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Abstract: The increasing prevalence of overweight and obesity suggests that current strategies based
on diet, exercise, and pharmacological knowledge are not sufficient to tackle this epidemic. Obesity
results from a high caloric intake and energy storage, the latter by white adipose tissue (WAT),
and when neither are counterbalanced by an equally high energy expenditure. As a matter of fact,
current research is focused on developing new strategies to increase energy expenditure. Against
this background, brown adipose tissue (BAT), whose importance has recently been re-evaluated via
the use of modern positron emission techniques (PET), is receiving a great deal of attention from
research institutions worldwide, as its main function is to dissipate energy in the form of heat via
a process called thermogenesis. A substantial reduction in BAT occurs during normal growth in
humans and hence it is not easily exploitable. In recent years, scientific research has made great
strides and investigated strategies that focus on expanding BAT and activating the existing BAT.
The present review summarizes current knowledge about the various molecules that can be used to
promote white-to-brown adipose tissue conversion and energy expenditure in order to assess the
potential role of thermogenic nutraceuticals. This includes tools that could represent, in the future, a
valid weapon against the obesity epidemic.
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1. Introduction

Obesity is becoming one of the leading causes of death in the world, representing an
increasingly alarming health emergency [1]. Obesity is recognized as a chronic disease
caused by genetic, environmental, psychological and social factors; it is also considered a
condition that increases the probability of developing a wide range of non-transmissible
comorbidities, such as cardiovascular and metabolic disorders including type 2 diabetes
and numerous forms of cancer [2]. One of the greatest challenges of this millennium is
to halt the rapid increase in obesity worldwide, which should be considered a form of
malnutrition on par with undernutrition, if not more critical. In order to achieve this goal,
dietary prescriptions and physical activity are not enough. It is necessary to reform food
systems, from the agricultural sector to large-scale distribution, ensure the availability and
accessibility of healthy foods, invest in the promotion of educational programs, provide
consumers with tools for making informed choices and encourage the population to engage
in more physical activity. These are only some of the projects that would ideally be
implemented soon, but they require significant political and economic commitment [3].
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The scientific community is focusing on searching for alternative therapeutic strategies
that accompany the refinement of modern technologies. The identification of BAT with
its thermogenic potential may represent a valid way to tackle obesity, both by increasing
energy expenditure and by modulating numerous metabolic targets [4–6]. The aim of this
review is to address this hot topic by exploring the most recent studies in the literature and
to examine a wide range of new bioactive dietary compounds that can expand and activate
BAT, and to simultaneously promote the browning process in humans.

2. Adipose Tissue: Typologies, Role, Physiology

According to their antagonistic functions, two types of adipose tissue can be dis-
tinguished: the white adipose tissue (WAT), which stores excess energy, and the brown
adipose tissue (BAT), which is specialized in dissipating energy via the production of heat.
WAT represents the main form of storage of excess energy derived from food. The excess
energy is stored as triglycerides and when necessary, is released in the form of three fatty
acids and a glycerol. This feature guarantees the survival of an organism even during long
fasting periods. In addition to its primary function as an energy reserve, WAT also has
an important mechanical and insulating function, and protects the organs against trauma
and cold. No less important is the endocrine function of WAT, which is now defined as
an endocrine organ, being a source of the production of hormones and biologically active
substances, including adipokines. It serves as a central node of inter-organ metabolic
communication and a regulator of reproduction and satiety [1].

Similar to WAT, BAT synthesizes and secretes “batokines” such as fibroblast growth
factors (FGFs), including FGF21, neuregulin 4, vascular endothelial growth factor (VEGF),
and cytokines, such as interleukin 6 (IL-6). Given the relatively small amount of BAT
present in humans, the endocrine potential of batokines is relatively unknown, but it is
clear that factors secreted from BAT exert paracrine and autocrine functions. While the
relative BAT mass in humans and rodents is small compared to other adipose depots, its
relative contribution to metabolic health may be higher [7].

3. Distribution of Adipose Tissue

WAT can be broadly classified by location, largely defined as either subcutaneous
(located under the skin) or visceral/omental (located intra-abdominally, adjacent to internal
organs). In most lean, healthy individuals, WAT is confined to defined depots, but in certain
conditions, such as obesity and lipodystrophy, WAT mass can increase ectopically in areas
that may influence an individual’s susceptibility to comorbidities such as diabetes and
atherosclerosis [8]. Such ectopic WAT areas are mostly located within the visceral cavity,
and include intrahepatic, epicardial (between the heart and the pericardium), perivascular
(surrounding major blood vessels), mesenteric fat (contiguous with digestive organs in the
viscera), omental fat (an apron of fat that stretches over the intestines, liver, and stomach),
and retroperitoneal fat (surrounding the kidneys). Visceral fat is highly metabolically
active and is constantly releasing free fatty acids (FFA) into the portal circulation. As such,
visceral fat content contributes to various features of the metabolic syndrome, such as
hyperinsulinemia, systemic inflammation, dyslipidaemia, and atherosclerosis [9].

BAT is localized to distinct anatomical regions that have been well-characterized in
rodents, helping them to survive cold temperatures [10]. While originally believed to be a
depot exclusive to hibernating and small mammals, and present to some degree in human
infants, adult humans have recently been shown to have functional and inducible levels
of BAT. Thanks to an innovative technique called fluorodeoxyglucose positron emission
tomography (FDG PET), combined with X-ray computed tomography, it has also been
possible to identify metabolically active areas of BAT in adult humans that have total fat
stores of between 1% and 2%, and that are localized primarily in the cervical, supraclavicu-
lar, interscapular, axillary, paravertebral, mediastinal, and upper abdominal regions [11].
Differently localized vessels in the organism present different proportions between WAT
and BAT. This variability may be in conjunction with the different predominant functions
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of perivascular tissue according to localization. Large central vessels, for example, such
as the aorta and its main ramifications, are mostly surrounded by brown adipose tissue,
thus playing a key part in maintaining the central temperature within normal ranges.
Peripherally increased perivascular adipose tissue, on the other hand, has been associated
with increased insulin resistance [8]. Considering this, BAT has aroused great interest in
scientific research, with the hope of exploiting its unique characteristics in the treatment of
obesity-associated comorbidities.

4. Differences between White and Brown Adipocytes

The biology, the origins of BAT and the differences between WAT and BAT have been
deeply reviewed in recent years. The most important differences are as follows: white
adipocytes are spherical and unilocular cells (50–100 microns in diameter) with more
than 90% of their volume represented by a single lipid droplet and a modest number of
mitochondria. The spherical shape provides the adipocyte with a good way of accumulat-
ing volume in the smallest space and exporting energy molecules without the excessive
anatomical breakdown of the tissue. White adipocytes derive from mesenchymal stem cells
(MSCs), the precursors of adipocytes, but also cartilage, bone, and muscle cells. MSCs are
directed towards the adipocyte line, in case of high energy intake. WAT has a great capacity
for expansion, including hypertrophy and hyperplasia, in order to store large amounts of
energy [12].

Brown adipocyte is defined as a multilocular cell, as it is composed of multiple, small
lipid droplets and is rich in mitochondria with dense ridges, which give the tissue its
brown colour, together with dense vascularisation. Mitochondria store energy as a proton
gradient across the inner mitochondrial membrane, and this energy is used to synthesize
adenosine triphosphate (ATP); when protons move along the gradient without producing
ATP, the stored energy is dissipated as heat. This is due to the presence, exclusively in the
brown adipocyte, of a specific protein: “the uncoupling protein 1 (UCP1)” in the inner
mitochondrial membrane, which immunohistochemically is the defining protein marker
of BAT. In contrast with WAT, the origin of brown adipocytes is related to the origin of
skeletal muscle: both derive from specific cells of the dermomyotome, a portion of the
mesoderm, that express myogenic factor 5 (Myf5) [13]. Another distinguishing feature of
BAT is the innervation by the sympathetic nervous system, which is extremely reduced in
WAT [14,15].

5. Conversion of White Adipocytes into Brown-like Adipocytes

Adipose tissue is an extremely dynamic organ, capable of transforming in response
to environmental or dietary stimuli. One of the possible ways to increase the presence of
functional UCP1-rich cells in the adipose tissue is the conversion of white (pre)adipocytes
into brown-like fat cells. This phenomenon is known as the “browning” of adipocytes or as
the reversible and transdifferentiation of the adipose organ [16]. The browning process of
WAT has become a key area of interest in research due to its role in fat burning; it is thus
a potential useful strategy for treating obesity. The result is the appearance of dispersed
masses of brown-like adipocytes in WAT, termed as beige or brite adipocytes. These cells
possess similar characteristics to brown adipocytes, such as the multilocularised accumula-
tion of lipids, a high mitochondrial content and an elevated UCP1 expression, along with
factors that stimulate the transcriptional activity of thermogenic proteins. Nevertheless,
brite adipocytes also display a distinct gene expression pattern that differs from both white
and brown adipocyte profiles [15,16]. The morphology, location, origin and function of
white, brown and beige adipocytes are reported in Figure 1.
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At present, the mechanisms known to induce the browning of WAT in humans are
cold exposure and β-adrenergic receptor stimulation. However, both these approaches
are difficult to implement in human beings due to the non-specific nature of β-adrenergic
agonists and the inability of humans to tolerate cold conditions for prolonged periods.
Researchers in recent years have asked if it is possible to induce beige adipocyte differ-
entiation without cold exposure and adrenergic stimulation. Recent studies would seem
to offer answers: certain key genes, such as Proline Rich Domain Containing Protein 16
(PRDM16) [17] and Early B-cell Factor 2 (EBF2) [18], which appear to play a dominant
role in programming brown adipocytes, have been identified [19]. The activation of these
genes initiates a signal transduction cascade that culminates in the overexpression of UCP1
and other thermogenic proteins. Numerous studies have confirmed that, endogenously,
the mechanisms responsible for classic BAT recruitment and WAT browning are identical,
whereas exogenous molecules may selectively activate BAT thermogenesis or recruit brite
adipocytes [20].

6. Thermogenesis and Thermogenin

In physiology, thermogenesis refers to a specific metabolic process that results in the
production of heat by the body, particularly in adipose and muscle tissue. Heat is produced
by the transformation of chemical energy via oxidative or catabolic processes. Thermogene-
sis is responsible for maintaining a constant internal temperature to cope with changing
external climatic conditions and to ensure thermoneutrality: the ideal internal tempera-
ture for the body’s proper functioning [17]. Thermogenesis depends on both endogenous
factors, genetic in nature, and exogenous factors, and therefore varies from individual to
individual. An important exogenous factor affecting thermogenesis is caused by a cold
environmental temperature, a metabolic process that leads to the production of heat by
the body depending on how cold the environment is. Cold-induced thermogenesis (TIF)
is divided into two types: ‘non-shivering thermogenesis’ and ‘shivering thermogenesis’.
Non-shivering thermogenesis represents an increase in heat production by the body when
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exposed to cold, but is not associated with muscular contraction. It is caused by the in-
creased activity of the sympathetic nervous system, which innervates BAT to a greater
extent, and skeletal muscle. An alteration in BAT leads, in fact, to a high intolerance to
cold in mammals. By contrast, ‘shivering thermogenesis’ requires the rhythmic isometric
contraction of skeletal muscle, and it plays a less important role than ‘non-shivering’ ther-
mogenesis; it takes over after it only [18,19]. BAT has an extraordinary ability to stimulate
thermogenesis more than any other district of the body, thus increasing the total energy
expenditure [20]. BAT heat production takes place in the mitochondria of brown adipocytes
via the process of mitochondrial uncoupling, which involves the transmembrane protein
UCP1 or thermogenin. It is responsible for ‘non-shivering thermogenesis’ and promotes
the utilization of fatty acids that are not associated with ATP production but instead with
heat production, reducing the efficiency of cellular respiration. The UCP1 is activated by
fatty acids and is inhibited by nucleotides. Its thermogenic function is to dissipate the
proton gradient generated by the respiratory chain and increase the permeability of the
mitochondrial matrix, allowing proton dispersion [21]. This mechanism, used to produce
heat, is a mammalian physiological response to low temperatures or excess nutrients from
high-calorie diets. When sensory neurons are activated by cold, they transmit the stimulus
to the brain, which in turn responds by increasing the activity of afferent nerves and releases
noradrenaline. This neurotransmitter induces thermogenesis and lipid oxidation. UCP1-
induced thermogenesis during exposure to cold is under the control of the hypothalamus,
which integrates peripheral signals from skin thermoreceptors [22].

7. BAT-Secreted Factors with Potential Direct and/or Indirect Cardioprotective Effects

Current knowledge suggests the general beneficial effect of BAT activation regarding a
reduction in the risk of cardiovascular disease (CVD) [23]. BAT secretes several molecules,
which are collectively termed batokines. These batokines may alter the metabolism via
autocrine, paracrine, and endocrine mechanisms, thus modifying BAT itself or acting
remotely on other organs. Some BAT-secreted factors have potential direct and/or indirect
cardioprotective effects via the modulation of the systemic metabolism. Summarizing,
BAT generates heat via non-shivering thermogenesis, a process that helps to maintain
body temperature and contributes to the overall energy expenditure. An increased energy
expenditure may help to prevent excess weight gain and the development of obesity,
which is a risk factor for CVD [24]. BAT consumes fatty acids as a primary fuel source for
thermogenesis. By increasing the uptake and oxidation of fatty acids, BAT can help reduce
circulating levels of triglycerides and lower the risk of atherosclerosis [25], a key factor in
CVD. BAT also contributes to glucose homeostasis by taking up and metabolizing glucose.
Improved glucose metabolism can help maintain insulin sensitivity and reduce the risk of
developing type 2 diabetes, another CVD risk factor [26]. BAT secretes various hormones
and cytokines, such as FGF21 and IL-6, which can have beneficial effects on metabolism,
inflammation, and cardiovascular health. Some studies have suggested that BAT activation
may help modulate blood pressure by promoting the release of nitric oxide, a vasodilator
that helps relax blood vessels and lower blood pressure [27].

8. Browning Strategies: Cold, Physical Activity, and Adrenergic Agonists

Nowadays, it is known that UCP1 activation can be mediated by several factors:
cold exposure, physical activity, fasting, nutraceutical foods, amino acids such as tyrosine
(noradrenaline precursor), triiodothyronine (FT3), thyroxine (FT4), molecules that stimulate
β-adrenergic receptors, and drugs that inhibit noradrenaline reuptake [6,28,29] (Table 1).
The mechanism of action of the different browning strategies are summarized in Table 2.
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Table 1. Factors responsible for activation of UCP1.

UCP1 activation

Cold Exposure

[6,28,29]

Physical Activity
Fasting
Nutraceutical Foods
Amino Acids such as Tyrosine (Noradrenaline precursor)
Triiodothyronine (Ft3), Thyroxine (Ft4)
Molecules that stimulate β-adrenergic receptors and drugs
that inhibit noradrenaline reuptake

Cold exposure (<20 ◦C) generates the production of noradrenergic signals that move
from the periphery to the hypothalamus, via the orthosympathetic nerves that reach the
BAT and release catecholamines such as noradrenaline [30]. Norepinephrine acts on the
β-adrenergic receptors present on the cell membrane of brown adipocytes. These receptors
activate adenylate cyclase, which catalyses the conversion of ATP to cyclic AMP (cAMP).
cAMP in turn activates protein kinase A (PKA). Such a protein induces peroxisome prolif-
eration, which activates the peroxisome proliferator-activated receptor gamma coactivator
1-alpha (PGC1α) receptor, which is the master regulator of the transcriptional cascade of
UCP1 and other thermogenic genes [31]. To date, cold exposure has been proven to be
the most effective strategy regarding BAT activation. Past studies on mouse models have
shown that long-term cold exposure leads to an increase in adipocytes expressing UCP1, in
both brown and beige adipose deposits, which can increase non-chill thermogenesis [19].
Studies on humans have shown that even a less prolonged exposure to the cold (17 ◦C for
2–6 h a day) is still capable of expanding BAT and increasing its functionality: the increase
in BAT perfusion is directly associated with an increased total energy expenditure; and the
increase in glucose uptake is due to the increased gene expression of the GLUT4 transporter
in BAT. These effects of cold exposure on BAT are severely attenuated in individuals with
excessive WAT deposition and the presence of insulin resistance [32,33]. Promising results
are also emerging from the use of BAT activation strategies that exploit the modulation of
adrenergic activity in the sympathetic nervous system. The stimulation of β-adrenergic
receptors by adrenergic agonists [34], but also the combination of cold exposure with the
infusion of sympathomimetics (isoprenaline and ephedrine) [35], can induce an increase
in the levels of catecholamines released by the sympathetic nervous system and amplify
thermogenesis. These results need further verification in order to clarify the modulation
pathways [36]. Similar to cold exposure, exercise also promotes the upregulation of the
activation markers of BAT (PGC1α and UCP1) and the stimulation of endocrine activators
(cardiac natriuretic peptides, irisin and FGF21). Recent findings [37,38] show that exercise
can have both an acute effect on BAT-releasing catecholamines via the activation of UCP1
in BAT and induce lipogenesis in WAT. The chronic effect of exercise on BAT concerns
the discovery of specific myokines produced by skeletal muscle and released into the
bloodstream during exercise. These myokines, identified in early 2014, are as follows: irisin,
β-aminoisobutyric acid (BAIBA) and FGF21; these would appear to govern white adipocyte
browning, independent of sympathetic nervous system stimulation [39,40].
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Table 2. Mechanism of action of the different browning strategies: cold exposure, physical activity,
adrenergic agonists and myokines (irisin, BAIBA and FGF21).

Intervention Mechanism
of Action Bat Activation Experimental Model Ref.

COLD EXPOSURE yes
UCP1 activation human [28,29,31]

↑ production of noradrenergic
signals human [30]

↑ PGC1α mouse
human [31]

↑ UCP1 in BAT human [19]
↑ BAT and ↑ its functionality human [32,33]

ADRENERGIC
AGONISTS yes

stimulate β-adrenergic receptors human [34]
↑ levels of catecholamines and

amplify thermogenesis mouse [35]

PHYSICAL
ACTIVITY yes

UCP1 activation human [37,38]
↑ PGC1α human [37,38]

releases catecholamines human [6,28]
activates lipogenesis in WAT human [6,28]

MYOKINES

Irisin governs white adipocyte
browning

human
mouse [29,30]

β-aminoisobutyric acid
(BAIBA)

governs white adipocyte
browning

human
mouse [29,30]

Fibroblast growth
factor 21 (FGF21)

governs white adipocyte
browning

human
mouse [29,30]

Abbreviations: UCP1: uncoupling protein 1, PGC1α: peroxisome proliferator-activated receptor gamma coactiva-
tor 1-alpha, BAT: brown adipose tissue, WAT: white adipose tissue, ↑: increase.

9. Thermogenic Nutraceuticals

Current evidence, both on animal and human models, indicates that several diet com-
ponents may have beneficial effects on obesity by affecting BAT and energy metabolism,
including polyunsaturated fatty acids, capsaicin and capsinoids, catechins, curcumin,
resveratrol and berberine, oleuropein, anthocyanins, quercetin, gingerol, shogaol, 6-paradol,
thiacremonone, cinnamaldehyde and menthol. The molecular mechanisms involved in
WAT browning and the BAT activation mediated by thermogenic nutraceuticals are repre-
sented in Figure 2 and summarized in Table 3.

9.1. Polyunsatured Fatty Acids

Fish oil is rich in the polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA), which stimulate thermogenesis in BAT [41–43]. In the
early 2000s, several studies in mouse models compared the effects of a diet enriched with n-3
PUFAs and a diet rich in n-6 PUFAs in order to study their impact on BAT. It turned out that
fats from the n-3 series were much more effective in activating BAT than the n-6 series [44].
Therefore, subsequent research focused on the effects of n-3 PUFAs, especially EPA, and
confirmed its anti-obesogenic effect, revealing that it can promote the browning of WAT.
Rats fed with a supplementation of fish oil at a 20% EPA for 4 weeks showed an increased
mRNA level of UCP1 in WAT [45]. Another study showed that supplementation with
27.5% fish oil, administered for one month, stimulates SNS-mediated mitochondrial and
thermogenic activity in rats [46]. A diet enriched with a mixture of EPA and DHA increases
the expression of UCP1 in BAT and reduces adipose accumulation via the induction of
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marked, non-shivering thermogenesis [47,48]. Further implications emerged from a study
conducted in 2016, which revealed that a high-fat diet (HFD), enriched with fish oil (12% of
total lipids) and administered to mice for 8 weeks, modulates BAT activation via epigenetic
regulation [49]. EPA promotes both the adipogenesis of mature brown adipocytes [50] and
the differentiation of pre-adipocytes into beige adipocytes, within WAT stores, particularly
in the inguinal WAT [48]. It is important to note that the conversion of mature white
adipocytes to beige adipocytes was achieved via supplementation with EPA in human
adipocyte cultures [51] and that the same effect was not observed in rodents [43].
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Figure 2. Molecular mechanisms involved in WAT browning and BAT activation mediated by
thermogenic nutraceuticals. Each group of nutraceuticals, through different pathways, induces the
expression of thermogenic genes (PPARγ, PRDM16, PGC1α, SIRT-1, CIDEA) leading to mitochondrial
biogenesis and to the increase in UCP1 in white and brown adipocytes, which is responsible for
the browning of WAT and enhancement of thermogenesis in BAT. TRP agonists, via the stimulation
of adrenergic receptors, not only are crucial for the initiation of thermogenic pathways and beige
differentiation, but also promote lipolysis. Polyunsaturated fatty acids and polyphenols, in addition,
play an anti-inflammatory role in WAT.

9.2. Capsaicin and Capsinoids

Capsaicin is an alkaloid found in chilli peppers that is mainly concentrated in the seeds
of the fruit and is the main component responsible for the spicy flavour. Capsaicin has a
role in preventing the obesogenic effects of diet, due to its ability to increase energy expen-
diture by activating BAT [52]. Capsaicin implements BAT function via several signalling
pathways, primarily via the activation of Transient Receptor Potential Vanilloid 1 channels
(TRPV1), which stimulate the central nervous system to produce catecholamines involved
in thermogenesis. Capsaicin seems to regulate the epigenetic expression of the transcription
factors involved in WAT browning [53,54]. Important evidence has also emerged from stud-
ies on humans: Yoneshiro et al. [55] examined the acute effect of an oral ingestion of a single
dose of capsinoids (9 mg) on energy expenditure, in relation to BAT activity in humans;
this was measured by 18F-FDG PET, a classical imaging technique used to visualize BAT
activation. The ingestion of capsinoids resulted in a 3-fold increase in energy expenditure
in the BAT-positive group compared to the BAT-negative group. Furthermore, the chronic
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intake of capsinoids (9 mg/day in capsule form) for 6 weeks promoted BAT activity and
reduced fat mass after cold exposure, even in human subjects with low BAT activity. In
2018, Camps et al. [56] tested the same treatment used in mice in 2016 [57] on humans.
They gave a group of normal-weight individuals a dose of capsinoids (12 mg), combined
with exposure to cold (14.5 ◦C). The subjects underwent, before and after exposure, both
18F-FDG PET and indirect calorimetry, in order to assess the total energy expenditure. The
results showed that capsinoids increased energy expenditure in BAT-positive participants
and, when combined with cold, increased fat oxidation, improved insulin sensitivity and
increased HDL-cholesterol [58,59].

9.3. Green Tea Catechins

Green tea consumption is associated with weight loss and the modulation of fat
metabolism and energy expenditure [60,61]. Catechin supplementation for 8 weeks re-
duced the mass of perirenal WAT and increased the expression of mRNA coding for UCP1
in BAT, compared to the control group in rats [62]. Yan and al. [63] showed that the oral
administration of catechins (100 mg/kg body weight) for 4 weeks significantly reduced the
total fat mass (subcutaneous and visceral) and liver size in rats fed with HFD. No browning
of the WAT was observed, but fatty acid oxidation in the BAT increased twofold [63].
Several experiments testing the effects of catechin supplementation on rodents were also
conducted on humans. The habitual intake of green tea (>300 mg catechins/day) was
found to be as effective as in rats in terms of reducing body weight and preventing weight
regain [64]. Similar results were obtained in a study on subjects with metabolic syndrome,
where catechin supplementation additionally improved the lipid profile and hyperten-
sion [65]. The consumption of 300 mg/day of Epigallocatechin Gallate (EGCG) or 200 mg
of caffeine [66] for 3 days in subjects with obesity increased postprandial fat oxidation,
but not the total energy expenditure [67]. A 12-week treatment with green tea extracts
containing 583 mg catechins resulted in a small but significant reduction in body fat (3–5%)
in healthy, normal-weight subjects [68]. A more recent study [69] suggested that catechins
also act as inhibitors of catechol-O-methyltransferases (COMT), enzymes that degrade
catecholamines. The inhibition of COMTs results in the increased metabolism of cate-
cholamines, including noradrenaline, which, as we have seen, is involved in thermogenesis
and fat oxidation processes.

9.4. Curcumin

Curcumin is the most abundant and active element within the turmeric rhizome; it is a
widely studied polyphenol with antioxidant and anti-inflammatory properties, also known
for its anti-obesity effects [70]. Isolated WAT cells of obese rats, in response to treatment
with 20 µM of curcumin for 6–8 days, showed an increase in the thermogenic markers
of BAT and in the hormone-sensitive lipase (HSL), which is responsible for triglyceride
mobilization and lipolysis in WAT. These results suggest curcumin’s role in improving
the lipid profile in an obese condition [71]. The administration of high doses of curcumin
(45 mg/kg body weight) causes an increase in energy expenditure via the induction of
mitochondrial biogenesis in mice [72]. Experimental evidence on humans is still limited.
However, one significant study in the literature stands out; this was conducted in 2019 on
60 participants [73,74], with the aim of assessing the effects of curcumin supplementation on
cardiovascular risk factors among overweight adolescents. It was a randomized controlled
trial involving 60 girls aged 13–18 years, randomly assigned to the intervention or control
group. The intervention group was supplemented with 500 mg of curcumin (in bioavailable
form) daily for 10 weeks, while the control group received a placebo. At the same time,
they were asked to undergo a mild weight loss or weight maintenance diet, depending on
the degree of overweight or obesity. The results revealed that curcumin supplementation
induced significant improvements compared to the control group, such as a reduction
in the body mass index, a reduction in waist circumference and hip circumference, and
reduction in the triglyceride/HDL ratio; meanwhile, it induced an increase in the HDL
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cholesterol. However, clinical studies on a larger population and with a longer duration
are needed to confirm the results of these studies [73,74] and to test the WAT darkening
effects observed in rodents also in humans.

9.5. Resveratrol

Resveratrol is a polyphenol naturally contained in grape skins and other vegetables
such as red fruits, cocoa and peanuts [75]. The supplementation of 30 mg/kg body weight
of resveratrol in mouse models for 8 weeks showed a significant reduction in fat mass,
plasma glucose concentrations and total cholesterol, compared to the control group [76].
There was also evidence of increased UCP1 expression in both BAT and skeletal muscle [77].
This is attributed, at least in part, to the ability of resveratrol to activate upstream AMPK,
which promotes the production of PGC1α and Sirtuin 1 (SIRT1); these, in turn, promote
mitochondrial biogenesis and WAT browning [78]. The effect of resveratrol on the neo-
formation of beige adipocytes is thought to be mediated by the phosphorylation of AMPK,
as the deletion of this protein in mice abolishes the browning effects of resveratrol [79]. A
recent study [80] revealed the additional signalling pathways exerted by resveratrol. The
results reported regarding the cell cultures and animal models suggest that high doses
of resveratrol (100 and 200 µM) induce epigenetic regulatory mechanisms. Polyphenol
can up-regulate the expression of the genes that code for the proteins involved in WAT
adipogenesis, such as fatty acid synthase (FAS), the sterol response element-binding protein
(SREBP1), lipoprotein lipase (LPL) and hormone-sensitive lipase (HSL) [81]. Overall,
resveratrol oversees antiadipogenic and anti-inflammatory effects, which are dependent
and independent of BAT activation; however, evidence supporting its thermogenic effects
in humans is currently lacking. This is due to the poor bioavailability of polyphenolic
compounds [82], so it is difficult to achieve effective doses that are able to stimulate BAT
through food alone. Diet alone is not sufficient in order to mimic the efficacy of resveratrol
observed in rodents.

9.6. Berberine

Berberine is an alkaloid compound found in the roots, rhizomes and bark of certain
plants of the genus Berberis, primarily known for its anti-cancer activity [83]. Zhang et al. [84]
proved that the intraperitoneal administration of berberine, administered at 5 mg/kg/day
for 4 weeks in obesity-induced mice, played a key role in increasing energy expenditure and
the mobilization of lipids. More specifically, the thermogenic effects attributed to berberine
concerned the increase in the mitochondrial content and thermogenic markers in BAT
(UCP1, PGC1α, Cidea). The increase in BAT was detected via PET-CT, while the increase
in the resting energy expenditure was quantified by measuring the oxygen consumption
(VO2) and carbon dioxide release (VCO2) before and after treatment. The total expenditure
increased by 20%.

An interesting finding, which did not emerge from studies on the other phytochemical
compounds, is that this treatment caused a significant reduction in the respiratory quotient,
suggesting that berberine causes a shift in cell metabolism, taking energy from the oxidation
of fatty acids, rather than from carbohydrates. Furthermore, mice berberine not only
stimulates BAT activity but also induces the browning of the inguinal WAT, probably
via the phosphorylation of AMPK, which leads to the increased expression of UCP1 and
PGC1α [85]. An in vitro study was recently conducted on human preadipocytes, and it was
found that the thermogenic effect induced by berberine on WAT depends on the recruitment
of the AMPK-PRDM16 axis: the activation of AMPK could lead to DNA demethylation
and thus upregulate the expression of PRDM16, which acts as a master regulator of the
transdifferentiation of white adipocytes into beige adipocytes; this occurs via the direct
modulation of the transcription factors PPARγ and PGC1α [86,87].
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9.7. Other Nutraceutical Compounds

Many other dietary polyphenolic compounds have been found, in rodent studies, to
influence BAT thermogenesis and WAT browning: oleuropein, anthocyanins, quercetin, and
structural analogues of capsaicin (i.e., menthol, cinnamaldehyde, allyl and benzyl isothio-
cyanates, which are the spicy elements found in mustard and wasabi, and thiacremonone).
Some of these compounds have also shown promising results in humans.

9.7.1. Oleuropein

Oleuropein is the main polyphenol contained in olive leaves and fruits, and is respon-
sible for the pungent and bitter taste of raw olives. Olive leaf extract (3 mg of oleuropein,
injected intravenously in mice for 7 weeks) increases UCP1 content in BAT by activating
SIRT1, PPARγ and PGC1α. In addition, it stimulates the secretion of adrenalin and no-
radrenalin via the activation of TRP channels [88]. Oleuropein aglycone (the absorbed
form of oleuropein) appears to be able to attenuate diet-induced obesity by supporting the
expression of thermogenic genes and genes related to mitochondrial biogenesis in the BAT
of overfed mice [89], and to promote the browning of adipose tissue via mesenchymal stem
cells in humans [90].

9.7.2. Anthocyanins

Anthocyanins are the polyphenols mainly contained in red fruits, grapes, black soy,
and red beans. Anthocyanins are known first and foremost for their strong antioxidant
power, but they have also been re-evaluated for their thermogenic action in stimulating
adrenalin secretion and energy metabolism in humans; meanwhile, in rodents, they exert
an anti-obesity action that is related to BAT activation [91,92]. In humans, the intake of
150 mg/day of an extract of Aronia melanocarpa, a particular type of blueberry rich in
anthocyanins, procyanidins and other flavonoids, increases the surface body temperature
and plasma adrenalin levels, suggesting that it has a stimulating effect on the SNS [93]. Nu-
merous studies have also shown that long-term treatment with cyanidin-3-glucoside, which
is found in raspberry and mulberry extract, increases UCP1 expression and mitochondrial
biogenesis during the adipogenic differentiation of brown and white preadipocytes [94,95].
Similarly, black soybean peel extract upregulates the expression of thermogenic genes in
BAT, induces WAT browning and increases the lipid respiration quotient, thus preventing
visceral fat accumulation in mice on a hyperlipidic diet [96].

9.7.3. Quercetin

Quercetin is a flavonoid contained in a wide variety of fruits (apples, grapes, olives,
citrus fruits, berries) and vegetables (tomatoes, onions, broccoli, and capers). It has a
thermogenic effect in mice and an ability to modulate the gut microbiota in mice. Obese
mice fed a HFD supplemented with 1% quercetin for 16 weeks lost weight and had reduced
plasma cholesterol levels, compared to mice fed a HFD alone [97]. The improvement in
obesity is explained by the ability of quercetin to increase the expression of thermogenic
genes in BAT (UCP1, PGC1α. FGF21), as well as and genes coding for β-adrenergic re-
ceptors and AMPK; this results in increased non-excitation thermogenesis. The increase
in AMPK also suggests that quercetin may predispose these signalling pathways to WAT
browning [98]. Other studies point out the flavonoid’s ability to modulate the intestinal
microbial composition of mice. Quercetin reduces the ratio of Firmicutes to Bacteroidetes in
the microbiota of HFD-fed mice, improving the obesity-related dysbiosis picture. In fact, a
eubiotic microbiota allows greater energy extraction from the diet via the increased produc-
tion of short-chain fatty acids, which have been found in the faeces of mice supplemented
with quercetin [97].

9.7.4. Analogues of Capsaicin

Structural analogues of capsaicin include menthol, which is a cyclic monoterpene alco-
hol obtained from peppermint, the activator of TRPM8 receptors [99,100], cinnamaldehyde,
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a pungent compound that increases UCP1 expression in human white adipocytes [101] and
is found in cinnamon, allyl and benzyl isothiocyanates, which are spicy elements found in
mustard, ginger and wasabi (Japanese horseradish), and finally, thiacremonone, a sulphur
compound isolated in garlic [102]. The compounds just mentioned can activate TRPV1
and TRPA1 channels (also belonging to the TRP receptor family, but activated by cold,
mechanical stimuli and cooling nutritional compounds), which modulate thermoregulation.
The combination of sub-effective doses of capsaicin, cinnamaldehyde and menthol induce
the “brite” phenotype in the differentiation of the 3T3-L1 cells and subcutaneous white
adipose tissue of HFD-fed obese mice [103]. The intervention prevented adipose tissue
hypertrophy and weight gain, and enhanced the thermogenic potential, mitochondrial
biogenesis, and overall activation of brown adipose tissue. These changes, observed in vitro
as well as in vivo, were linked to the increased phosphorylation of kinases, AMPK and
ERK. In the liver, this combination treatment enhanced insulin sensitivity, improved the
gluconeogenic potential and lipolysis, prevented fatty acid accumulation and enhanced
glucose utilization. Finally, it is worth mentioning that gingerol, shogaol and 6-paradol,
which are all contained in ginger root, activate TRPV1 channels [104–106]. An interesting
study in humans looked at a type of ginger native to West Africa (black ginger), from which
the extract Kaempferia parviflora is derived. The administration of 100 mg/day of this
extract appears to increase energy expenditure in BAT-positive subjects, and the activation
of brown adipocytes is detectable via FDG-PET after exposure to cold [107].

Table 3. Mechanism of action of the thermogenic nutraceuticals examined.

Thermogenic
Nutraceuticals Dose Mechanism of Action Experimental

Model Ref.

EPA DHA simulates thermogenesis in BAT mouse
human [41–44]

↑ expression of UCP1 in BAT, mouse [47,48]
↓ adipose accumulation via the induction of marked,

non-shivering thermogenesis, mouse [36,37]

promotes the adipogenesis of mature brown adipocytes mouse [50]
promotes the differentiation of pre-adipocytes into
beige adipocytes, particularly in the inguinal WAT mouse [48]

Capsaicin activates TRPV1 channels: implements BAT function
in vitro and
pre-clinical

studies
[53,54]

regulates the epigenetic expression of the transcription
factors involved in WAT browning

in vitro and
pre-clinical

studies
[53,54]

Capsinoids
9 mg/day in

capsule form for
6 weeks

promotes BAT activity and reduces fat mass human [55]

12 mg combined
with exposure to

cold (14.5 ◦C)

↑ energy expenditure and, when combined with cold, ↑
fat oxidation, ↑ insulin sensitivity and

↑ HDL-cholesterol
human [56–58]

Catechins for 8 weeks ↓mass of perirenal WAT, ↑ expression of mRNA
coding for UCP1 in BAT rat [62]

100 mg/kg body
weight for 4 weeks

↓ total fat mass (subcutaneous and visceral) and liver
size, fatty acid oxidation in the BAT increased twofold rat [63]

>300 mg
catechins/day ↓ body weight and prevents weight regain human [64]

inhibits catechol-O-methyltransferases human [69]
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Table 3. Cont.

Thermogenic
Nutraceuticals Dose Mechanism of Action Experimental

Model Ref.

Curcumin 20 µM for 6–8 days ↑ in thermogenic markers of BAT and in
hormone-sensitive lipase (HSL),

isolated WAT
cells of obese

rats
[71]

45 mg/kg of
body weight

↑ energy expenditure via the induction of
mitochondrial biogenesis mouse [73]

500 mg (in
bioavailable form)
daily for 10 weeks

↓ in body mass index, waist circumference and hip
circumference, and triglyceride/HDL ratio, and

↑ HDL cholesterol
human [73,74]

Resveratrol 30 mg/kg of body
weight for 8 weeks

↓ fat mass, plasma glucose concentrations and
total cholesterol mouse [76]

↑ UCP1 expression mouse [77]
activates upstream AMPK, which promotes the

production of PGC1α, and SIRT1, which promotes
mitochondrial biogenesis and WAT browning

mouse [78]

up-regulates the expression of genes coding for
proteins involved in WAT adipogenesis (FAS, SREBP1,

LPL and HSL)
human [81]

Berberine 5 mg/kg/day for
4 weeks ↑ energy expenditure and the mobilization of lipids mouse [84]

stimulates BAT activity, and induces browning of the
inguinal WAT mouse [85]

Oleuropein
3 mg injected

intravenously for
7 weeks

↑ UCP1 content in BAT by activating SIRT1, PPARγ
and PGC1α,

stimulates the secretion of adrenalin and noradrenalin
via the activation of TRP channels

mouse [88]

Oleuropein
aglycone (the

absorbed form
of oleuropein)

attenuates diet-induced obesity by supporting the
expression of thermogenic genes and genes related to
mitochondrial biogenesis in the BAT of overfed mice

mouse [89]

promotes the browning of adipose tissue from
mesenchymal stem cells in humans in vitro [90]

Anthocyanins
150 mg/day of an
extract of Aronia

melanocarpa

↑ surface body temperature and plasma adrenalin
levels, suggesting that it has stimulating effect on

the SNS
human [91]

long-term treatment
with cyanidin-3-

glucoside, such as
raspberry and

mulberry extract

↑ UCP1 expression and mitochondrial biogenesis
during adipogenic differentiation of brown and

white preadipocytes
rat [92,93]

black soybean
peel extract

↑ the expression of thermogenic genes in BAT, induces
WAT browning and increases the lipid respiration
quotient, preventing visceral fat accumulation on a

hyperlipidic diet

mouse [94]

Quercetin
HFD supplemented
with 1% quercetin

for 16 weeks
reduces plasma cholesterol levels mouse [95]

↑ the expression of thermogenic genes in BAT (UCP1,
PGC1α, FGF21) and genes coding for β-adrenergic

receptors and AMPK
in vitro [96]

Menthol activates TRPM8 receptors in vitro [98]

Cinnamaldehyde ↑ UCP1 expression in vitro [97]
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Table 3. Cont.

Thermogenic
Nutraceuticals Dose Mechanism of Action Experimental

Model Ref.

Gingerol, Shogaol,
6-Paradol activates TRPV1 channels in vitro

mouse [102–104]

100 mg/day of
Kaempferia
parviflora

↑ energy expenditure in BAT-positive subjects;
activates brown adipocytes human [107]

BAT: brown adipose tissue; UCP1: uncoupling protein 1; WAT: white adipose tissue; TRPV1: transient receptor
potential vanilloid 1; HSL: hormone-sensitive lipase; AMPK: adenosine monophosphate-activated protein kinase;
PGC1α: peroxisome proliferator-activated receptor gamma coactivator 1-alpha; SIRT1: Sirtuin 1; FAS: fatty
acid synthase; SREBP1: sterol response element-binding protein; LPL: lipoprotein lipase; PPAR: peroxisome
proliferator-activated receptor; TRP: transient receptor potential; SNS: sympathetic nervous system; FGF21:
fibroblast growth factor 21; TRPM8: transient receptor potential cation channel subfamily M member 8; ↑: increase,
↓ decrease.

10. Conclusions

To face the increasing rate of obesity and the associated metabolic risks, the scientific
community is focusing on the search for alternative therapeutic strategies and pharmaco-
logical treatments, which currently are rather limited and correlated with numerous side
effects. New therapeutic strategies accompany the refinement of modern technologies, such
as PET-CT, which has made it possible to re-evaluate the role of adipose tissue. Thanks to
these recent imaging techniques, the BAT, with its thermogenic potential, may represent a
valid strategy for combating obesity both by increasing energy expenditure and by modu-
lating numerous metabolic targets [108–110]. Today, the goal is to find strategies that can
expand and activate BAT, and simultaneously promote the browning process of adipose
tissue in order to increase energy expenditure. One such strategy is cold exposure, which
has long been known as the most effective way of activating BAT and browning WAT. An
alternative method is the use of adrenergic agonists that directly stimulate the sympathetic
nervous system to activate BAT. Recent findings regarding the role of metabolites produced
during exercise, such as irisin, β-aminoisobutyric acid, FGF21 and natriuretic peptides,
which could act as BAT activators, are also very promising. In recent years, research has
focused on identifying food and nutraceutical components that have similar effects to cold
exposure. The mechanisms of action of several nutraceutical factors have been character-
ized, and innovative methods for BAT activation and WAT darkening, without causing the
side effects associated with previous strategies, have been discovered. The most consistent
findings concern the role of capsinoids and catechins in green tea. The consistent sup-
plementation of capsinoids in high doses (>10 mg) is effective in promoting thermogenic
activation in humans, which has important implications regarding the prevention and
therapeutic treatment of obesity. The habitual consumption of green tea (~100 mg/kg body
weight of catechins) appears to promote BAT recruitment and induce weight loss, at least
in animals. Further studies in humans are needed in order to understand whether the
beneficial effects of green tea are due to catechins or to other components. A widely studied
dietary compound is fish oil, particularly EPA. Although there is some controversy as to
the effective dose, there is evidence that fish oil consumption activates multiple signalling
pathways in order to increase BAT and trigger WAT darkening. Several polyphenolic
compounds, such as resveratrol, curcumin, oleuropein, quercetin and berberine, have been
recognised as thermogenic activators and play an important role in the transdifferentiation
of white adipocytes into beige adipocytes. Thermogenic activation, in animals, was evi-
denced with the supplementation of high doses of polyphenols (>0.1% or 100 mg/kg body
weight), which are considered to have super-physiological effects in humans. A major
challenge for future experiments will be to overcome the poor bioavailability of polyphenol
molecules in food.

To conclude, lifestyle modification interventions remain the first line of intervention
in the treatment of obesity. However, considering the difficulties generally experienced
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by obese patients in terms of following a low-calorie diet and exercising on a regular
basis, this therapy can be enhanced via the combination of innovative strategies. In view
of these considerations, a personalized dietary program could be complemented by the
proper supplementation of thermogenic nutraceuticals, which are molecules capable of
increasing energy expenditure by enhancing BAT’s own thermogenesis. Further studies
in humans are needed to confirm the effects of the proposed nutritional factors, which
could represent, in the future, a promising intervention for the treatment of obesity and
associated comorbidities.
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Abbreviations

ADRB3 β-3 adrenoceptor
AMP Adenosine monophosphate
AMPK adenosine monophosphate-activated protein kinase
ATP adenosine triphosphate
BAIBA β-aminoisobutyric acid
BAT brown adipose tissue
cAMP cyclic adenosine monophosphate
COMT catechol-O-methyltransferase
CREB cAMP response element binding protein
CVD cardiovascular disease
DHA docosahexaenoic acid
DIT diet-induced thermogenesis
EGCG epigallocatechin gallate
EPA eicosapentaenoic acid
ERK extracellular signal-regulated kinase
FAS fatty acid synthase
FGF21 fibroblast growth factor 21
FT3 free triiodothyronine
FT4 free thyroxine
GLUT glucose transporter
HFD high fat diet
HSL lipase sensitive hormone
IL-6 interleukin 6
LPL lipoprotein lipase
MSCs mesenchymal stem cells
Myf5 myogenic factor 5
NPY neuropeptide Y
NST non-shivering thermogenesis
OA oleuropein
PET positron emission tomography
PGC1α peroxisome proliferator–activated receptor gamma coactivator 1-alpha
PKA protein kinase A
PPAR peroxisome proliferator-activated receptor
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PRDM16 proline rich domain-containing protein 16
SIRT1 Sirtuin 1
SREBP1 sterol response element-binding protein
SNS sympathetic nervous system
TIF cold-induced thermogenesis
TLR toll-like receptor
TNFα tumour necrosis factor alpha
TRPA1 transient receptor potential cation channel subfamily A member 1
TRPM8 transient receptor potential cation channel subfamily M member 8
TRPV1 transient receptor potential vanilloid 1
UCP1 uncoupling protein 1
VEGF vascular endothelial growth factor
WAT white adipose tissue

References
1. Golden, A. Obesity’s Impact. Nurs. Clin. N. Am. 2021, 4, 13–15. [CrossRef] [PubMed]
2. Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 5, 176–178. [CrossRef] [PubMed]
3. Safaei, M.; Sundararajan, E.A.; Driss, M.; Boulila, W.; Shapi’I, A. A systematic literature review on obesity: Understanding the

causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Comput. Biol. Med.
2021, 136, 104754.

4. Gavaldà-Navarro, A.; Villarroya, J.; Cereijo, R.; Giralt, M.; Villarroya, F. The endocrine role of brown adipose tissue: An update on
actors and actions. Rev. Endocr. Metab. Disord. 2022, 1, 40–46. [CrossRef] [PubMed]
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