24785962
http://dx.doi.org/10.1172/JCI23621
http://www.ncbi.nlm.nih.gov/pubmed/15864352
http://dx.doi.org/10.1053/j.gastro.2008.03.021
http://www.ncbi.nlm.nih.gov/pubmed/18474251
http://dx.doi.org/10.1053/j.gastro.2007.04.068
http://www.ncbi.nlm.nih.gov/pubmed/17681171


Nutrients 2015, 7, 9127–9138

63. Horowitz, J.F.; Coppack, S.W.; Paramore, D.; Cryer, P.E.; Zhao, G.; Klein, S. Effect of short-term fasting on
lipid kinetics in lean and obese women. Am. J. Physiol. 1999, 276, E278–E284. [PubMed]

64. Rossmeislova, L.; Malisova, L.; Kracmerova, J.; Stich, V. Adaptation of human adipose tissue to hypocaloric
diet. Int. J. Obes. 2013, 37, 640–650. [CrossRef] [PubMed]

65. Jensen, M.D. Diet effects on fatty acid metabolism in lean and obese humans. Am. J. Clin. Nutr. 1998,
67 (Suppl. 3), 531S–534S. [PubMed]

66. Schwarz, J.M.; Neese, R.A.; Turner, S.; Dare, D.; Hellerstein, M.K. Short-term alterations in carbohydrate
energy intake in humans. Striking effects on hepatic glucose production, de novo lipogenesis, lipolysis,
and whole-body fuel selection. J. Clin. Investig. 1995, 96, 2735–2743. [CrossRef] [PubMed]

67. Chong, M.F.; Hodson, L.; Bickerton, A.S.; Roberts, R.; Neville, M.; Karpe, F.; Frayn, K.N.;
Fielding, B.A. Parallel activation of de novo lipogenesis and stearoyl-CoA desaturase activity after 3 d
of high-carbohydrate feeding. Am. J. Clin. Nutr. 2008, 87, 817–823. [PubMed]

© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open
access article distributed under the terms and conditions of the Creative Commons by
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

9138

http://www.ncbi.nlm.nih.gov/pubmed/9950787
http://dx.doi.org/10.1038/ijo.2012.80
http://www.ncbi.nlm.nih.gov/pubmed/22641066
http://www.ncbi.nlm.nih.gov/pubmed/9497165
http://dx.doi.org/10.1172/JCI118342
http://www.ncbi.nlm.nih.gov/pubmed/8675642
http://www.ncbi.nlm.nih.gov/pubmed/18400702

	Introduction 
	Effect of Different Diets on NAFLD and Insulin Sensitivity 
	Effect of Type of Fat on NAFLD and Insulin Sensitivity 
	Effect of Type of Carbohydrate on NAFLD and Insulin Sensitivity 
	Effect of Other Nutritional Interventions on NAFLD and Insulin Sensitivity 
	Mechanisms Underlying Nutritional Modulation of Liver Fat Content in Humans 
	Concluding Remarks 

