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Abstract: Polyphenols and fermentable fibers have shown favorable effects on gut microbiota compo-
sition and metabolic function. However, few studies have investigated whether combining multiple
fermentable fibers or polyphenols may have additive beneficial effects on gut microbial states. Here,
an in vitro fermentation model, seeded with human stool combined from 30 healthy volunteers, was
supplemented with blends of polyphenols (PP), dietary fibers (FB), or their combination (PPFB) to
determine influence on gut bacteria growth dynamics and select metabolite changes. PP and FB
blends independently led to significant increases in the absolute abundance of select beneficial taxa,
namely Ruminococcus bromii, Bifidobacterium spp., Lactobacillus spp., and Dorea spp. Total short-chain
fatty acid concentrations, relative to non-supplemented control (F), increased significantly with PPFB
and FB supplementation but not PP. Indole and ammonia concentrations decreased with FB and
PPFB supplementation but not PP alone while increased antioxidant capacity was only evident
with both PP and PPFB supplementation. These findings demonstrated that, while the independent
blends displayed selective positive impacts on gut states, the combination of both blends provided an
additive effect. The work outlines the potential of mixed substrate blends to elicit a broader positive
influence on gut microbial composition and function to build resiliency toward dysbiosis.
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1. Introduction

Gut microbiome community composition and function is influenced by dietary intake,
with diet–microbiome interactions linked with maintaining gut homeostasis and limiting
dysbiosis associated with inflammatory conditions [1]. As such, there is substantial in-
terest in developing dietary strategies that can improve health by favorably modulating
the gut microbiota and by promoting the growth of beneficial taxa and production of
bacterial-derived metabolites [2]. Of particular interest are dietary fibers and polyphenols,
which have gained traction as nutritional supplements that positively impact gut microbial
community dynamics [3–5]. Large-molecular-weight polyphenols and fermentable fibers
are poorly absorbed by the upper digestive tract, reaching the large intestine with minimal
degradation by digestive enzymes [6,7].

The majority of previous studies have focused on individual polyphenol classes (e.g.,
cranberry proanthocyanidins) and fiber constituents (e.g., resistant starch), which have
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provided significant data on the effects of individual compounds on gut microbial com-
position, the production of beneficial metabolites, and the reduction of pro-inflammatory
metabolites [8,9]. Studies exploring “whole foods” like fruits, vegetables, and whole grains
to understand how natural combinations of polyphenols and fibers positively impact gut
microbiota and host gut health have also emerged without distinction to the specific fiber
and/or polyphenol sources [10]. Focused studies understanding how specific blends of
polyphenol and fibers, from varying dietary sources, impact bacteria diversity and metabo-
lite production are limited, and a strategic rationale for the combination of polyphenols and
fibers requires additional research to understand the potential for combinatorial effects on
gut health. This is of relevance in situations where whole-food consumption is not always
practical such as in a military operational setting.

In the current study, we have explored, through in vitro fermentation, the impact of
polyphenol (PP) and fiber (FB) blends on gut microbial dynamics, pro/anti-inflammatory
metabolite production, and antioxidant capacity. The PP and FB blends were chosen
to incorporate compounds with a diversity of structures that, individually, have been
shown to beneficially impact gut microbiota composition and function. The goal was to
elicit broader favorable effects on gut microbiota community composition and metabolic
activity than any individual fiber or polyphenol source without introducing antagonistic
effects. The PP blend contained blueberry, cranberry, green tea, and cocoa powders/extracts
providing a diverse range of polyphenol structures that have been shown to positively
impact gut states, in particular antioxidant capacity [11–14]. Constituents of the FB blend
were chosen to incorporate a diversity of fiber structures that beneficially impact gut
microbiota composition and function, particularly through the stimulation of short-chain
fatty acids (SCFAs) and beneficial bacterial taxa [15,16]. The FB blend contained high-
amylose maize starch and two prebiotic substrates, galacto-oligosaccharides (GOS) and
oligofructose-enriched inulin, which provided varied polysaccharide types and lengths. An
in vitro model capable of simulating the physiological conditions of the ascending domain
of the large intestine [17] was employed to provide a broad experimental capacity. This
allowed us to study community dynamics and rates of metabolite production as a function
of dietary supplementation in a systematic manner to understand blend-specific effects on
gut microbial dynamics [18]. The hypothesis was that the combination of the polyphenol
and fiber blends would promote synergistic outcomes for the growth of beneficial taxa,
production of beneficial metabolites, and reduction of pro-inflammatory compounds and
bacterial taxa associated with dysbiosis.

2. Materials and Methods
2.1. Study Population and Sample Collection

Fecal samples were sourced from a previous study, collected from 30 healthy adults
(habitual diet control group) aged 18–62 years and without obesity (BMI ≤ 30 kg·m−2) who
were participating in a randomized controlled trial investigating the effects of consuming a
diet of military food rations on the gut microbiota (clinicaltrials.gov NCT02423551) [17,19,20].
Participants had not used oral antibiotics or had colonoscopies within three months of
study participation, did not have histories of gastrointestinal disease or regular use of
medications impacting gastrointestinal function, and were not following a restrictive
diet or attempting to lose or gain weight. Additionally, participants were instructed to
discontinue use of any probiotic, prebiotic, or other dietary supplements at least two weeks
prior to beginning study participation. The study was reviewed and approved by the
US Army Research Institute of Environmental Medicine Institutional Review Board, and
all participants provided written informed consent prior to participation. Fecal sample
collection was adapted from [21] and protocol has been described in detail in Pantoja-
Feliciano et al. [22].
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2.2. Blend Formulations

For supplementation, polyphenols were extracted from four agricultural products;
cocoa seed extract (CocoActiv®; 45.1% total phenolics dry wt. Cocoa Extract (CE), Na-
turex, Avignon, France), wild blueberry powder (4.0% total phenolics dry wt. Gallic Acid
Equivalents (GAEs), Naturex, Avignon, France), cranberry extract (Cystricran®; 57.2% total
phenolics dry wt. GAEs, Naturex, Avignon, France), and green tea leaf extract (100% total
phenolics dry wt. GAEs, Naturex, Avignon, France) were selected. Three fermentable
fiber sources were also selected: Orafti® Synergy1 (93.2% oligofructose-enriched inulin
by dry wt., Beneo GmbH, Mannheim, Germany), Bimuno-galactooligosaccharides® (85%
GOS (w/w), Clasado Biosciences, Reading, UK), and Hi-Maize® 260 (59% resistant starch
w/w, Ingredion, Inc., Bridgewater, NJ, USA). Select polyphenols and fiber sources were
combined in ratios comparable to that used within the human study referenced above,
either in alcohol-solubilized form (polyphenols) or fermentation medium (fibers), to pro-
vide a dose of 2 g polyphenol/day and 30 g fiber/day, respectively (Table S1). Doses
were chosen to align with a human study assessing the effects of fermentable fiber and
polyphenol supplementation on intestinal barrier function during environmental stress
(clinicaltrials.gov identifier: NCT04111263). The supplemented blends were given the
designations of PP for the polyphenol blend and FB for the fiber blend. The combination of
the two blends was given the designation PPFB.

2.3. Study Design and Supplementation Parameters

An overview of the fermentation study design can be found in Figure 1. Parallel batch
fermentations (n = 3) were designed to include vessels for blend-specific supplementation,
non-supplemented (fecal-only, F), and fecal-deficient (medium-only, NF) using an HEL
BioXplorer 100 (HEL Group, Borehamwood, UK) 8-vessel parallel bioreactor simulating
the ascending colon (pH 5.5). The fermentation medium, Colonic Complex Medium (CCM)
was prepared based on Pantoja-Feliciano et al. [22] with slight modifications: addition of
resazurin (1 µg/L). The medium was added to the fermentation vessels (125 mL/vessel)
with pH, temperature, and oxidation–reduction potential (Applikon Biotechnologies, Foster
City, CA, USA) probes attached. Vessels were autoclaved for 35 min at 120 psig and at-
tached to the bioreactor for overnight equilibration under continuous oxygen-free nitrogen
(20 psig, 5 mL/min) at 37 ◦C and with constant agitation (450 rpm). After equilibrium, pH
values were corrected for calibration drift and pH control was initiated (pH 5.5 ± 0.1) with
bioreactor-controlled adjustments using 1 N NaOH and 0.2 N HCl. Prior to supplementa-
tion, CCM volume equivalent to total supplementation volume was removed from each
vessel. PP solubilized in methanol was added to the appropriate vessels (5 mL/vessel) using
a syringe equipped with an 18-gauge needle and equilibrated overnight. After overnight
stabilization, fiber, suspended in CCM, was added to appropriate vessels (9 mL/vessel)
and vessels were allowed to stabilize for 30 min. Equal volumes of methanol and CCM
were added to non-supplemented vessels corresponding to PP and FB, respectively.

Fecal samples from 30 participants were thawed and pooled in serum bottles at 20%
w/v inside an anaerobic chamber (Coy Labs, Grass Lake, MI, USA) to generate fecal
inoculum prior to inoculation. Pooled fecal samples simulate a universal gut microbiome
and allow for increased diversity in the microbial population by maximizing species lower
in abundance from more subjects [23]. After vessel supplementation with PP, FB, or
PPFB, vessels were inoculated with pooled stool through headplate septum using syringes
equipped with 18-gauge needles. Fecal-deficient control vessels were inoculated with
sterile 0.1 M phosphate buffer pH 7.2 with 15% (w/v) glycerol. Vessels were sampled at 0,
5, 10, and 24 h, representing community lag (0 h), logarithmic (5 h, 10 h), and stationary
(24 h) growth phases, and sample aliquots were stored at −80 ◦C for further analysis.
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Figure 1. Schematic describing an overview of the experimental workflow.

2.4. Targeted Keystone Bacterial Taxon Analysis

DNA extractions were performed using the QIAMP Power Fecal Pro DNA Extrac-
tion Kit (QIAGEN Inc., Germantown, MD, USA). Quantification of DNA (ng/µL) was
performed using a Nanodrop One™ instrument (Thermo Fisher Scientific Inc., Waltham,
MA, USA). To determine absolute abundance, standard curves were generated using DNA
extracted from pure cultures of eight organisms purchased from ATCC (American Type
Culture Collection, Manassas, VA, USA): Bifidobacterium animalis subsp. lactis 700451, Lac-
tobacillus reuteri 23272, Eubacterium rectale 33656, Ruminococcus bromii 27255, Akkermansia
muciniphila BAA-835, Blautia hansenii 27752, Dorea spp. BAA-2280, and Faecalibacterium
prausnitzii 27768. The specific taxa were selected based on previous studies [17,22]. Briefly,
organism-specific quantitative polymerase chain reaction (qPCR) primers were selected for
the eight organisms included [17,24] (Table S2). Serial dilutions (10-fold) were prepared
using DNase- and RNase-free water, and 2× Forget-Me-Not qPCR Master Mix (Biotium,
Hayward, CA, USA) was added in the reactions. The iCycler iQ Optical module™ version
3.1 (Bio-Rad Laboratories, Hercules, CA, USA) software was used to quantitate each qPCR
reaction. For all reactions, target qPCR efficiency was between 80% and 100% [25]. Genome
size for each microorganism was used to calculate copy number for each organism [18,26].
Raw results from qPCR were log-transformed to calculate copy number/mL.

2.5. Metabolite Analysis

Fermentate concentrations of acetic, butyric, propionic, valeric, isovaleric, and isobu-
tyric acids were analyzed using the approach described by [27–29] with slight modifications.
Briefly, aliquots were thawed, homogenized, and acidified using 50% sulfuric acid. SCFAs
were then extracted using diethyl ether by removing the organic layer after centrifugation.
Ethyl butyric acid was added as an internal standard before storing at −80 ◦C until anal-
ysis. SCFAs were quantified using an Agilent 7890A GC system with Flame Ionization
Detection (Agilent J&W DB-FFAP column dimensions: 60 m × 250 µm × 0.25 µm, Agilent
Technologies, Santa Clara, CA, USA). Calibration standards were included for each fatty
acid and used for peak identification and quantification.
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2.6. Influence of Supplementation on Indole

Indole concentrations were measured in fermentates in triplicate using the Indole
Assay Kit, MAK326 (Sigma-Aldrich Co., St. Louis, MO, USA). Color intensities were
quantified at 565 nm, room temperature using Biotek Powerwave HT (Agilent Technologies,
Santa Clara, CA, USA). Indole concentrations were calculated from the slope of a standard
curve quantified by subtracting the plate blank from the standard values and graphing
against indole concentrations in slope–intercept form. The fecal-deficient sample readings
were subtracted to determine net concentrations of indole in corresponding fecal vessels.

2.7. Influence of Supplementation on Ammonia

Ammonia concentrations were measured in fermentates using the non-enzymatic
Ammonia Assay kit, ab102509 (Abcam Inc., Waltham, MA, USA). Prior to analysis, all
samples were filtered using 10 kD spin columns, ab93349 (Abcam Inc. Waltham, MA, USA)
to remove proteins and lower background levels of ammonia. Dilutions were required to
bring sample concentrations within the range of the standard curve (0 mM–10 mM). Plates
were incubated for 30 min at 37 ◦C with samples measured in triplicate. Color intensities
were quantified at 670 nm using Biotek Powerwave HT (Agilent Technologies, Santa Clara,
CA, USA). Interference from reagents present in the ammonium chloride standard was
compensated by subtracting standard-deficient wells from all readings. This was important
as background readings can be significant in fermentates. Unknown sample values were
calculated from the ammonium chloride standard curve slope. The fecal-deficient sample
readings were subtracted to determine net concentrations of ammonia in corresponding
fecal vessels.

2.8. Influence of Supplementation on Antioxidant Capacity

Antioxidant capacity was measured in fermentates using the Ferric Reducing An-
tioxidant Power (FRAP) assay kit, MAK369, Sigma-Aldrich Co. (St. Louis, MO, USA).
Prior to running this assay, an initial extraction step is required, using an acid–methanol
solution (prepared as 70:29.5:0.5 mixture of methanol:ultrapure water:1 M HCl). The acidic
conditions allow for the dissociation of Fe3+ from the protein complex. In this study, plates
were incubated at 37 ◦C for 60 min with samples measured in triplicate. Color intensities
were quantified at 594 nm using Biotek Powerwave HT (Agilent Technologies, Santa Clara,
CA, USA). Antioxidant capacity was calculated using a standard curve, after subtracting
the negative control, and plotting them using the slope–intercept form. The raw values
for the unknown samples were used to calculate unknown antioxidant capacity from the
standard curve.

2.9. Statistical Analysis

All statistical analyses were performed with RStudio (RStudio 2023.3.0.+386; Posit
Software PBC, Boston, MA, USA). Changes in metabolite data were analyzed using 2-way
repeated-measures ANOVA with treatment groups (F, FB, PP, PPFB), time points (0, 5, 10,
and 24 h), and their interaction included as within-subjects fixed factors. In cases where
the interaction was statistically significant, between-group comparisons were conducted
using 1-way repeated measures ANOVA with Bonferroni corrections. The assumption of
normality was verified using the Shapiro–Wilk test. Mauchly’s sphericity test was used
to verify equal variances. For targeted bacterial taxon analysis and SCFA production,
1-way ANOVA with Tukey–Kramer HSD was used for pairwise comparisons. Statistical
significance was defined as p ≤ 0.05. All graphs were generated using JMP® 15.2.0 (466311)
(SAS Institute Inc., Cary, NC, USA).

3. Results
3.1. Effects of Polyphenol and Fiber Supplementation on Bacterial Abundance

Microbial compositional changes in eight targeted beneficial taxa after polyphenol and
fiber supplementation were determined quantitatively using qPCR. Across all the selected
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taxa, supplementation led to differential changes in abundance, as shown in Figure 2.
Supplementation with PP and FB blends led to collective differences in Bifidobacterium spp.
abundance relative to F (time-by-treatment interaction, p = 0.047; Figure 2A). Additionally,
time-dependent analysis between treatment groups illustrated elevated abundances of
Bifidobacterium spp. in PP, FB, and PPFB at 5 h and 10 h (p < 0.05) compared to F and,
for FB and PPFB specifically, at 10 h and 24 h (p < 0.05), but a change in abundance
was not statistically significant with PP at 24 h (Table S3). Significant differences were
not observed between supplemented vessels. Lactobacillus spp. in supplemented vessels
also showed notable increases in abundance relative to F (time-by-treatment interaction,
p = 0.021; Figure 2B) and, more specifically, higher abundances in relation to PP, FB, and
PPFB at 10 h and 24 h (p < 0.02; Table S3), with significant differences observed between PP
and PPFB at 24 h (p = 0.046). Additionally, there was a significant difference between PPFB
and F at 5 h (p = 0.032).
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Figure 2. Compositional analysis of selected bacterial taxa and abundance changes over time due to
supplementation: Bifidobacterium spp. (A), Lactobacillus spp. (B), Dorea spp. (C), and Ruminococcus
bromii (D). As fermentation residence time increases, differential changes occur within the community.
Significant pairwise comparisons by treatment at the same time point (p < 0.05): # denotes PP relative
to FB (PP-FB); ˆ denotes PPFB-FB; * denotes PPFB-PP. Significant difference compared to F at the
same time point (p < 0.05) can be seen in Table S3. F = non-supplemented; PP = polyphenol blend;
FB = fiber blend, PPFB = PP and FB blend. Data are means ± SEMs (n = 3).

Dorea spp. abundance changes were driven by PP and PPFB supplementation (time-
by-treatment interaction, p = 0.049; Figure 2C), resulting in sustained abundances in PP and
PPFB at 10 h and 24 h (p < 0.05) compared to both FB and F. FB supplementation showed
similar growth trends to F with decreases in abundance after 5 h. Additionally, differences
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between PPFB and F were seen at 5 h (p = 0.01) (Table S3). Ruminococcus bromii showed
increased abundance after FB and PPFB supplementation (time-by-treatment interaction,
p = 0.002) (Figure 2D). This led to higher abundances of R. bromii in FB and PPFB at 10 h
(p < 0.01) and 24 h (p < 0.05) compared to F. Although R. bromii abundance was slightly
higher at inoculation (T = 0 h) within PP supplementation relative to other treatments, PP
showed similar growth trends to F with decreased abundance as the fermentation time
approached 24 h. Significant differences were seen between PP and FB at 10 h (p = 0.017)
and between PP and PPFB at 10 h (p = 0.015) (Table S3).

For the other four taxa, no significant interactions between time and treatment were
observed (Figure S1). However, although a two-way interaction was not evident, inter-
estingly, Faecalibacterium prausnitzii upon PP treatment trended differentially to the other
blends at 24 h while the other three organisms converged (Figure S1).

3.2. Effects of Polyphenol and Fiber Supplementation on Metabolite Concentrations
3.2.1. Changes in Total SCFA Concentrations

Mean concentrations of total SCFAs (acetic, propionic, and butyric acids) increased
from 0 h to 24 h differently within each treatment group (Figure 3, Table S4). There was
a significant time by treatment interaction (p < 0.001). Pairwise comparisons between
treatment within each time point showed significant increases in FB and PPFB compared to
F at 10 h and 24 h (p < 0.05, Table S4). However, significant statistical differences were not
evident between PP and F (p > 0.05, Table S4) across all fermentation time points. Significant
differences were not seen between PP and FB compared to PPFB (p > 0.05, Table S4) at
any residence time. The ratios of acetic acid, propionic acid, and butyric acid were similar
across all blends; however, butyric acid was slightly elevated in FB relative to PP and PPFB
at 24 h (Table S4). At 10 h, butyric acid proportions in PP were 2-fold and 3-fold higher
than those seen in PPFB and FB, respectively. Although total SCFA content demonstrated
statistical significance in select instances, mean concentrations at individual time points
for SCFAs (acetic, propionic, and butyric acids) were not significantly different across all
blends as a function of time (p ≥ 0.05, Table S5).
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Figure 3. Mean SCFA concentrations over fermentation residence time during supplementation
(n = 3). As fermentation increases, FB blend shows a marked increase in total SCFA content, similar to
PPFB blend. * Significant differences of each treatment relative to F at the same time point (p < 0.05).
F = non-supplemented; PP = polyphenol blend; FB = fiber blend; PPFB = PP and FB blend.
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3.2.2. Changes in Indole Concentrations

Indole analysis was performed to measure protein metabolite production. The mean
concentration of indole (n = 3) decreased within F from 0 h to 10 h and then increased at
24 h (Table S6). Indole concentrations were high in both FB and PP compared to F and PPFB
at 0 h (Figure 4). Supplementation with each of the three blends lead to notable decreases
in indole concentrations at 5, 10, and 24 h (Table S6). There was a significant time by
treatment interaction (p < 0.001, Figure 4) in indole concentrations. Pairwise comparisons
between treatments within each time point showed a significant statistical difference in
PP compared to F (p = 0.044) at 0 h. At 24 h, there were significant statistical differences
between FB (p = 0.010), PP (p = 0.008), and PPFB (p = 0.003) compared to F (Figure 4).
Additionally, significant differences between PP and PPFB were seen at 24 h (p = 0.002,
Figure 4). Pairwise comparisons across time, within treatment, showed significant decreases
from 0 h to 24 h in FB (p < 0.05) and PPFB (p < 0.001, Table S7). The linear slopes depicting
rates in indole concentrations over time (Figure 4, inset) show mean concentrations of
indole (µM) decreasing across the 24 h in the three supplemented blends, with similarities
between FB and PPFB concentrations, while increasing in non-supplemented samples.
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Figure 4. Net changes in indole concentration over time during supplementation including the
corresponding linear slope analysis (inset). As fermentation residence time increases, all three
blends show a marked decrease in indole, which are statistically different than that of F at 24 h.
Linear slopes show differences in indole production rate for the FB and PPFB blends relative to F.
* Significant differences across treatment compared to F at the same time point (p < 0.05). ˆ Significant
differences compared to PP at the same time point (p < 0.05). Data are means ± SEMs (n = 3).
F = non-supplemented; PP = polyphenol blend; FB = fiber blend; PPFB = PP and FB blend.

3.2.3. Changes in Ammonia Concentrations

Ammonia concentrations remained consistent within F at 0 h, 5 h, and 10 h, with an
increase at 24 h, although not significantly between time points (Figure 5, Tables S6 and S7).
Supplementation with PP, FB, and PPFB significantly decreased ammonia concentrations
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after 24 h of fermentation. There was a significant time by treatment interaction (p < 0.001)
in ammonia concentrations. Significant differences were observed between FB and F
(p = 0.020) at 24 h. PP supplementation also led to a significant decrease in ammonia
production at 24 h compared to F (p = 0.032). At 24 h, ammonia concentrations were
significantly lower in PPFB compared to F (p = 0.016) but without any statistical signifi-
cance when comparing to FB and PP. Pairwise comparisons across time, within treatment,
showed that significant differences in ammonia concentrations were not observed from
0 h to 24 h (Table S7). Linear slopes (Figure 5, inset) show positive rates of increase in
ammonia production over 24 h for F and PP; however, supplementation with FB led to a
slower rate of ammonia production while PPFB displayed a more rapid decreasing rate in
ammonia production.
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Figure 5. Net changes in ammonia concentration over time during supplementation including the
corresponding linear slope analysis (inset). As fermentation residence time increases, FB and PPFB
blends show a marked decrease in pro-inflammatory marker ammonia that is statistically different
to what is seen in F. Linear slopes show a dramatic rate reduction in ammonia production for PPFB
relative to F. * Significant differences across treatment compared to F at same time point (p < 0.05).
Data are means ± SEMs (n = 3). F = non-supplemented; PP = polyphenol blend; FB = fiber blend;
PPFB = PP and FB blend.

3.2.4. Changes in Antioxidant Capacity

Antioxidant capacity remained constant within F and FB from 0 h to 10 h (Figure 6,
Table S6). In PP and PPFB, antioxidant capacity peaked at 5 h and decreased at 10 and
24 h. There was a significant time by treatment interaction (p < 0.001) when it came
to antioxidant capacity. Pairwise comparisons across treatment show that there were
significant differences in PP (p < 0.05) and PPFB (p < 0.05) compared to FB and F at each
time point from 0 h to 24 h (Figure 6). There were no significant differences between FB
and F within each time point. There were also no significant differences between PPFB
and PP within each time point. The presence of FB in PPFB did not impact antioxidant
capacity. Pairwise comparisons across time showed that there were significant differences
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in PP (p = 0.012) and PPFB (p = 0.043) between 10 h and 24 h (Table S7). In F, there was
a significant decrease in antioxidant capacity at 24 h compared to 0 h (p = 0.042). FB did
not contribute to significant changes in antioxidant production across time. No significant
differences in antioxidant levels were observed in the fecal-deficient NF samples (Figure 6,
inset) across the 24 h fermentation, indicating that antioxidant capacity changes observed
with supplementation were due to PP and PPFB blends with fecal microbiota present.
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Figure 6. Change in antioxidant capacity over time during supplementation with corresponding
capacity in NF samples (inset). As fermentation residence time increases, concentrations of antioxi-
dant marker remain high in PP and PPFB with a marked decrease at 24 h with statistically significant
differences to F. FB shows no significant differences to F. NF samples show no changes in antioxidant
capacity across the fermentation. * Significant differences across treatment compared to F at the same
time point (p < 0.05). ˆ Significant difference compared to FB at same time point (p < 0.05) Data are
means ± SEMs (n = 3). F = non-supplemented; PP = polyphenol blend; FB = fiber blend; PPFB = PP
and FB blend; NF = fecal-deficient.

4. Discussion

The main aim of this study was to understand the independent and combined effects
of supplementing an in vitro model of the large intestine with polyphenol and fiber blends
on the growth of beneficial taxa, change in SCFA production, reduction in the concentration
of potentially harmful metabolites, and increase in antioxidant capacity.

Growth dynamics of select gut taxa were driven by supplementation with both FB
and PP, impacting eight selected taxa differentially. The selected taxa included some
keystone and other lower abundant taxa with well-characterized metabolic niches, and
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these have been shown to assist in metabolizing complex nutrients from the host diet
into metabolites for microbial cross-feeding and host utilization [17]. They included RS
degraders Ruminococcus bromii and Blautia coccoides-Eubacterium group; saccharolytic Dorea
spp., Lactobacillus spp. and Bifidobacterium spp.; mucin-degrader Akkermansia muciniphila;
and butyric acid producers Eubacterium rectale and Faecalibacterium prausnitzii. The taxon
changes were seen during the log phases of the fermentation. This was in line with similar
in vitro studies comparing the prebiotic effects of individual fibers to a fiber blend [30] with
similar changes to select gut bacteria taxa, production of metabolites like SCFAs, and total
gas production.

In addition, similar changes were observed when studies employed supplemention
their materials with individual polyphenol sources from our PP blend. Fogliano et al.
supplemented an in vitro three-stage culture system with cocoa polyphenols, leading to
the increased abundance of Bifidobacterium spp. and Lactobacillus spp. [31]. Both cranberry
and blueberry were included in our polyphenol blend due to their high antioxidant con-
tent and diverse polyphenol profiles. Similarly, Ntemiri et al. supplemented an in vitro
model with polyphenol-rich fractions purified from whole blueberry, leading to significant
increases in Bifidobacterium spp. and Feacalibacterium prausnitzii abundance [32]. Solch-
Ottaiano et al. showed that cranberry polyphenols, supplemented in a cross-over study
including healthy adults, led to the increased abundance of Faecalibacterium prausnitzii in
subjects [33]. Zhang et al. showed that supplementing fecal fermentations with catechins
found in green tea significantly increased the abundance of Bifidobacterium spp., Lactobacil-
lus, and Enterococcus and increased the production of SCFAs in vitro [34]. These results
are consistent with the results seen herein for bacterial taxon changes as a function of PP
blend supplementation.

Some studies evaluated polyphenols as part of a whole food, which included fibers
naturally present in the food [35]. Our study evaluated the polyphenols and fiber blends
both separately and in combination and revealed that the PPFB blend provided an additive
positive impact on select taxa when mixing the two blends together in vitro relative to the
blends independently. It was important to not immediately assume that the combination
of PP and FB would lead to additive effects because there was also a possibility that there
could be negative effects associated with combining the two blends due to changes in the
competition for resources or potential antimicrobial effects.

The production of beneficial metabolites like short-chain fatty acids (SCFAs) is driven
by the fermentation of dietary fiber and proteins by gut bacteria. As the primary metabolite
of gut bacterial fermentation, SCFAs play a key role in host homeostasis and regulating
bacterial community dynamics [36]. In our work, the supplemented blends lead to more
significant changes in total SCFA production rather than changes in individual SCFA
production. Similar in vitro studies have observed that total concentrations of SCFAs
consistently increased when vessels were supplemented with high concentrations of dietary
fiber, driven by fiber source and dosage [37]. Of particular interest is butyric acid, which
is produced through saccharolytic fermentation by multiple gut commensals including
Ruminococcus bromii. Changes in the abundance of these taxa have been shown to increase
with fiber supplementation accompanied by a related increase in butyric production. FB
supplementation was the key driver of increases in total SCFA production. In our study, the
increased production of SCFAs in FB supplementation altered butyric concentrations.
This was likely linked to the increased abundance of butyric acid producers such as
Rumminococcus upon FB supplementation. It is also well cited in literature that the expected
SCFA molar ratio of acetic acid, propionic acid, and butyric acid is 60:20:20 [38]. These
ratios were observed in all treatment groups across the 24 h fermentation. Previous in vitro
studies showed similar results from fiber supplementation. Wang et al. supplemented
in vitro batch cultures with a fructan prebiotic, leading to an increase in the concentrations
of the SCFAs produced [39].

Studies have also shown that polyphenol supplementation benefits the growth of
SCFA-producing bacteria in vivo [40] and in vitro [41]. Here, supplementation with PP
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led to SCFA concentrations approaching significance at the 10 h and 24 h time points
relative to F. The lack of significant changes in SCFA production over time warrants further
investigation to determine whether combining the polyphenols had any antagonistic effects
on SCFA production. Changes in SCFA production from PPFB were very similar to those
seen in FB with elevated total SCFA amounts and comparable ratios, indicating that the
primary metabolic impact on the community is centered around the FB components. Havlik
et al. saw similar effects of mixing fibers with polyphenols in vitro, affecting the production
of phenolic metabolites and SCFAs [42].

Like saccharolytic fermentation, protein fermentation by gut bacteria produces SCFAs;
however, these metabolites are accompanied by branch-chained fatty acids (BCFAs) and
pro-inflammatory compounds like amines, ammonia, hydrogen sulfide, indole-compounds,
and phenols [43]. More specifically, the metabolism of the amino acid tryptophan by gut
bacteria generates indole derivatives, which can be beneficial (Indole 3-Propionic Acid)
or detrimental (Indoxyl Sulfate) to host health [44]. Supplementation with prebiotics has
been shown to decrease the production of pro-inflammatory metabolites from different
diets in vitro [39]. The increase in saccharolytic activity by gut bacteria counteracts some of
the detrimental effects of a proteolytic environment found in various disease states [45].
Both the results for ammonia and indole herein suggest that FB contributed to the decrease
in pro-inflammatory metabolite production. With the additional dietary fiber in FB, a
decrease in pro-inflammatory metabolites was observed, most likely due to the lack of
amino acids metabolized by proteolytic bacteria [46]. Dietary fiber has been shown to
decrease concentrations of ammonia [47] and have an indirect effect on the proliferation of
indole-producing bacteria [48].

PP supplementation led to significant decreases in ammonia and indole concentrations
compared to F, but less compared to FB supplementation. These findings may be a result of
the short residence time within our batch culture. A fed-batch or continuous culture system
may augment the effect, which has been shown in vivo. Goto et al. demonstrated that a
6-week supplementation with tea catechins in elderly patients led to significant decreases
in fecal ammonia concentrations and other deleterious metabolites [49]. PPFB decreased
concentrations of both indole and ammonia similarly to FB in both cases, suggesting that
PPFB response is driven by the inclusion of the fiber blend with potential synergistic
benefits to decreasing indole concentrations when including the PP blend.

Polyphenols are known for their antioxidant activity while fiber is generally not
directly associated with antioxidant production [50]. Antioxidant capacity has a strong
link to positive health states by decreasing the presence of reactive oxygen species [51,52].
In this study, FB supplementation did not directly impact the antioxidant capacity. This
is supported by other studies regarding an indirect influence as the presence of dietary
fiber promotes the growth of beneficial bacteria in the GI tract and the structure of the
dietary fibers also has associations to the bioavailability of antioxidant compounds that
reach the lower gut [53]. The high antioxidant capacity in both PP and PPFB across all
four time points was driven by higher bioavailability to the antioxidant characteristics of
PP [54,55]. The decrease in antioxidant capacity at 24 h in PP samples was likely due to
the further hydrolysis of PP metabolites. Antioxidant capacity was elevated in the PP-
and PPFB-supplemented media and fecal-deficient samples at 0 h, likely due to the PP
solubilization generating reactive species during the dissolution process. The retention of
antioxidant capacity during active growth upon PP-blend supplementation is a key finding
that shows the ability of PPFB to induce positive gut microbiota states not feasible with FB
supplementation independently.

The collective impact of PP and FB on select taxa, changes in the total amount of
metabolic byproducts, decreased production of pro-inflammatory compounds, and influ-
ence on antioxidant capacity all suggest that PPFB outcomes are not driven by PP or FB
but both blends concomitantly. Although a synergistic effect was not evident in this study,
the additive outcomes of supplementing with both PP and FB suggest that further studies
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should be considered for microbiome dietary interventions to build toward a healthy,
resilient gut microbiome.

5. Conclusions

Blends of select polyphenols and fiber substrates were supplemented into in vitro
fecal fermentations to determine the impact of the blends independently and collectively.
Supplementation with FB led to increases in Bifidobacterium spp., Lactobacillus spp., and
Ruminococcus bromii concentrations and, in addition, increases in SCFA production and
decreases in indole and ammonia concentrations, but did not impact antioxidant production.
Supplementation with PP led to increases in Bifidobacterium spp., Lactobacillus spp. and
Dorea spp. accompanied by increases in antioxidant concentrations and decreases in indole
and ammonia. In general, significant synergistic or antagonistic effects from combining PP
and FB were not evident; however, the contributions of both blends provided a beneficial
additive effect that suggests that PPFB creates positive effects to gut microbiome states
related to the inclusion of both PP and FB. The work represents a new supplementation
approach of employing tailored blends, rather than individual constituents, for microbiome
modulation toward healthy gut states to build resiliency towards gut microbial-derived
dysbiosis that may be associated with inflammatory conditions.

6. Study Limitations

The biggest limitation was the gap between in vitro and in vivo relevance. This study
did not include host functionality, commonly simulated using intestinal cell culture models.
The incorporation of mucin in the growth medium partially simulates the host, but it does
not imitate the effects of an in vivo mucosal environment on the bacterial community. The
passive absorption of metabolites by the human colon was not simulated in our model, and
the food supply remained continuous unlike in vivo. Additionally, although fecal inoculum
was consistent across vessels, the abundance of certain taxa may vary between vessels
immediately after inoculation. This phenomenon has been attributed to variability within
inoculation and/or downstream processing and may warrant further consideration. Lastly,
there is a high variability when comparing gut microbe consortiums between individual
subjects that adds another layer of complexity. Here, the individual differences were
minimized by pooling feces from 30 subjects for a more diverse microbial population
within the fermentation inoculum. Although ideal for in vitro studies, the results may not
apply across all individuals.
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