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Abstract: Lipid-soluble molecules share several aspects of their physiology due to their 

common adaptations to a hydrophilic environment, and may interact to regulate their action 

in a tissue-specific manner. Dietary conjugated linoleic acid (CLA) is a fatty acid with a 

conjugated diene structure that is found in low concentrations in ruminant products and 

available as a nutritional supplement. CLA has been shown to increase tissue levels of 

retinol (vitamin A alcohol) and its sole specific circulating carrier protein retinol-binding 

protein (RBP or RBP4). However, the precise mechanism of this action has not been 

elucidated yet. Here, we provide a summary of the current knowledge in this specific area 

of research and speculate that retinol and CLA may compete for catabolic pathways 

modulated by the activity of PPAR-α and RXR heterodimer. We also present preliminary 
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data that may position PPAR-α at the crossroads between the metabolism of lipids and 

vitamin A. 

Keywords: conjugated linoleic acid (CLA); retinol; vitamin A; retinol binding  
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1. Introduction 

Conjugated linoleic acid (CLA) is a group of unusual fatty acids containing conjugated double 

bonds. The CLA present in mammalian tissues is derived from the diet or, in a smaller amount, from 

the intestinal flora [1]. CLA is produced by bacteria within the rumen or upon δ-9 desaturation of 

vaccenic acid, another fatty acid produced by ruminal bacteria [2]. Therefore, the main dietary sources 

of CLA are dairy products and the meat of ruminants [3]. 

The predominant “natural” isomer of CLA, cis 9, trans 11 (CLA c9, t11), exists in food among a 

plethora of other isomers that are present in much lower concentrations. After the discovery that CLA 

possesses anticarcinogenic activity [4], the need to produce large amounts of CLA prompted  

the production of synthetic CLA by alkali isomerization of linoleic acid [5]. This process resulted  

in the formation of several isomers, among which the CLA c9, t11 and the CLA t10, c12 were  

the most abundant. With such CLA preparations, several studies were carried out to investigate its  

anti-carcinogenic, anti-atherogenic, and anti-adiposity biological activities [6]. Some of the biological 

properties of CLA are specifically attributed to the t10, c12 isomer. For instance, CLA t10, c12 has the 

unique capability to inhibit lipid accumulation in adipose tissue, likely through downregulation of the 

peroxisome proliferator-activated receptor-γ (PPAR-γ) via activation of upstream signals which may 

induce integrated stress response (ISR), free fatty acid release and activation of NFκB and MAPKs that 

may directly antagonize PPAR-γ activity [7]. In addition, it has been shown that activation of AMPK 

by t10, c12 CLA may also be involved in adipocyte lipid reduction [8]. In contrast, CLA properties 

linked to the activation of PPAR-α are equally shared by the c9, t11 and t10, c12 CLA isomers [9], and 

it seems not directly correlated to the antiadiposity activity exerted by t10, c12 CLA [10]. 

PPARs are ligand-activated nuclear receptors involved in the transcriptional regulation of lipid and 

energy homeostasis [11]. Three isoforms are known with a high degree of sequence conservation 

across various species: PPAR-α, PPAR-β/δ and PPAR-γ [11]. In humans and mice, the three PPAR 

isoforms are encoded by separate genes on different chromosomes [12]. PPARs function as sensors  

for fatty acids and fatty acid derivatives, and control metabolic pathways involved in energy  

homeostasis [13]. The three PPAR isoforms exhibit distinct and non-interchangeable functional roles 

in energy metabolism [12]. PPAR-α predominantly regulates lipid catabolism. In the liver, PPAR-α 

regulates mitochondrial, peroxisomal, and microsomal fatty acid oxidation, as well as senses the influx 

of fatty acids during fasting to enhance the fatty acid burning capacity [14]. Activation of PPAR-β/δ 

also induces expression of genes required for fatty acid oxidation and energy dissipation in skeletal 

muscle and adipose tissue, which in turn lead to improved lipid profiles and reduced adiposity [15].  
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In the liver, PPAR-β/δ can be activated by plasma free fatty acids influxed during fasting [16]. PPAR-γ 

is an essential regulator of adipogenesis and fat storage in adipocytes [17]. 

Not all fatty acids have similar binding affinity for PPARs [18]. Therefore, modulation of PPAR 

activity is dependent on the intracellular total fatty acid concentrations as well as their specific profile. 

CLA is a strong ligand of PPARα [9] and is believed to exert some of its metabolic effects by 

activating this receptor [6]. In competitive binding scintillation proximity assays, CLA isomers bind to 

PPARα with submicromolar IC50 values (140 nM to 400 nM) [9]. Although one cannot directly 

compare the IC50s obtained in different studies, due to different methodologies and/or receptor 

constructs utilized, CLA isomers appear to have an IC50 similar to that of the most avid fatty acid 

ligands of PPARα reported, such as that of oxygenated eicosanoids [19]. Interestingly, most of the 

naturally occurring fatty acids have lower affinity for PPARα (IC50 ~1 μM [20]). 

In an attempt to evaluate the link between CLA metabolism and mammary anticarcinogenic 

activity, we serendipitously discovered that tissue levels of retinol, vitamin A alcohol derivative, were 

increased in rats fed a mixture of CLA isomers (primarily c9, t11 and t10, c12) [21]. This prompted us 

to investigate the possible mechanism(s) of action of enhanced retinol levels and to determine whether 

the altered vitamin A levels are physiologically significant. 

2. Vitamin A Metabolism and Functions 

Vitamin A is an essential nutrient that controls many crucial biological functions such as vision, 

reproduction, development, growth, and immunity [22,23]. Vitamin A exerts its functions through 

oxidized metabolites of retinol: retinaldehyde and retinoic acid. Retinaldehyde is involved in the visual 

cycle [24], and retinoic acid regulates the expression of many target genes through receptor-mediated 

events [25–30]. In animals, vitamin A and its derivatives are derived from animal products as 

preformed dietary vitamin A (retinyl esters, retinol and very small amounts of retinoic acid), or as  

β-carotene from vegetables and fruits [31]. 

Within the intestinal mucosa all retinol, regardless of its dietary origin, is enzymatically  

re-esterified with long-chain fatty acids. Together with other dietary lipids, the newly synthesized 

retinyl esters are packaged into chylomicrons and secreted into the lymphatic system [32]. Once in the 

general circulation, nascent chylomicrons undergo lipolysis of the triglycerides giving rise to free fatty 

acids and chylomicron remnants [33]. Approximately 75% of chylomicron-retinoids are cleared by the 

liver, the major site of vitamin A storage and metabolism [34,35]. The remaining 25% are cleared by 

extrahepatic tissues [36]. 

To meet tissue vitamin A needs the liver secretes retinol into the circulation bound to its specific 

transport protein, retinol-binding protein (RBP or RBP4) [37,38]. RBP is a 21 kDa protein with a 

single binding site for one molecule of all-trans-retinol. The major function of RBP is to mobilize 

hepatic vitamin A stores and deliver retinol to peripheral tissues [37,39]. It is mainly, but not 

exclusively, synthesized within hepatocytes [37,38]. RBP circulates in the blood as a 1:1 molar 

complex with another serum protein, transthyretin (TTR) [40]. In the fasting circulation, retinol-RBP 

accounts for approximately 99% of all serum retinoids. In the postprandial circulation, the 

concentration of chylomicrons and chylomicron remnants with retinoids can greatly exceed the 
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concentration of plasma retinol. Blood levels of retinol-RBP in both humans and animals are 

maintained very constant, except in extreme cases of nutrition and in certain disease states [22,41]. 

3. Influence of Dietary CLA on Retinol and RBP Tissue Levels 

In the first report on the effects of dietary CLA on mammalian tissue, we found increased  

retinol levels in plasma, mammary tissue and liver of female rats fed increasing concentration of CLA 

(0%–2%) [21]. More specifically both retinol and retinyl ester levels were elevated upon CLA feeding, 

with only liver retinol levels increasing in a CLA dose-dependent manner [21]. In order to meet tissue 

retinoid needs, the liver secretes retinol-RBP into the bloodstream [37]. We first became interested in 

the influence of CLA on RBP when a report demonstrated an increase of RBP mRNA in pig liver  

upon CLA feeding [42]. We therefore investigated whether the peculiar effect of dietary CLA on 

retinol metabolism was RBP-mediated. Additionally, in contrast to the majority of the literature data 

obtained by feeding laboratory animals with an equimolar mixture of CLA c9, t11 and CLA t10, c12, 

we sought to establish whether CLA c9, t11 and CLA t10, c12 had distinct and/or common effects on 

vitamin A metabolism. 

We performed our study using wild-type and RBP knockout (RBP KO) mice chronically fed with 

separate enriched preparations of the two CLA isomers [43]. We showed that consumption of CLA c9, 

t11 or CLA t10, c12 induced hepatic retinyl ester accumulation in wild-type mice [43]. Only the CLA 

t10, c12 isomer increased hepatic retinol secretion and elevated the levels of serum retinol and its 

carrier RBP. In addition, we demonstrated that chronic intake of CLA t10, c12 redistributed retinoids 

from the hepatic stores toward the adipose tissue via RBP [43]. RBP KO mice did not exhibit 

increased serum retinol levels or redistribution of hepatic stores when fed the CLA t10, c12, 

confirming the crucial role of RBP in mediating the changes of vitamin A metabolism [43]. Within this 

study, we also provided evidence that dietary CLA t10, c12 could stimulate hepatic retinoid oxidation, as 

indicated by the upregulation of the mRNA levels of Cyp26A1 and Cyp2c39 in the liver of the  

wild-type mice. These two enzymes are members of the cytochrome P450 (CYP) family of  

enzymes and contribute to retinoid hemostasis by oxidizing retinoic acid into more polar inactive 

metabolites [44,45]. It is interesting to note that the expression of CYP isoforms is regulated by  

PPAR-α [46] of which CLA isomers are strong ligands [9]. Specifically, CLA has been shown to 

increase CYP4A1 expression in liver [47]. Furthermore, the chronic feeding of mice (and rats) with 

CLA resulted in a dramatic reduction of adipose tissue and a concomitant massive fat deposition in the 

liver [48]. Based on this evidence, we speculated that the stimulatory effect of dietary CLA t10, c12 on 

hepatic retinol secretion and probably oxidation of retinoids may be part of a compensatory 

mechanism of the tissue to counter the excessive accumulation of lipids, including retinoids. 

Remarkably, serum RBP levels have been shown to be elevated in patients with nonalcoholic fatty 

liver disease [49]. 

Short-term intake of CLA also alters vitamin A metabolism. We demonstrated this by administering 

a bolus dose of radiolabeled retinol in combination with either CLA c9, t11 or CLA t10, c12 to both 

WT and RBP KO mice [50]. Upon ingestion of either CLA isomer hepatic accumulation of retinoids 

took place rapidly (only three hours after gavage), and recently ingested vitamin A was rapidly  

re-secreted from the liver mainly in the form of retinol likely bound to RBP [50]. In addition, the use 



Nutrients 2014, 6 1266 

 

of an inhibitor of the clearance of chylomicrons suggested that CLA intake rapidly enhances intestinal 

absorption of dietary vitamin A, and that the vitamin A that accumulates in the liver upon CLA intake 

may be of intestinal origin [50]. 

Overall, these studies showed a dramatic effect of dietary CLA on murine retinoid metabolism. 

However, the molecular details of such interference await a study that would full unravel them. 

How does CLA regulate the secretion of the complex retinol-RBP? How does CLA seem to 

promote hepatic retinoid oxidation and intestinal vitamin A absorption? These and other questions 

need to be answered in order to understand the real biological implications of this nutrient-nutrient 

interaction. In the paragraph below we speculate on how some of these interactions may take place. 

4. Is PPAR-α the Key Regulator of CLA and Retinoid Metabolic Routes? 

Lipid-soluble molecules share several aspects of their physiology due to common adaptations  

that allow them to function in a hydrophilic environment. Absorption, transport, tissue storage, 

receptor-binding activities, metabolism and catabolism need specific strategies to overcome 

lipophilicity and differences in polarity. Molecules that share these strategies include dietary vitamin A 

and fatty acids. Their biological functions are exerted through binding to specific nuclear receptors. 

Interestingly, the fatty acid receptor [51] PPAR-α and the retinoid X receptor, RXR, must form 

heterodimers to regulate gene expression, implying that their action is strictly regulated by the 

intracellular concentration of both fatty acids and retinoids. While it is clear that fatty acids are the 

ligands for PPARα [52], it is still debated which are the endogenous ligands of RXR [53]. The  

9-cis isomer of retinoic acid was initially considered the endogenous ligand of RXR, but the inability 

to detect this compound in vivo in all the tissues has raised some concerns. Interestingly, it has been 

demonstrated that several fatty acids can also bind this nuclear receptor at low microM [54], which 

may enhance the transcriptional activity of RXR-PPARs heterodimer. 

RXR activation has been shown to enhance catabolic pathways regulated by PPAR-α, including the 

catabolism of lipid molecules such as eicosanoids via peroxisomal β-oxidation, and xenobiotics, 

retinoids and fatty acids by the activity of the CYP enzymes [51,55]. It is known that catabolism of 

CLA is predominantly mediated by peroxisomal β-oxidation, while retinoids are preferentially 

catabolized via the action of the CYP enzymes [45]. However, there is solid evidence indicating that 

different lipid molecules compete for these same two pathways. For example, it has been clearly 

shown that CLA and isoprostanes compete for peroxisomal β-oxidation, [56] and competition for CYP 

action has been well demonstrated between several drugs and alcohol [57]. We hypothesize that a 

competition for common catabolic pathways activated by PPAR-α may explain, at least in part, the 

interference between dietary CLA and tissue retinoid metabolism. Preliminary data from our 

laboratories seem to support this possibility. Feeding wild-type mice with WY-14,643 (0.01%), a 

potent synthetic PPAR-α inducer [58], dramatically decreased liver retinol and retinyl esters content 

(Table 1), possibly due to an increased PPAR-α-mediated CYP activity, even though we cannot rule 

out that the decrease may be related to other causes, such as decreased dietary uptake and/or increased 

mobilization to extrahepatic tissues. While a decrease of retinyl esters may be ascribed to a possible 

increase in retinyl ester hydrolase activity. In contrast, when mice were fed a 1:1 mixture of CLA c9, 

t11 and CLA t10, c12 (1.5%), known endogenous PPAR-α ligands, hepatic retinoid levels increased 
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(Table 1), as previously shown [21]. This discrepancy could be explained by a competition for the 

same catabolic pathway that takes place between retinoids and CLA, but not WY-14,643. Even though 

it has been shown that fatty acids are metabolized by the CYP enzymes [59], to our knowledge there is 

no data on CLA as substrate for these enzymes. Therefore, the competition for CYP enzymes proposed 

above is only a potential possibility and further studies should be carried out to prove that it actually 

takes place. We speculate that if CLA undergoes degradation by CYP action, which is likely 

stimulated by CLA through PPAR-α activation [47], hepatic retinoids would indeed accumulate. To 

our knowledge, it is not known how WY-14,643 is metabolized within the body. However, given the 

extremely low concentration of this drug in the diet fed to our mice, we speculate that it is unlikely that 

WY-14,643 could compete with retinoids for degradation by CYP activity 

Table 1. Retinol and retinyl esters concentration in liver of female mice fed for 42 weeks 

control diet (CTRL), or CTRL diet + 1.5% of conjugated linoleic acid (CLA) (mixture 1:1 

of c9, t11 and t10, c12), or CTRL diet + 0.01% of WY-14,643. 

Treatment 
Retinol Retinyl Esters 

μg/g of Liver 

CTRL 4.69 ± 0.73 a 273.69 ± 67.37 a 

CLA 6.68 ± 2.03 a 470.64 ± 46.06 b 

WY-14,643 1.41 ± 0.45 b 75.74 ± 14.23 c 

a,b,c Different letters denote significant differences (p < 0.05) with one-way ANOVA and Tukey post-hoc analysis. 

It is interesting that PPAR-α could directly regulate RBP expression, at least in certain  

tissues [60]. This data suggests that the ability of CLA to increase the levels of hepatic and circulating 

RBP could be the result of a direct action of PPAR-α on RBP levels. On the other hand, in a sort of 

positive feedback mechanism, the increase of RBP levels may potentially enhance retinoid availability 

for RXR-PPARα action, by promoting retinol transport to the periphery of the body. In this sense, RBP 

could be essential to amplify the PPAR-α-mediated metabolic pathways, including those involved in 

energy homeostasis. We have evidence that RBP could indeed play such an important role. 

We have recently shown that PPAR-α activation in rodent brain slices increases the biosynthesis of 

the endocannabinoid congeners, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) [61]. 

Interestingly, both OEA and PEA also induce PPAR-α affecting energy homeostasis [62,63], probably 

by sustaining PPARα activity with a positive feedback. Also, PEA is a TRPV1 ligand [64]. Our 

preliminary data show that RBP KO mice have lower levels of OEA and PEA in the liver (Figure 1A) 

and adipose tissue (Figure 1B) when compared to age- and sex-matched wild-type animals. Whether 

CLA feeding, through induction PPAR-α activity and thus RBP expression, also enhances PEA and 

OEA tissue levels is not known at the moment and it would be an important question to address. 

5. Conclusions 

The influence of dietary CLA on retinol metabolism is yet another example of nutrient-nutrient 

interaction that points to the difficulties in isolating and/or claiming the nutritional property of a single 

dietary component, without taking into account all the possible interactions with other nutrients. Once 

all the molecular mechanisms of the interaction between CLA and retinol are elucidated, novel dietary 
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strategies can be explored to regulate retinol and fatty acid metabolism by modulating the heterodimer 

PPAR-α-RXR activities in different tissues to promote health in humans. 

Figure 1. Palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) levels in liver (A) 

and adipose tissue (B) of RBP−/− or wild type mice. * significant difference (p < 0.05) with 

t-student test. 
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