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Abstract: Parkinson’s disease (PD) is the second most common neurological disorder, pathologically
characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) as well
as the formation of Lewy bodies composed mainly of α-synuclein (α-syn) aggregates. It has been
documented that abnormal aggregation of α-syn is one of the major causes of developing PD. In the
current study, administration of ellagic acid (EA), a polyphenolic compound (10 mg/kg bodyweight),
significantly decreased α-syn spreading and preserved dopaminergic neurons in a male C57BL/
6 mouse model of PD. Moreover, EA altered the autophagic flux, suggesting the involvement of a
restorative mechanism meditated by EA treatment. Our data support that EA could play a major role
in the clearing of toxic α-syn from spreading, in addition to the canonical antioxidative role, and thus
preventing dopaminergic neuronal death.
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1. Introduction

Polyphenols are among the most researched naturally occurring chemicals; their
antioxidant capacity has attracted therapeutic potential in many pathologies [1,2]. One of
the most prominent polyphenolic compounds is ellagic acid (EA), found in a plethora of
dietary sources, including walnuts, cashews, cranberries, strawberries, raspberries [3,4]
and pomegranates [5,6].

The phenolic groups present in EA (Figure 1) are hydrogen donors, conferring their
antioxidant effect on reactive oxygen species as well as reactive nitrogen species, thus
ameliorating harmful oxidative cellular stress. Furthermore, the presence of benzene rings
creates a capacity to participate and buffer redox reactions [7].
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The high antioxidative properties of EA has attracted a great deal of attention in
various chronic diseases, many of which share inflammatory etiologies, such as cardio-
vascular disease [8], inflammatory bowel disease [9], respiratory syndromes [10] and liver
diseases [11]. The antitumorigenic properties of EA have been extensively studied in
many oncologic diseases, including pancreatic [12], lung [13], bladder [14], gastric [15],
colorectal [16] and breast cancers [17], with the mitigation of adverse effects reported in
multiple anticancer therapy studies [18–20].

Additionally, antiaging properties have been attributed to EA [21]; the significance
of this property had been the primary focus in many neurological pathologies, especially
in Parkinson’s disease (PD). PD is the second most common neurological disorder [22],
of which the disease burden is the tenth-ranking neurological disorder in the 2019 Global
Burden of Disease study [23]. PD clinically manifests in a series of motor symptoms,
including tremors, rigidity, muscle stiffness and postural instability [24]. Although non-
motor symptoms are documented to precede the clinically symptomatic onset of PD, the
elusive nature of these non-motor symptoms pose a difficulty in the diagnosis of the
disease [25]. The development of PD symptoms arises predominantly due to the lack of
the neurotransmitter dopamine (DA). The depletion of DA occurs as a consequence of
neuronal death of the dopaminergic neurons located in the midbrain, specifically in the
substantia nigra pars compacta (SNc), which synthesizes it.

The neuropathology of PD had been highly associated with the accumulation of a
presynaptic protein known as α-syn [26]. Although the physiological function of α-syn
is proposed to influence the release of neurotransmitters, mapping of the α-syn function
beyond pathological context is far from complete [27]. The aggregation of accumulated
α-syn into toxic oligomers and fibrils [26,28], leading to the formation of insoluble inclusion
known as Lewy bodies (LBs), is one of the hallmarks of PD [29]. The process of self-
propagation of α-syn in a prion-like manner from afflicted to healthy neurons greatly
explains Braak’s clinical staging of sporadic PD [30,31]. The templated α-syn aggregation
is initiated in many PD models via the introduction of α-syn preformed fibrils (PFF) [32].

Many post-translational modifications (PTMs) of α-syn have been associated with
PD pathology [33]; the presence of phosphorylated α-syn at Ser129 (pS129) in high ratios
reaching up to 90% of LBs prompted the focus on pS129 α-syn detection in PD research [34].

The clearance of α-syn is primarily conducted via a catabolic process called autophagy
(literally meaning ‘self-eating’). Induction of autophagic flux has been researched as a
promising therapeutic strategy in many neurological pathologies [35]. In addition to the
implication of EA in the betterment of PD prognosis, which has been primarily attributed
to its antioxidative effect [36], the involvement of autophagy induction in EA action had
been recently reported in a cell culture model of PD [37].

Earlier, we showed that EA effectively mitigates the acute neurodegenerative effects of
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on dopaminergic neurons [38]. Initially
identified in the early 1980s, MPTP’s neurotoxicity was first observed in young drug abusers
exhibiting Parkinson-like symptoms [39]. MPTP’s ability to selectively target dopaminergic
neurons in the SNc has significantly added to the capacity of animal modeling of PD [40].
MPTP, being lipophilic, easily crosses the blood–brain barrier (BBB). Inside the brain, it is
metabolized by monoamine oxidase-B (MAO-B) into MPDP+, which then spontaneously
oxidizes to form 1-methyl-4-phenylpyridinium (MPP+), a potent inhibitor of mitochondrial
complex I. MPP+ disrupts the mitochondrial respiratory chain and calcium homeostasis,
leading to increased reactive oxygen species (ROS) production and ATP depletion. The vul-
nerability of SNc dopaminergic neurons to MPP+ in various PD models is largely attributed
to MPP+’s high affinity for dopamine uptake sites [41]. Elevated intracellular concentrations
of MPP+ impair mitochondrial functions in these high-energy-demanding neurons, acceler-
ating PD progression [42]. Our prior research revealed that IP administration of a nontoxic
low MPTP dose (10 mg/kg b.wt.) exacerbated α-syn spreading and neurotoxicity in male
C57BL/6 mice injected with PFF in the striatum [43]. The current study builds on that model,
exploring how EA might prevent α-syn propagation and neurodegeneration.
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2. Methodology
2.1. PFF Seed Synthesis

PFF seed synthesis proceeded as described in [43], and is illustrated in Figure 2.
Briefly, the first step proceeded by the bacterial transformation with pT7-7 wild-type α -syn
vector and plating onto ampicillin selection plates to identify bacterial colonies successfully
expressing the α-syn vector. The selection of one colony was inoculated in lysogeny broth
(LB) overnight at 37 ◦C in the shaker. This colony was expanded into a larger LB volume
and kept overnight, and optical density (OD) was regularly assessed until an OD of 0.5–0.6,
at which exponential bacterial growth was achieved. Lac-repressor was inhibited by the
addition of Isopropyl β-D-1-thiogalactopyranoside (IPGT) to the bacterial culture to induce
wild-type human α-syn production (2 h at 37 ◦C in the shaker).
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Bacterial culture was pelleted and lysed using a detergent-free lysis buffer. The lysate
was subjected to dialysis using a gel filtration buffer (Tris-EDTA) and a dialysis tube with
7 kDa cutoff-molecular-weight buffer, which is compatible with the subsequent isolation
techniques. Following dialysis, the lysate was subjected to filtration (using 2 µm filters),
then was subjected to concentration (~10 kDa cutoff molecular weight). The concentrated
lysate was subjected to fast protein liquid chromatography (FPLC). Fractionated protein
samples were eluted, and molecular weight of the α-syn was collected with respect to
the range of eluted fractions under the standard curve (peaks of chromatogram) detected.
Further analysis of the range of fractions collected was analyzed using SDS-PAGE to ensure
the collection of the best representative α-syn elution. The purity of the sample was further
increased by subjecting collected fractions to ion exchange chromatography, through which
α-syn monomer was isolated.

Monomeric α-syn was transformed into aggregated α-syn fibrils via subjecting to
constant shaking (800 rpm/min) at 37 ◦C over a period of 7–8 days. Periodic testing of
fibril formation was achieved using thioflavin-S assay. Furthermore, the visualization of
the aggregatory phases of α-syn fibrils was confirmed using Western blotting and electron
microscopy. Finally, the aggregated α-syn fibrils were pelleted and washed to remove trace
monomeric α-syn. Application of the α-syn fibrils in pathological context requires a more
interactive state, which is consistent with a smaller length of fibrils; this is achieved by
the sonication of the aggregated α-syn fibrils to form α-syn PFF seed. This seed was then
aliquoted and stored at −80 ◦C.
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2.2. Animals

C57BL/6 mice were obtained from the UAE University animal facility. Male mice
of ages 2–2.5 months that weighed 20–26 g were included in the experiments. Mice were
housed in a 12 h light/dark cycle with access to food and water throughout the experiment
duration. All experiments were performed in accordance with UAE University Animal
Ethics guidelines (Approval number: ERA_2021_8408).

2.3. Study Plan

Male C57BL/6 mice were acclimatized to the polystyrene cages for a week; animal
sedation was conducted using Ketamine HCL (Ketamil) and Xylazine HCL (Xylazil-20)
solutions diluted in normal saline and dosed accordingly (1 mL/kg). Following sedation,
the head was fixed onto the stereotaxic surgery apparatus (WPI) and a surgical scalpel
blade (no. 11) was used to perform a cut (approximately from the sagittal suture to lambda),
fully exposing the bregma. Following coordinates were used (with respect to the bregma) to
deliver the PFF seed in the striatum (anterior–posterior: +0.5 mm; medial–lateral: −2.2 mm;
dorsal–ventral: −3.4 mm) [43]. Intrastriatal injection (using Hamilton 10 µL syringe) was
conducted at the following infusion rate: 0.5 µL/min using a syringe pump (Micro4 TM

MicroSyringe Pump Controller, WPI, Sarasota, FL, USA); PFF infusion of 2.5 µL (a total
of 5 µg of PFF seed) was delivered at a constant rate (0.5 µL/min) and an extra one
minute was kept to allow for the remnant PFF seed in the syringe to diffuse properly.
Following the stereotaxic surgery, wound was sealed by application of a tissue adhesive
(3M VetbondTM/MC, Kowloon, Hong Kong) onto the wound edges that had been clamped
together using a forceps. Phosphate-buffered saline (PBS) group was kept as a control.

Intraperitoneal (IP) administration of the natural compound of interest (Ellagic acid-
E2250-Sigma, St. Louis, MO, USA) proceeded for the following 12 days. EA was prepared
in a 20 mg/mL stock in Dimethyl sulfoxide solvent (DMSO), then aliquoted into 200 µL
aliquots and stored in −80 ◦C. Each aliquot of EA was mixed in saline solution in a 1:20
ratio to achieve final dose of 10 mg/kg b.wt. A 4-week gap was given before proceeding
with the neurotoxin (MPTP-M08896-Sigma, St. Louis, MO, USA) IP administration at
10 mg/kg b.wt. for 5 consecutive days. The experimental group received the EA at least
one hour before MPTP and continued for seven days. Control groups receiving EA vehicle
(V): PFF+MPTP+V and PBS+V were given an IP 1:20 ratio of DMSO in saline solution for
the same duration as EA treatment.

Animal sacrifice was performed at the end of the 8th week of the experiment, as
illustrated in Figure 3. Animals were injected with sedative, as mentioned before. The
cardiac perfusion was conducted using 10 mL of normal saline followed by 10 mL of
4% Paraformaldehyde solution for tissue fixation. The collected brains were kept in 4%
Paraformaldehyde solution for 24 h; for the following 3 days, this solution was changed
twice a day with a 10% sucrose in 0.1 M PB + 0.02% sodium azide solution. Finally, the
brains were carefully dried and frozen at −80 ◦C. Cryosectioning of the brain samples
was performed at −20 ◦C. Brains were cut into 40 µm sections. Sections of striatal and
midbrain (SNc) regions were saved in a serial manner in PBS 0.02% sodium azide (free
floating), respectively.

2.4. Sample Processing

The assessment of the pathological features of the PD model with and without EA
treatment in this study was evaluated via immunohistochemistry (IHC), immunofluores-
cence (IF) and sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
assays. The following sections will further illustrate the methodologies implemented.
Table 1 highlights the antibodies used in the IHC and IF assays in this study with their
respective dilutions. Section collection for further tissue processing was performed as
previously described in [43,44].
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Figure 3. Study plan. Illustration of the study depicting the study plan and duration. C57BL/6 male
mice were subjected to intrastriatal injection with PFF at coordinates: anterior–posterior: +0.5 mm;
medial–lateral: −2.2 mm; dorsal–ventral: −3.4 mm from the bregma. Following 6 weeks, MPTP was
administered IP at a low dose (10 mg/kg b.wt.) for 5 days. Animal sacrifice and brain collection were
performed on the end of the 8th week of the experiment. IP EA administration (10 mg/kg b.wt.)
was conducted during the first 12 days following the stereotaxic surgery and during the 7th week
(adjunctively with MPTP administration with 1 h dosing gap) for 7 days.

Table 1. IHC antibodies.

Antibodies Host Species/Cat. No. Source Dilution Assay

Primary
Antibodies

DAT Rat/TEMECULA
MAB369

Merck, Burlington, MA,
USA 1:1000 DAB

TH Mouse/Immuno star
22941

ImmunoStar, Hudson,
Wisonsin, USA 1:1000 DAB/IF

pS129 α-syn Rabbit/ab59264 Abcam, Waltham, MA,
USA 1:1000 IF

Conformational
α-syn Rabbit/ab209538 Abcam, Waltham, MA,

USA 1:1000 IF

LC3A/B Rabbit/CST 12741
Cell Signaling
Technology, Inc.,
Danvers, MA. USA

1:500 IF

p62 Mouse/ab56416 Abcam, Waltham, MA,
USA 1:500 IF
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Table 1. Cont.

Antibodies Host Species/Cat. No. Source Dilution Assay

Secondary
Antibodies

Biotin-sp-
conjugated

Donkey
anti-Rat/Jackson
Immuno Research
712-065-153

Jackson
ImmunoResearch
Laboratories, West
Grove, PA, USA

1:1000 DAB

Biotin-sp-
conjugated

Donkey
anti-mouse/Jackson
Immuno Research
715-065-150

Jackson
ImmunoResearch
Laboratories, West
Grove, PA, USA

1:1000 DAB

Alexa Fluor 594
Goat anti-
mouse/Invitrogen;
A11032

Thermo Fisher Scientific
Pierce Biotechnology,
Rockford, IL, USA

1:1000 IF

Alexa Fluor 488
Goat anti-
rabbit/Invitrogen;
A11034

Thermo Fisher Scientific
Pierce Biotechnology,
Rockford, IL, USA

1:1000 IF

Tertiary Antibody

Streptavidin-
horseradish
Peroxidase
conjugate

AntiDonkey/
AmershamTM;
RPN1231-2ML

Cytiva,
Buckinghamshire, UK 1:200 DAB

2.4.1. DAB (3,3′-Diaminobenzidine) Stain

DAB stain was performed to the collected striatal sections to assess the dopaminergic
nerve terminal (DAT) loss; collection of 7 the striatal sections (from the serially collected sec-
tion area from −1.54 to −0.22 mm of bregma) of the free-floating 40 µm sections of the brain
samples was conducted. These samples were washed in PBS, pH 7.4 in 5 min incubations
3 times. Following these washes, sections were blocked to minimize background signal
with 10% normal goat serum (NGS) in PBS for 1 h at room temperature. PBS washes (5 min
incubations 3 times) was performed followed by incubation with the primary antibodies
overnight at −4 ◦C. The sections were kept at room temperature for at least 20 min before
further processing to avoid tissue damage, primary antibody was washed with standard
PBS washes (5 min incubations 3 times) then incubated with secondary antibody (Biotin
conjugated) for 1 h at room temperature to increase the signal specificity as well as intensity.
PBS washes were performed prior to incubation with tertiary antibody (Streptavidin-HRP
Conjugate) for 1 h at room temperature, followed again by PBS washes. Signal acquisition
was performed by DAB reaction.

Sections were mounted on the slides and dehydrated by exposure to serial dilutions of
ethanol. Shandon synthetic mounting media (Ref 6769007) was then used for sealing. Image
acquisition was performed using Leica DM4000 B LED Microscope (Leica Microsystems,
Wetzlar, Germany). Optical density of DAT was measured using NIH Image J (version:
Image J 1.54d).

DAB stain was also performed to the collected SNc sections to assess neuronal cell
body loss using tyrosine hydroxylase (TH) positive neurons counting.

SNc sections serially collected from areas −2.18 to −3.80 mm with respect to the
bregma were considered for this assay; a total of 7 sections (with a consistent 6-section
interval) were collected for further tissue processing. The protocol proceeded in the same
manner as DAT stain with the compatible secondary and tertiary antibodies to TH antibody,
as detailed in Table 1. The TH counting proceeded as previously described in [38], using
optical fractionator of automated stereo investigator (version 2018).
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2.4.2. Immunofluorescence (IF)

Immunofluorescent double labeling of the collected brain samples’ sections was per-
formed to assess the following aspects in our study:

a. α-syn species spreading to the dopaminergic neurons in the SNc in phosphorylated
form (pSer129) and filamentous form (Proteinase K resistant form).

b. Expression of autophagic markers (LC3, p62) in dopaminergic neurons in the SNc.

Sample collection of SNc proceeded in the same manner as the TH-DAB stain protocol
to detect the following co-stains: TH-pS129, TH-Confirmational α-syn, TH-LC3 and TH-
p62, respectively. The collected sections were blocked and washed as detailed in the DAT
staining. Primary antibodies were diluted in PBS following the dilutions mentioned in
Table 1 overnight at −4 ◦C. The sections were kept at room temperature for at least 20 min
before further processing to avoid tissue damage; primary antibody was washed with
standard PBS washes then incubated with florescent secondary antibody (TH was tagged
with correspondent alexa594, while pS129, confirmational α-syn, LC3 and p62 were tagged
with correspondent alexa488, respectively) for 1 h at room temperature and covered with
aluminum foil to avoid photobleaching. Following 3 PBS washes (5 min each), sections were
mounted onto the slides and sealed using Fluoroshield (F6182, Sigma, St. Louis, MO, USA).

TH-conformational α-syn co-stain required exposure to Proteinase K (PK) 5 µg/mL
for 30 min at 25 ◦C prior to the blockade with 10%NGS and proceeded as other stains.

2.4.3. TUNEL Assay (Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling)

In situ cell death detection kit (Roche Cat. No. 11 684 817 910) was used in this assay,
Proteinase K (PK) 5 µg/mL for 30 min at 25 ◦C, prior to the blockade, and proceeded as per
manufacturer recommendations. Nucleus was stained using TO-PROTM-3 Iodide (642/661,
Invitrogen); TOPRO (originally blue) was pseudo-colored to magenta.

2.4.4. Western Blot Analysis

To confirm the data acquired in the IHC, sectioned samples of SNc were collected in a
serial manner similar to the IHC and IF protocols in 0.1% Triton solution with 1× Protease
Inhibitor cocktail in a 0.5 mL Eppendorf tubes, respectively. Tubes were sealed with
parafilm and placed on a rotator (25 rpm) overnight at 4 ◦C.

Samples were completely homogenized by sonicating on ice (Sonic Ruptor 250-Omni in-
ternational Homogenizer Company, Kennesaw, GA, USA) before centrifugation at 14,000 rpm
4 ◦C for 15 min. Samples were processed in 15% SDS-Poly acrylamide gel. Protein trans-
fer was performed using wet transfer method onto methanol-activated PVDF membrane
at 100 V for 1.5 h. Membrane was later blocked using 5% milk in PBS-T (or 5% bovine
serum albumin in case of detection of phosphorus-containing protein). Membranes were
tagged with the primary antibody (in dilutions detailed in Table 2) overnight at 4 ◦C on the
shaker. PBS-T washes for 30 min preceded 1 h incubation with the correspondent secondary
antibody. Bands were visualized using Sapphire (1.3.0219.0) azure biosystems.

Table 2. Western blot antibodies.

Antibodies Host Species/Cat. No. Dilution

TH Mouse/Immuno star 22941 1:1000
pS129 α-syn Rabbit/ab59264 1:1000

LC3A/B Rabbit/CST 12741 1:1000
p62 Mouse/ab56416 1:1000

GAPDH Rabbit/CST 2118 1:1000
Actin Mouse/MAB1501R 1:1000

Goat Anti-rabbit Goat/Jacson Immuno Research 111-035-144 1:10,000
Goat Anti-mouse Goat/Jacson Immuno Research 115-035-166 1:10,000
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2.5. Microscopy

Confocal microscope Nikon EZC1 was used in the image acquisition of colocalizing
fluorescent markers (TH-pS129, TH-conformational α-syn, TH-LC3, TH-p62 and To-Pro-
TUNEL, respectively). Leica DFC 3000 G microscope was used in the acquisition of the
DAB striatal DAT signal.

Stereology of dopaminergic neuronal bodies (TH expressing cells in the SNc are
visualized by DAB reaction) was performed using an optical fractionator of automated
stereo investigator, as previously described in [38].

2.6. Data Acquisition and Statistical Analysis

NIH ImageJ software was used in the analysis of IF colocalization studies as well as
DAB signal intensity measurement and the Western blotting band intensity study. Graph-
Pad prism 5.0 software was used for statistical analysis. The number of animals is indicated
by (n), where n = 3–4 animals per group for all experimental procedures.

3. Results
3.1. EA Inhibits MPTP-PFF Induced α-Syn Spreading and Aggregation

In vitro data suggest the candidacy of EA in the prevention of α-syn aggregation [45].
The propagation of α-syn aggregate spreading from the site of the primary PFF inoculation
(striatum), where dopaminergic neurons terminals reside, to the cell body in the SNc, occurs
in a retrograde manner across the nigrostriatal pathway [32].

This study, through the recently developed in vivo model in male C57BL/6 mice [43],
follows the propagation of α-syn in the presence and absence on EA treatment (IP 10 mg/kg
b.wt.). The spreading and aggregation of α-syn was determined via the evaluation of
two subsequent antibody stains. The first was through the detection of the pS219 α-syn
(Figure 4A), which is the most common form of PTM of α-syn found in LB pathology
in PD patients. And the second test was the detection of a PK-resistant form of α-syn,
commonly referred to as conformational or filamentous α-syn, which is more consistent
with pathogenic fibrillar α-syn structures (Figure 5A).
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EA produced a significant reduction in the colocalization of both pS219 α-syn and 
filamentous α-syn in the TH neurons, as represented in Figures 4B and 5B, respectively. 
Collectively, these results suggest the inhibitory effect of EA on α-syn spreading, as well 
as removing the α-syn aggregates in vivo. 

Figure 4. Assessment of α-syn in TH neurons in SNc. (A) Representative images showing the mouse
pS129 α-syn spreading in the SNc in both PFF+MPTP-treated groups in comparison with a control
group (PBS). (B) EA administration confers significant reduction in synuclein-spreading C57BL/6 male
mice PD model. (C) Western blot showing phosphorylated form of α-syn in the SNc. (D) Western blot

analysis showing phosphorylated form of α-syn a primary component found in Lewy bodies, and
results were quantified as density relative to actin protein expression. (E) Western blot of endoge-
nous levels of α-syn in SNc. (F) Quantification of endogenous α-syn protein. Data represented as
percentage ± standard error of the mean (n = 3–4 per group). Scale bar: 50 µm (A). (*** p < 0.0001,
** p < 0.001, one-way ANOVA and Bonferroni post hoc test) (AU: arbitrary unit).
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Figure 5. Assessment of filament-specific α-syn in the TH neurons of SNc. (A) Representative
images showing the accumulation of filament-specific α-syn in the SNc in both PFF+MPTP-treated
groups (PFF+MPTP+V and PFF+MPTP+EA), respectively. (B) EA administration confers a signifi-
cant reduction in aggregated synuclein accumulation in C57BL/6 male mice. Data represented as
percentage ± standard error of the mean (n = 3–4 per group). Scale bar: 50 µm (A). (*** p < 0.0001,
one-way ANOVA and Bonferroni post hoc test).

EA produced a significant reduction in the colocalization of both pS219 α-syn and
filamentous α-syn in the TH neurons, as represented in Figures 4B and 5B, respectively.
Collectively, these results suggest the inhibitory effect of EA on α-syn spreading, as well as
removing the α-syn aggregates in vivo.

3.2. EA Inhibits Dopaminergic Neuronal Cell Loss and Preserves DAT Terminals

EA conferred neuronal protection against α-syn spreading and aggregation in C57BL/
6 male mice, a neuroprotective feature that is in concordance with EA in vitro action [37,38,46].
The preservation of the dopaminergic neurons was achieved by the administration of IP
10 mg/kg dose of EA over the 12 days that followed the stereotaxic surgery in addition
to an adjunctive administration with the neurotoxin MPTP (with a 1 h dosing gap), as
mentioned in the methods and materials section.

An unbiased stereoinvestigator system was used to assess the TH neuron number in
the SNc area. Through stereoscopy, significant preservation of dopaminergic neurons in EA-
treated animals when compared to the vehicle-treated group was observed, as displayed in
Figure 6B, which highlights of the neuroprotective role of EA.
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protective effect of EA treatment against the neurotoxicity of α-syn aggregate spreading 
from the striatum to the SNc, as well as the MPTP neurotoxin. 

Figure 6. Assessment of tyrosine hydroxylase immune-positive (TH+) neurons to quantify the number
of dopaminergic (DA) neurons in the substantia nigra (SNc) and dopamine transporter (DAT) density
in the striatum. (A) Representative images showing the TH+ neurons in the SNc area. (B) The number
of DA neurons in the SNc was counted in each animal using unbiased stereo investigator system, as
described in methods section. The number of TH+ neurons was significantly higher in animals treated
with EA. (C) Representative images showing the immunoreactivity of dopamine transporter (DAT) in
the striatum. The intensity of dopamine nerve terminals was significantly improved in the striatum
of EA-treated male mice when compared with that in group (PFF+MPTP+V). (D) DAT intensity
was measured using NIH image J software, and is presented in the graph. Scale bar: 500 µm (A,C).
Data represented as percentage ± standard error of the mean (n = 3–4 per group). (*** p < 0.0001,
** p < 0.001, one-way ANOVA and Bonferroni post hoc test) (AU: arbitrary unit).

Since DA neurons project their nerve terminal to the striatum area, any loss of DA
neurons results in a decrease in the number of DATs. The assessment of this preservation
was achieved using DAB staining and by measuring the intensity of the nerve terminals.
As expected, significant preservation of DAT intensity in the EA-treated group as opposed
to vehicle group was observed (Figure 6D).

3.3. EA Enhances the Apoptotic Profile of Neurons in the SNc in MPTP-PFF Mouse PD Model

As a hallmark of apoptosis, TUNEL labeling was performed on the SNc neurons. As
displayed in Figure 7B, the EA-treated group displayed a significantly lower presence of
nuclear fragmentation, which is consistent with the previous results ensuring the neuropro-
tective effect of EA treatment against the neurotoxicity of α-syn aggregate spreading from
the striatum to the SNc, as well as the MPTP neurotoxin.

3.4. EA Induces Autophagic Degradation of α-Syn

The autophagic lysosomal pathway is one of the main mechanisms responsible for
the degradation and clearance of α-syn; therefore, a colocalization study between the
TH neurons and the LC3 protein was performed. It was found that EA-treated samples
exhibited significantly higher levels of colocalization of the LC3 protein in the TH neurons
consistent with displayed inhibition of α-syn spreading and aggregation as well as pre-
served structural integrity of dopaminergic neurons. Figure 8B displays the increased LC3
marker in TH neurons in the SNc upon EA treatment. These data were further confirmed
by the assessment of the autophagy flux via the quantification of the LC3 II/I ratio by
SDS-PAGE assay, as illustrated in Figure 8C,D.
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Figure 7. Detection and quantification of apoptotic neurons using TUNEL assay. (A) Representative
images showing the TUNEL-positive neurons in the midbrain sections covering SNc region. EA
treatment confers significant protection against apoptosis when compared with (PFF+MPTP+V) group;
nuclei stained with TOPRO (originally blue) were pseudo-colored to magenta. (B) Number of TUNEL-
positive cells counted and presented. Data represented as percentage ± standard error of the mean
(n = 3–4). Scale bar: 25 µm. (*** p < 0.0001, ** p < 0.001, one-way ANOVA and Bonferroni post hoc test).

Nutrients 2024, 16, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 8. Assessment of autophagy marker LC3 in TH neurons in the SNc area. (A) Representative 
images showing the LC3 puncta in the SNc area. (B) EA significantly increases LC3 puncta colocal-
ized in the TH neurons of the SNc area as compared with vehicle-only-treated group 
(PFF+MPTP+V). Data represented as Pearson’s coefficient ± standard error of the mean (n = 3–4) as 
mentioned in the methods and methodology. Scale bar: 25 µm (A). (C) Immunoblotting of autoph-
agy marker LC3 in both its isoforms, LC3II and LC3I. (D) An increase revealed in the LC3II/I ratio 
in the EA-treated group as opposed to the group without EA treatment. Data represented as LC3 
II/I ratio ± standard error of the mean (n = 3–4). (** p < 0.001, * p < 0.05, ns: not significant, one-way 
ANOVA and Bonferroni post hoc test). 

It is noteworthy that assessment of the molecular chaperone, p62, is essential in the 
recruitment of autophagic biomarkers and cellular cargo, thus aiding in the facilitation of 
the catabolic process through lysosome. The p62 is a substrate of the autophagic flux; in 
other words, its accumulation is a signature of dysfunctional autophagy. Colocalization 
showed to be decreased, with a smaller number of p62 inclusions that colocalized with 
TH neurons in the SNc of the EA-treated groups in comparison with the control group (as 
displayed in Figure 9B). Western blot analysis verified the capacity of EA to restore normal 
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Figure 8. Assessment of autophagy marker LC3 in TH neurons in the SNc area. (A) Representative
images showing the LC3 puncta in the SNc area. (B) EA significantly increases LC3 puncta colocalized
in the TH neurons of the SNc area as compared with vehicle-only-treated group (PFF+MPTP+V).
Data represented as Pearson’s coefficient ± standard error of the mean (n = 3–4) as mentioned in the
methods and methodology. Scale bar: 25 µm (A). (C) Immunoblotting of autophagy marker LC3 in
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both its isoforms, LC3II and LC3I. (D) An increase revealed in the LC3II/I ratio in the EA-treated
group as opposed to the group without EA treatment. Data represented as LC3 II/I ratio ± standard
error of the mean (n = 3–4). (** p < 0.001, * p < 0.05, ns: not significant, one-way ANOVA and
Bonferroni post hoc test).

It is noteworthy that assessment of the molecular chaperone, p62, is essential in the
recruitment of autophagic biomarkers and cellular cargo, thus aiding in the facilitation of
the catabolic process through lysosome. The p62 is a substrate of the autophagic flux; in
other words, its accumulation is a signature of dysfunctional autophagy. Colocalization
showed to be decreased, with a smaller number of p62 inclusions that colocalized with
TH neurons in the SNc of the EA-treated groups in comparison with the control group (as
displayed in Figure 9B). Western blot analysis verified the capacity of EA to restore normal
autophagy in a PD mouse model (Figure 9D).
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Figure 9. Assessment of autophagy substrate p62 in TH neurons in the SNc. (A) Representative
images showing the p62 puncta in the SNc. (B) EA significantly increases p62 puncta colocalized in
the TH neurons of the SNc as compared with vehicle-only-treated group PFF+MPTP+V). (C) Western
blot showing significant decrease in p62 level when animals were treated with EA. (D) Quantification
and analysis of immunoblot signal using NIH image J software. Data represented as Pearson’s
coefficient ± standard error of the mean (n = 3–4). Scale bar: 25 µm (A). (* p < 0.05, ns: not significant,
one-way ANOVA and Bonferroni post hoc test) (AU: arbitrary unit).

4. Discussion

PD is the second most common neurodegenerative disorder, marked by the depletion
of dopaminergic neurons in the motor control center of the midbrain (specifically in the
SNc). The deposition of aggregated presynaptic protein α-syn is one of the hallmarks of
the disease, and is seen in neurons [30]. The development of α-syn aggregates from a
nontoxic monomer via toxic oligomeric states into a relatively less toxic fibrillar state as the
primary component of LBs is the central dogma of loss of synaptic plasticity in PD. pS129
α-syn composes up to 90% of the LBs α-syn content [33,34]. The association of the pS129 in
the LB development polarized detection of this form of α-syn for the progression of PD
neuropathology in many experimental models [47].

The clearance of α-syn is predominantly carried out via a catabolic cascade known
as autophagy. The most investigated participants of this cascade are LC3 (Microtubule-
associated protein 1A/1B-light chain 3) and p62 (p62/Sequestosome 1). LC3, on one
hand, presents the gold standard in the autophagy flux detection, as it exists as an LC3
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I isoform, which is lipidated to form LC3 II upon active autolysosomal degradation of
cellular cargo [48]. p62, on the other hand, is a substrate of autophagy, which chaperones
autophagy biomarkers and ubiquitinates cellular cargo for autolysosomal degradation [49].

The current therapeutic approach to PD is primarily dopamine replacement therapy,
not curative therapy. The approaches to expand the scope of PD therapies to target α-syn
accumulation as well as the neuroinflammatory component of the disease have been the
primary target in PD research. Many natural products with antioxidative capacity are being
utilized in the approach to develop PD therapy that targets neuronal loss rather than the
conventional supplementation of neurotransmitter deficiency [50].

EA, a naturally occurring polyphenol, is among the most studied antioxidants that
have gained wide recognition in the field of nutraceuticals [51]. Owing to its antioxidant
capacity, EA had been proposed as a nutraceutical in many chronic diseases [9,10,52].

Although EA, like many polyphenolic compounds, displays limited oral bioavailabil-
ity [53] and extensive phase II metabolism [54], consumption of EA showed efficiency in
clinical trials involving multiple maladies [52,55,56], some of which are of a neurological
nature [57,58]. The safe pharmacokinetic profile of EA [59,60] favors research aiming to
enhance EA bioavailability via improved drug delivery systems [61].

In vitro data verified the direct physical intervention of EA in the aggregation process
of α-syn. An in vitro cellular model of PD confirmed a negative correlation between α-
syn aggregation and EA treatment [37]. Furthermore, the polyphenolic compound was
found to stimulate anti-inflammatory pathways in multiple animal models of PD, thus
confirming the therapeutic potential of EA. The aim of this study was to test the efficacy
of EA in our recently developed in vivo model of PD [43]. Evaluation of the EA role
limiting the α-syn spreading across the nigrostriatal pathway and neurotoxicity in vivo
was conducted. Additionally, this study investigates the potential role of EA-induced
autophagic stimulation, which could play a role in α-syn aggregate degradation.

Enhancement of α-syn aggregate formation was previously reported upon PFF seed in-
jection in the striatum when a low dose of MPTP is administered [43]. Therefore, retrograde
spreading of α-syn aggregates from the site of administration (striatum) to the dopaminer-
gic neuron soma (SNc) was assessed by the detection of pS129 α-syn (Figure 4C), endoge-
nous α-syn (Figure 4E) and conformational α-syn antibodies (Figure 5A). EA treatment
significantly decreased α-syn expression in the SNc (as displayed in Figures 4D,F and 5B),
thus extending the validity of in vitro and cell culture data to the animal model system.

Further exploration of the integrity dopaminergic neurons yielded positive results; EA
conferred protection against dopaminergic neuron loss (Figure 6A), detected by the staining
of the neuronal cell body in the SNc (using TH, a rate limiting enzyme in the dopamine
synthesis) as well as the nerve terminals (Figure 6C) in the striatum (using DAT, a critical
biomarker for synaptic integrity and plasticity). These results were further substantiated
by the assessment of the apoptotic neurons in the SNc via the detection of neuronal DNA
fragmentation (primarily associated with apoptosis) using TUNEL assay. EA significantly
prevented neuronal cell death in the SNc (Figure 7A), which is concordant with previous
data confirming protection against dopaminergic neuron loss in the SNc tested by DAB
assay TH staining.

Investigation of the effect of EA treatment on autophagic markers was performed in
this study. EA increased autophagy marker LC3, as confirmed by the increased colocal-
ization of LC3 protein with the TH-expressing neurons in the SNc (Figure 8A) as well as
the increased LC3 II/I ratio (Figure 8D). Furthermore, a significant decrement in the accu-
mulation of p62 in both immunofluorescence (Figure 9A) as well as Western blot analysis
(Figure 9C) was observed. Increased neuroprotection upon EA IP administration in the
PD mouse model in this study could be attributed to the enhancement of the autophagic
flux, which plays an important role in the lysosomal degradation of α-syn as well as the
targeting of dysfunctional mitochondria [62,63]. Collectively, these results suggest the effect
of EA IP administration in the male mouse model of PD in restoring functional autophagic
flux in SNc dopaminergic neurons, thus providing neuroprotection.
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A very recent article has showed that knockout of UPS30 or the selective inhibitor
of UPS30 is beneficial as a disease-modifying target that enhances the clearance of de-
fective mitochondria induced by aggregated synuclein [64]. It has been suggested that
the suppression of USP30 may have a significant impact on mitochondrial morphology,
maintenance and function, and thus, risk associated with its suppression should be noted
carefully. The toxicity of α-syn causes damage not only in the mitochondria, but also in
the nucleus and the cytoplasm as well as at the synaptic level [65,66]. Furthermore, the
properties of EA are well known, and its safety is well established [59]. In that context, EA
is more promising because of its role as an antioxidant, inhibiting synuclein aggregation
and promoting autophagy.

In this study, we specifically included only male mice, aligning with epidemiological
data that indicated a higher PD incidence among males [67]. However, considering that
PD progression rates are reportedly higher in females [68], it is crucial to extend our
investigation to female mice in future research. This will help in understanding any gender-
specific responses to EA treatment. Additionally, future studies should be designed to
explore into the molecular mechanisms underlying the induction of autophagy by EA.
Understanding these mechanisms is key to developing effective treatments. Lastly, from
a translational research standpoint, exploring oral administration of EA and its potential
benefits in PD models warrants further attention. Such studies could pave the way for
more accessible and noninvasive treatment options for PD patients.

5. Conclusions

In the current study, we were able to prove the neuroprotective capacity of EA in
improved PD mouse model. EA treatment significantly reduced α-syn spreading and
neurotoxicity. Induction of the autophagic flux, as well as suppression of apoptosis, in SNc
neurons was confirmed in this study, shedding light on a potential therapeutic mechanism
of action mediated by EA in a PD mouse model.
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