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Abstract: Raw bioelectrical impedance (BI) data and vector analysis (BIVA) have been used to
evaluate fat-free mass (FFM) cross-sectionally in adolescent athletes; however, there have been no
longitudinal studies about it. This study aimed to assess the magnitude of changes in raw BI data
(resistance [R], reactance [Xc], and phase angle [PhA]), BIVA, and FFM in adolescent athletes (n = 137,
40% female). BI data were collected using a single-frequency device at baseline and after one year of
sports practice. Baseline chronological age categorized the participants (11, 12, or 13 years [y]). In
females, Xc/H increased (13 to 14 y, p = 0.04) while R/H decreased in all age groups (p = 0.001). PhA
(11 to 12 y, p = 0.048) and FFM (11 to 12 y and 12 to 13 y groups p = 0.001) increased and showed the
lowest magnitude of changes in the 13 to 14 y group (p = 0.05). In males, Xc/H decreased (11 to 12 and
12 to 13 y groups, p = 0.001) with a higher magnitude of changes in the 13 to 14 y group (p = 0.004);
R/H decreased (p = 0.001); FFM increased in all groups (p = 0.001); however, no magnitude of changes
was observed. PhA increased in the 13 to 14 y group (p = 0.004). BIVA showed no differences among
ellipse distances in females. In males, a high distance was observed in the 11 to 12 y group. “Time
interval” influenced PhA and Xc/H in the female group and R/H and Xc/H in the male group.
“Initial age” and “time interval” influenced the increase in PhA in the male group. Raw BI data and
BIVA patterns can detect the magnitude of the changes in a sex-dependent manner.

Keywords: bioelectrical impedance analysis; adolescents; athletes

1. Introduction

Sports training in childhood and adolescence has a positive effect on various body
functions, including skeletal muscles, cardiovascular health, blood circulation, neurological
functions, and metabolic systems. Cardiovascular and muscular fitness are related to
improvements in general health. Furthermore, sports training can positively affect body
composition by increasing muscle mass and bone density while decreasing fat mass in
adolescent athletes [1,2]. Additional factors, such as sex, age, hormonal, nutritional, and
maturity status, can also impact body composition [3–5]. Body composition, particularly
skeletal muscle mass (SMM), often relates to muscle strength and physical capabilities. In
two-compartment methods, such as bioelectrical impedance analysis (BIA), fat-free mass
(FFM = residual mass, skeletal muscle mass, and bone mineral content) has been used
as an SMM marker [6]. Predictive equations for skeletal muscle mass (SMM) have been
developed using BIA data from adult individuals [7]. However, there are currently no
SMM equations specifically designed for adolescents. While FFM–BIA predictive equations
for adolescents are available [8–12], only one predictive equation that considers biological
maturity has been identified for adolescent athletes [8].

Nutrients 2024, 16, 701. https://doi.org/10.3390/nu16050701 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu16050701
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0002-9729-8805
https://orcid.org/0000-0001-5989-0528
https://orcid.org/0000-0002-3901-8182
https://orcid.org/0000-0002-3189-9261
https://doi.org/10.3390/nu16050701
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu16050701?type=check_update&version=1


Nutrients 2024, 16, 701 2 of 11

BIA is a non-invasive, low-cost, and portable method to estimate body composition,
including total body water (TBW), intra- and extracellular water (ICW and ECW) from
electrical body proprieties of resistance (R), and reactance (Xc) [13–15]. BIA relies on
predictive equations for body composition that depend on individual characteristics such
as sex, age, and maturity status [8,14,15], as well as on device specifications. The accuracy
may be compromised when applied to a population with different characteristics or when
devices with different technologies are used [16–18]. However, raw BIA variables can be a
viable alternative because these measures are not subject to population-specific constraints
such as the phase angle (PhA). PhA is calculated using the Xc and R ratio and interpreted as
an index of membrane stability, integrity, and nutritional status [15,19]. PhA has been used
in clinical practice associated with positive clinical outcomes and in sports as a possible
proxy of health, physical performance, and muscle strength [13,20–27].

Bioelectric impedance vector analysis (BIVA) is based on a qualitative and semiquanti-
tative analysis of raw bioelectrical data plotted in ellipse graphs [28–35]. It can be used in
physically active adults and adolescents to assess BCM and TBW without using predictive
equations [13,25,35]. Cross-sectional studies in children and adolescents have shown that
chronological age advancing, and biological maturity can lead to increased PhA values,
consistent with the increase in BCM related to growth. In addition, the shorter vector
length (Z/H) is associated with the increase in TBW values [8,21,25,36–42]. Nevertheless,
distinguishing whether the BCM and TBW adaptation stems from biological maturity or
results from physical training remains challenging [1,43,44]. Therefore, monitoring changes
in BIVA must be carried out periodically.

Cross-sectional studies have demonstrated that physiological and morphologic changes
that occur during adolescence lead to bioelectrical properties different from those of adult
athletes [13]. A study on adolescent athletes showed that PhA and BIVA ellipses are,
possibly, influenced by routine intense training, which causes changes in the functional and
hydration parameters. The magnitude of these changes in adolescents may depend on the
sports modality practiced [13]. In addition to that, raw bioelectrical data in healthy adoles-
cents can be affected according to biological maturity status [21,25,36]. In Italian female
adolescents between 10 and 15 years of age, sexual maturity seemed more important than
differences in chronological age since higher raw bioelectrical data were found regarding
maturity than age differences [21]. In male adolescent football players, it was observed that
bone age and zinc erythrocyte contribute to PhA and that BIVA was influenced by skeletal
maturity status [36].

Unlike cross-sectional studies, which focus on differences between groups at a single
time point, longitudinal studies typically aim to determine the magnitude of changes
over a period. Longitudinal studies can also define vector migration trends more clearly.
Orsso et al. [45] have emphasized the importance of longitudinally estimating body compo-
sition using BIA among children and adolescents, especially for longer follow-up periods.
FFM predictive equations, developed through cross-sectional studies using reference meth-
ods, have not been tested longitudinally in healthy adolescents or adolescent athletes. BI
data and BIVA have been used in synchronized swimmer adults (20.9 ± 1.9 years old),
and BIVA has detected changes in body fluid and cellularity after a 13-week physical
training program [46]. To our knowledge, this is the first study that aims to identify the
magnitude of changes in raw BIA data, in BIVA, and in FFM in adolescents after one year
of sports participation.

2. Materials and Methods
2.1. Study Design

This was a longitudinal study, with data collected at baseline (T0) from August to
December 2018 and after one year during the same months (T1).
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2.2. Participants

Adolescents and parents/guardians agreed to participate after we fully explained
the study objectives and assessment methods. This study was approved by the Ethics
Committee of the Pedro Ernesto Hospital (CEP/HUPE 1.020.909-2018).

This study was intentionally limited to healthy adolescent athletes to minimize inter-
participant variance and maximize the applicability of using BIA and BIVA. Throughout
the study, we did not experience any loss to follow-up.

All the data were collected at a sports-oriented public school in the central region
of Rio de Janeiro, Brazil. This elementary full-time school offers 100 min of daily sports
training (swimming, judo, badminton, athletics, soccer, volleyball, and table tennis).

The students can choose a different sport to practice each week. This way, they can
decide which sport fits them best in the future. The adolescents were classified as athletes
because they participated in physical training and skill development and were engaged in
competition events [5].

Female sexual maturation was self-reported as the age at menarche. The participants
who had already begun their menstrual cycle were classified as sexually mature and those
who had not were classified as sexually immature. In male adolescents, given the lack of
reliable markers for maturity, biological maturity was estimated to be >13 years [1,25,41–43].

2.3. Anthropometric Measurements

Weight was measured with a portable scale to the nearest 0.1 kg (Filizola, Brazil)
and height with a stadiometer to the nearest 0.5 cm (Sanny, Brazil). Body mass index
was calculated (BMI (kg/m2) = weight (kg)/(height (m))2). The nutritional status of the
participants was evaluated using BMI-for-age and height-for-age z-scores according to
WHO [47].

2.4. Bioelectrical Impedance Analysis

Bioelectrical parameters (R and Xc, in ohms) were measured with a single-frequency
tetrapolar impedance analyzer (RJL, model 101 Quantum, RJL Systems, Clinton Township,
MI, USA) using a current of 800 µA at an operating frequency of 50 kHz. Whole-body
impedance measurements were taken using the supine positioning of outer and inner elec-
trodes on the right wrist and ankle, previously cleansed with alcohol. To avoid disturbances
in fluid distribution, participants were placed in a thermoneutral environment (25 ◦C) and
were instructed to abstain from foods and liquids for at least 4 h and from caffeine and
intense physical activity for at least 24 h before the BIA measurements.

All metals and conductive accessories were removed before each BIA measurement.
Female participants underwent data collection at a time point outside of their menstrual
periods. The BIA analyzer was checked with a predetermined impedance circuit calibration
(R = 500 ohms; 0.9% error) and the components inside the bioimpedance analyzer, such
as signal generator, sensing apparatus, and electrical interference, were tested before each
test session.

BIA data was used to predict FFM (kg) using the equation [3.474 + 0.459 H(m)2/R(Ω) +
0.064 weight (kg)]/[0.769 − 0.009 age (years) − 0.016 sex (0 if female, 1 if male)] [9]. Horlick
et al.’s [9] equation was chosen to predict FFM because it was shown with acceptable agree-
ment with DXA when tested in Brazilian adolescent athletes [8]. Furthermore, although
one study had developed an FFM predictive equation using a single-frequency BIA in
adolescent athletes [8], it was impossible to apply this equation in the present study because
we did not collect skeletal data, a variable considered in this predictive equation. FFM
index (FFMI) was calculated using the equation FFMI (kg/m2) = FFM (kg)/H(m)2 [48].

PhA was calculated using the equation of arctangent (Xc/R) × 180◦/π [19]. Addition-
ally, BIVA analysis was performed using R and Xc adjusted by height [34]. Sample size
absolute differences (d) dR/H and dXc/H determined the position and size of the ellipses.
Correlation between dR/H and dXc/H determined the ellipsoidal form. Changes in R/H
were related mainly to fluids (inverse relation), and in Xc, to cellularity (direct relation).
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2.5. Statistical Analyses

The sample size had been determined a priori using statistical software (G*Power
3.1.9.7 Stuttgart, Germany) assuming an effect size of 0.5, α of 0.05, and β of 20%. Forty-five
participants had been estimated by sex. The normality of the data distribution was tested
using the Kolmogorov–Smirnov test, considering each group. As data were normally
distributed, continuous variables were expressed as means ± standard deviations (SDs).
The paired t-test was used to compare T0 and T1 changes within each age group and sex.

All analyses were performed separately for each sex and age group. Age groups are
presented as the participants’ ages at T0 and the participants’ ages at the one-year follow-up
(T1). Our participants were classified into three different groups based on their ages at T0
and T1 as follows: group 1 = 11 to 12, group 2 = 12 to 13, and group 3 = 13 to 14 years.

Two-way ANOVA was used to test the effects of initial chronological age (initial “age”,
factor 1) and age after a one-year time interval (“time interval”, factor 2) on bioelectrical data.
Factor 1 represented accumulated growth and development up to the start of the study (T0),
and factor 2 was interpreted as growth, development, and maturation of the participants
accumulated during the study (T1). Furthermore, confidence ellipses for paired data and
the respective Hotelling T2, Mahalanobis distances (D), F, and p values were calculated to
analyze longitudinal changes in impedance vectors from T0 to T1 stratified by sex.

All p-values < 0.05 were considered statistically significant. All statistical analyses
were performed using STATISTICA 10 software (Stat Soft. Inc., Tulsa, OK, USA) or BIVA
software 2002 [49].

3. Results

A total of 82 male and 55 female adolescent athletes participated in the study, and no
participants were lost to the follow-up at T1. All participants presented normal height-for-
age and BMI-for-age (15th and 85th percentiles) [47]. Table 1 presents the sports participants
who self-reported practicing at T0.

Table 1. Self-reported sport modalities at baseline (T0).

Female
n [%]

Male
n [%]

Athletics 12 [23] 20 [24]
Soccer 8 [16] 21 [26]

Volleyball 11 [21] 20 [24]
Swimming 6 [12] 7 [8.5]
Table tennis 8 [16] 8 [10]

Handball 6 [12] 6 [7.5]

In females, it was observed that Xc/H increased in the 13-to-14-year group whereas
R/H decreased in all age groups. PhA increased in the 11-to-12-year group, and FFM
increased in all age groups. PhA (7.3%) and FFM (2.7%) presented the lowest magnitude of
changes in the 13-to-14-year group. There was an increase in BMI values in the 11-to-12
and 12-to-13-year groups; however, BMI classification remained unchanged regardless of
age, classified as normal weight at both T0 and T1 (Percentiles 74.8 and 75.2, respectively).
Although FFM increased in these groups (11-to-12 and 12-to-13-year groups), FFMI did
not change over the year, indicating that the increase in FFM did not surpass the gain in
height. In males, it was observed that Xc/H decreased in the 11-to-12 and 12-to-13-year
age groups with a higher magnitude of changes in the 13-to-14 year-group (1.9%); R/H
decreased whereas FFM increased in all groups, and no magnitude of changes was observed;
PhA increased in the 13-to-14-year group with a magnitude of changes of 12.3%. BMI
value increased only in the 12-to-13-year group. However, BMI classification remained
unchanged, regardless of age, classified as normal weight at both T0 and T1 (Percentiles
82.1 and 78.6, respectively). FFMI increased in all males, indicating a more pronounced
increase in FFM than in height (Table 2).
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Table 2. Anthropometric, bioelectrical impedance raw, and body composition data, stratified by sex
and age groups at baseline (T0) and after one year (T1) of practiced sports.

Female Male
11 to 12y 12 to 13y 13 to 14y 11 to 12y 12 to 13y 13 to 14y

n = 16 n = 23 n = 16 n = 25 n = 43 n = 14
T0 11.18 ± 0.26 12.32 ± 0.34 13.22 ± 0.32 11.27 ± 0.24 12.36 ± 0.29 13.41 ± 0.31

Age (years) T1 12.25 ± 0.21 13.01 ± 0.22 14.19 ± 0.29 12.35 ± 0.27 13.03 ± 0.35 14.20 ± 0.34
p-value 0.001 0.001 0.001 0.001 0.001 0.001

Weight (kg)
T0 48.3 ± 12.7 48.0 ± 10.9 52.9 ± 6.5 45.0 ± 12.5 47.9 ± 10.1 53.3 ± 9.6
T1 53.5 ± 11.9 53.7 ± 12.4 55.4 ± 6.1 51.7 ± 13.4 54.8 ± 10.8 58.7 ± 10.1

p-value 0.001 0.001 0.001 0.001 0.001 0.001
Change 5.2 ± 2.7 a 5.7 ± 3.2 a 2.4 ± 2.3 b 6.7 ± 4.1 6.9 ± 2.8 5.4 ± 3.4

% 11.9 12.1 4.8 15.6 14.8 10.5

Height (cm)
T0 152.4 ± 7.0 a 156.5 ± 6.7 a,b 160.4 ± 6.7 b 149.6 ± 8.3 a 154.7 ± 7.4 b 161.3 ± 7.9 c

T1 157.3 ± 6.5 159.8 ± 6.2 162.3 ± 6.7 157.8 ± 9.6 a 163.2 ± 7.2 b 168.4 ± 7.6 b

p-value 0.001 0.001 0.001 0.001 0.001 0.001
Change 4.9 ± 2.1 a 3.3 ± 2.7 a,b 1.9 ± 1.2 b 8.2 ± 2.7 8.5 ± 3.0 7.1 ± 2.7

% 3.3 2.2 1.2 5.5 5.5 4.5

T0 20.6 ± 4.2 19.4 ± 3.4 20.6 ± 2.7 19.8 ± 3.7 19.9 ± 3.2 20.2 ± 2.7
BMI (kg/m2) T1 21.5 ± 3.8 20.9 ± 3.8 21.1 ± 2.4 20.5 ± 3.6 20.4 ± 3.2 20.6 ± 2.9

p-value 0.005 0.001 0.102 0.061 0.002 0.288
Change 0.9 ± 1.1 a,b 1.4 ± 0.9 a 0.4 ± 1.0 b 0.7 ± 1.8 0.6 ± 1.1 0.4 ± 1.3

% 4.9 7.4 2.5 4.0 3.1 2.0

R/H (Ω/m)
T0 414.1 ± 67.1 405.7 ± 47.1 386.5 ± 26.5 414.6 ± 63.7 a 383.8 ± 58.2 b 368.4 ± 49.5 b

T1 404.3 ± 74.3 393.2 ± 46.2 392.1 ± 54.0 376.8 ± 67.1 a 344.3 ± 52.2 b 334.8 ± 46.3 c

p-value 0.239 0.133 0.556 0.001 0.001 0.001
Change −9.8 ± 32.1 −12.5 ± 38.4 5.6 ± 37.1 −37.8 ± 30.6 −39.5 ± 39.0 −33.6 ± 26.1

% −2.4 −2.7 1.2 −9.2 −9.8 −8.9

Xc/H (Ω/m)
T0 41.1 ± 4.2 42.3 ± 5.7 41.9 ± 3.7 45.3 ± 7.0 a 42.1 ± 7.0 a,b 38.9 ± 5.2 b

T1 44.4 ± 7.5 43.7 ± 6.8 45.2 ± 6.2 41.0 ± 7.3 37.6 ± 5.3 39.6 ± 5.9
p-value 0.092 0.448 0.040 0.001 0.001 0.517
Change 3.3 ± 7.3 1.3 ± 8.1 3.3 ± 5.9 −4.3 ± 2.6 a −4.5 ± 6.4 a 0.7 ± 3.7 b

% 8.4 4.5 8.2 −9.7 −9.5 1.9

Z/H (Ω/m)
T0 416.2 ± 67.1 407.9 ± 47.2 388.7 ± 26.6 417.1 ± 64.0 386.2 ± 58.4 370.5 ± 49.5
T1 406.8 ± 74.1 395.7 ± 46.4 394.7 ± 54.0 379.1 ± 67.3 346.4 ± 52.3 337.2 ± 46.2

p-value 0.260 0.142 0.530 0.001 0.001 0.001
Change −9.4 ± 32.0 −12.2 ± 38.6 6.0 ± 37.1 −38.0 ± 30.6 −39.8 ± 39.1 −33.3 ± 25.9

% −2.3 −2.6 1.3 −9.2 −9.8 −8.8

PhA (◦)
T0 5.74 ± 0.57 a 5.98 ± 0.64 a,b 6.20 ± 0.46 b 6.3 ± 0.6 6.3 ± 0.7 6.1 ± 0.7
T1 6.40 ± 1.37 6.35 ± 0.85 6.64 ± 0.93 6.2 ± 0.6 a 6.3 ± 0.7 a 6.8 ± 1.1 b

p-value 0.048 0.120 0.084 0.833 0.926 0.007
Change 0.7 ± 1.2 a 0.4 ± 1.1 b 0.4 ± 0.9 b 0.0 ± 0.5 a 0.0 ± 0.8 a 0.7 ± 0.9 b

% 11.5 7.4 7.3 −0.1 0.4 12.4

FFM (kg)
T0 36.2 ± 6.3 37.3 ± 5.1 40.1 ± 2.6 36.1 ± 6.3 a 39.9 ± 6.6 a,b 43.3 ± 6.4 b

T1 39.0 ± 6.8 40.0 ± 5.4 41.2 ± 4.3 42.1 ± 8.2 a 46.5 ± 7.1 a,b 49.5 ± 6.8 b

p-value 0.001 0.001 0.139 0.001 0.001 0.001
Change 2.8 ± 2.7 a 2.7 ± 3.3 a 1.1 ± 2.9 b 5.9 ± 3.2 6.6 ± 3.8 6.1 ± 3.0

% 8.0 7.6 2.7 16.3 17.3 14.5

FFMI (kg/m2)
T0 15.5 ± 2.1 15.2 ± 1.3 15.6 ± 1.1 16.0 ± 1.4 16.6 ± 1.7 16.6 ± 1.5
T1 15.7 ± 2.2 15.6 ± 1.4 15.7 ± 1.7 16.7 ± 1.7 17.4 ± 1.8 17.4 ± 1.7

p-value 0.413 0.058 0.804 0.001 0.001 0.009
Change 0.2 ± 0.9 0.4 ± 1.0 0.1 ± 1.1 0.7 ± 0.9 0.8 ± 1.2 0.8 ± 1.0

% 1.2 3.0 0.3 4.5 5.1 4.9

Maturity (%) * T0 56.3 91.3 100 0 0 100
T1 100 100 100 0 100 100

Values are expressed as means ± SDs. BMI = body mass index; FFM = fat-free mass; H = height; PhA = phase angle;
R = resistance; T0 = baseline; T1 = after one year; Xc = reactance; Z = impedance vector length. Change = absolute
difference, T1 − T0. The dependent t-test was used to compare one year after to baseline (intragroup), with
significant p-values marked. * Female adolescents’ sexual maturity according to menarche occurrence and males
supposed with chronological age > 13 years. Different letters in the same row and sex indicate significant
differences, p < 0.05 (one-way ANOVA followed by Bonferroni post hoc test).
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One-year changes in bioelectrical vectors were significant only in males, regardless of
age group. Figure 1A demonstrates theoretical BIVA model resistance [R] and reactance
[Xc] changes (delta [d]), normalized by the height (H, meter) [49]. In female adolescents,
95% paired confidence ellipses for all age groups covered the null vector (Figure 1B). In
contrast, male adolescents’ confidence ellipses differed among all age groups (p < 0.001)
with a different pattern of migration in the 13 to 14 y group, related to the increase in PhA
(Figure 1C).
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Figure 1. Theoretical BIVA model resistance [R] and reactance [Xc] changes (delta [d]), normal-
ized by the height (H, meter) (A). Paired confidence ellipses of classic BIVA in female (B) and
male (C) adolescents according to age groups after one year. The differences between the mean
impedance vectors in the different age groups of female and male adolescents were determined
using the Hotteling T2 test. The distances [D] between ellipses were calculated using the Maha-
lanobis test, which is a descriptive statistic that provides a relative measurement of data point
distances (residual) between vectors. The p-value [P] considers the distance to the graph’s origin
(dXc/H = dR/H = 0). Significant values indicate changes in bioelectrical data and correlated
body composition.

Table 3 shows the effect of “initial age” (T0) and “time interval” (after one year) on
BIA raw data in female and male adolescents. In the female group, only the “time interval”
influenced the changes in the PhA (p = 0.002) and the Xc/H ratio (p < 0.001). However, in
the male group, the “initial age” influenced the changes in the R/H ratio (p = 0.002), Xc/H
(p = 0.011), and Z/H (p = 0.002); the “time interval” influenced the changes in the R/H ratio
(p < 0.001), Xc/H (p = 0.025), and Z/H (p < 0.001); and the interaction of “initial age” and
“time interval” only influenced the PhA change (p = 0.035).
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Table 3. Effects of initial age and time interval on raw BI data in female and male adolescents.

Female Initial Age
(T0)

Time Interval
(After One Year) Initial Age*Time Interval

F p F p F p

PhA (◦) 1.67 0.192 10.40 0.002 0.535 0.716
R/H (Ω/m) 1.42 0.244 0.37 0.544 0.370 0.689
Xc/H (Ω/m) 0.198 0.821 6.49 0.012 0.464 0.629
Z/H (Ω/m) 1.39 0.250 0.32 0.570 0.376 0.687

Male Initial Age
(T0)

Time Interval
(After One Year) Initial Age*Time Interval

F p F p F p

PhA (◦) 0.70 0.498 3.59 0.060 3.440 0.035
R/H (Ω/m) 6.63 0.002 12.96 <0.001 0.164 0.853
Xc/H (Ω/m) 4.64 0.011 5.10 0.025 2.840 0.063
Z/H (Ω/m) 6.64 0.002 12.93 <0.001 0.174 0.841

H = height; PhA = phase angle; R = resistance; Xc = reactance; Z = impedance vector length. Age (T0) represents
the effect of initial age and time represents the effect after one year.

4. Discussion

This study identified the magnitude of changes in raw BI data, BIVA, and FFM in
adolescents after one year of participating in sports, considering sex and age. In the female
group, BIVA presented overlapped ellipses, indicating no significant differences in raw
BI data according to age. Furthermore, PhA and Xc/H changes were influenced by “time
interval” (considered as growth), indicating high cellularity and BCM increase. On the
other hand, the male group showed a shortening in R/H (all age groups) and in Xc/H
(11 to 12 y and 12 to 13 y groups), which indicates an increased TBW, and a decrease
in BCM.

Most studies have used BMI to assess nutritional status. However, these studies cannot
clarify whether the associations were from the influence of growth on fat mass, FFM, or
both [1,43]. In the present study, after one year, BMI changes classified all participants as
having normal weights according to WHO reference curves [47]. In order to overcome the
limitations of BMI, FFMI was calculated, indicating the maintenance of FFM for female
athletes and an increase in FFM for male athletes, following the expected FFM increases
predicted for adolescents [1].

Sex differences in FFM and the corresponding changes during puberty have been
observed [1,43]. FFM remains comparable between the sexes during middle childhood
(6–12 years of age). However, in puberty, males accrue approximately one kilogram more
in absolute FFM than females [50], and for a longer period, males acquire more FFM than
females [1,43,45]. This trend is similar to that observed in the present study, in which
female adolescents (11 to 12 y and 12 to 13 y age groups) and male adolescents (11 to 12 y,
12 to 13 y, and 13 to 14 y age groups) showed an increase in FFM. Horlick et al.’s [9] BIA
FFM predictive equation was used in the present study because the previous study showed
it was adequate for adolescent athletes [8]. However, this result must be viewed with
caution since BIA FFM predictive equations can lead to misinterpretation [51]. For this
reason, BIVA must be carried out.

BIVA utilizes raw BI data to overcome the limitations of predictive equations. There
are two approaches to BIVA: classic BIVA [33,34] and specific BIVA [29–32,52]. Classic BIVA
has been suggested to be unable to differentiate individuals with different proportions of
fat mass, as observed in elderly individuals [53] and male elite youth soccer players [40]. In
a study with North American children and adolescents, body fat percentage was found to
be positively associated with age among female adolescents and with FFMI among male
adolescents [30]. In the present study, classic BIVA was used, and for this reason, fat mass
was not calculated.
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In a cross-sectional study with male youth soccer players, classic BIVA identified a
shortening of R/H and Xc/H values in “earlier maturity” adolescents compared to “late
maturity” [40]. Similar results were observed in the present study, in which R/H and Xc/H
values were lower at T0 (baseline) in the mature group (13 to 14 years) compared to the
immature group (11 to 12 years). After one year of sports practice, R/H values decreased in
all male age groups whereas Xc/H values decreased only in the 11 to 12 and 12 to 13 y age
groups, increasing in the 13 to 14 y age group. A decrease in R/H indicates a body fluid
improvement that may be linked to high TBW and FFM values while the increase in Xc/H
is related to growth and, consequently, high cellularity [40,46], consistent with the number
of mature male adolescents in this age group. These findings are commonly observed in
athletes who have relatively high values of lean body mass, a surrogate marker of muscle
mass, muscle glycogen reserves, and plasma volume [45,54]. In the present study, PhA
increased only in the mature group (13 to 14 y) after one year of sports practice, which is
consistent with the simultaneous increase in TBW (fluid improvement) and BCM (higher
cellularity). These results are related to development and growth, leading to an increase
in FFM in all age groups and reinforcing that longitudinal BIVA is influenced by maturity
status, according to other cross-sectional studies [25,41,42].

The relationship between PhA and exercise benefits has been studied in adults. Ballarin
et al. [55] highlighted that PhA is correlated with physical fitness tests related to muscle
strength. Additionally, it is a significant predictor of upper- and lower-limb musculoskeletal
strength in young adults (24.2 ± 3.0 years). However, in adolescents, systematic reviews
have shown limited and partial evidence that changes in PhA over the first two decades of
life reflect modifications in the FFM. This suggests that more studies are needed to confirm
PhA as a relevant marker of nutritional status in adolescents [26,29]. It should be noted that
all the studies were cross-sectional, meaning they were based on observations from data
collected just once in different groups, differently from longitudinal studies, which aim to
determine the magnitude of changes over a period. In the present longitudinal study, “time
interval” influenced, in females, PhA and Xc/H, and in males, R/H, Xc/H, Z/H, and PhA,
and this was also influenced by “initial age”. These results corroborate the relationship
between PhA and raw BI data with growth in healthy adolescent athletes.

Studies on BIVA in female adolescent athletes are scarce. Only one cross-sectional
study has observed a negative association between Xc/H values and chronological age in
Brazilian female adolescent athletes [25]. Studies have also observed progressive shortening
vectors in Italian children and adolescents (2–15 y) of both sexes [41], in Italian female
adolescents (10–15 y) [21], and in Brazilian female adolescents (11–12 y) [42]. These results
may relate more to maturity status than chronological age [21].

Higher PhA values and shorter vectors have been found in post-menarche female
adolescents when compared to pre-menarche ones [21]. In the present study, comparing
the female groups based on sexual maturity proved challenging due to the limited repre-
sentation of sexually immature females across all age groups. Possibly for this reason, no
difference in vector length was observed after one year of sports practice. Nonetheless, this
one-year longitudinal assessment revealed higher Xc/H values in the 13 to 14 y age group,
where all participants were in the post-menarche stage. The PhA changes were higher in
the 11 to 12 y group (58% sexual maturity), possibly due to greater variation in weight,
height, and FFM compared to the 13 to 14 y group. BIVA showed overlapped ellipses, after
one year of sports practice and growth, indicating no significant differences in bioelectrical
vectors considering chronological age.

In the present study, there were some limitations, such as the absence of a reference
method to identify biological maturity in male adolescents, the small number of sexually
immature female adolescents, and the lack of a highly accurate method, such as DXA, to
test the agreement of FFM changes occurring over time. Another important point to be
considered is the small sample size after stratification by sex and chronological age, which
are crucial in characterizing adolescents.
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The strengths of the present study were the following: no segment loss for all adoles-
cent athletes for one year and practice regular sports under similar conditions. Moreover,
this study highlighted the practical utility of employing raw BI data for changes in FFM
measurement after one year and BIVA for the analytical interpretation of R and Xc adjusted
by height. Taken together, they may enhance the comprehension of physiological changes
during adolescence. For dietitians and physical trainers overseeing adolescent athletes,
integrating BIVA into their monitoring protocols facilitates the assessment and monitoring
of changes in body composition throughout their training programs. This integration not
only aids in understanding the impact of physical training on physiological parameters but
also supports tailored interventions to optimize athletes’ performance and overall health
during this critical developmental phase.

5. Conclusions

Our results emphasize the applicability of raw BI data and BIVA ellipse patterns
that can detect the magnitude of changes in a sex-dependent manner. Their integrated
evaluation might contribute to identifying risks and planning training schedules and
nutrition interventions for adolescent athletes.
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