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Abstract: The human gut microbiota is characterized by large interpersonal differences, which are
not only linked to health and disease but also determine the outcome of nutritional interventions.
In line with the growing interest for developing targeted gut microbiota modulators, the selectivity
of a carrot-derived rhamnogalacturonan I (cRG-I) was compared to substrates with demonstrated
low (inulin, IN) and high selectivity (xanthan, XA), at a human equivalent dose (HED) of 1.5 g/d.
The high throughput of the ex vivo SIFR® technology, validated to generate predictive insights for
clinical findings, enabled the inclusion of 24 human adults. Such an unprecedented high number of
samples in the context of in vitro gut microbiota modelling allowed a coverage of clinically relevant
interpersonal differences in gut microbiota composition and function. A key finding was that cRG-I
supplementation (already at an HED of 0.3 g/d) lowered interpersonal compositional differences due
to the selective stimulation of taxa that were consistently present among human adults, including
OTUs related to Bacteroides dorei/vulgatus and Bifidobacterium longum (suspected keystone species),
Bacteroides thetaiotaomicron, Bifidobacterium adolescentis and butyrate-producing taxa such as Blautia
sp., Anaerobutyricum hallii, and Faecalibacterium prausnitzii. In contrast, both IN and XA treatments
increased interpersonal compositional differences. For IN, this followed from its low specificity. For
XA, it was rather the extremely high selectivity of XA fermentation that caused large differences
between 15 responders and 9 nonresponders, caused by the presence/absence of highly specific
XA-fermenting taxa. While all test compounds significantly enhanced acetate, propionate, butyrate,
and gas production, cRG-I resulted in a significantly higher acetate (+40%), propionate (+22%), yet a
lower gas production (–44%) compared to IN. cRG-I could thus result in overall more robust beneficial
effects, while also being better tolerated. Moreover, owing to its remarkable homogenization effect
on microbial composition and metabolite production, cRG-I could lead to more predictable outcomes
compared to substrates that are less specific or overly specific.

Keywords: pectin; rhamnogalacturonan I; Bifidobacteriaceae; Bacteroidaceae; acetate; propionate;
butyrate; ex vivo; prebiotic

1. Introduction

Over the past decades, the human gut microbiota has been related with human health
and, when aberrant, to metabolic disorders (obesity, type 2 diabetes, nonalcoholic liver
disease, cardiometabolic diseases) [1], inflammatory bowel diseases [2,3], cancer [4], celiac
disease [5], and even brain-related conditions [6]. Numerous molecular mechanisms
have been unravelled to explain how gut microbes could protect from or contribute to
diseases as reviewed by de Vos et al. (2022) [7]. Amongst a broad range of microbial
metabolites, short-chain fatty acids (SCFA; mainly acetate, propionate, and butyrate), main
end-metabolites of the colonic fermentation of glycans, have been ascribed potent health
benefits [8,9]. SCFA production results from complex interactions between a broad range
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of gut microbes [10,11]. As recently demonstrated by Lavelle et al., the composition of
the gut microbiota and the prevalence of keystone species is, however, prone to major
interpersonal differences [12]. These interpersonal differences are clinically relevant as they
impact the outcome of interventions [13,14]. They are, for instance, recognized as a key
contributor for the inconsistent reports on the benefits of fibre intake [15]. In an attempt to
stratify human subjects based on gut microbiota composition, the concept of enterotypes
has been introduced [16]. While the exact classification of gut microbiota in distinct gut
enterotypes is still evolving [17,18], it is clear that Prevotella, Bacteroides and Ruminococcus
are three main contributors to the microbiota variation in healthy subjects [19]. Even if the
health relevance of enterotypes remains to be elucidated, they are a useful stratification
tool in gut microbiota research.

Amongst strategies that aim to improve human health by targeting the gut microbiota,
dietary fibres such as pectin-derived polysaccharides [20] and prebiotics are gaining in-
creasing interest [21,22]. Despite being defined as substrates that are selectively utilized
by host microorganisms (thus conferring a health benefit) [23], recent reports describe
the low selectivity by which several traditional prebiotics impact the human gut micro-
biota [24,25]; e.g., inulin (IN) is a low specificity fibre that can be used by a wide array
of gut microbes [24,25], likely due to its relatively simple structure (Figure 1B), high solu-
bility, and historical abundance in the diet. Such low selectivity results in unpredictable
effects, which are determined by the baseline gut microbial communities present within
each individual. An excessively high specificity as, for instance, found for xanthan (XA),
which has a more complex structure (Figure 1B) and has only recently been introduced
to the human diet, is also not desirable as it can only be used by a very narrow range of
bacteria which are either present or absent in the microbiota, leading to responder and
nonresponders [26]. There is thus a growing interest in developing prebiotics or dietary
fibres with the desired level of specificity, i.e., that are selectively fermented by commonly
present beneficial commensal microorganisms, thus minimizing interpersonal differences
and causing more predictable outcomes of interventions [14,24,25]. A potential candidate
with the desired level of specificity is carrot-derived rhamnogalacturonan-I (cRG-I), which,
like XA, possesses a complex structure (Figure 1B). Moreover, cRG-I has been shown to be
fermented by specific, commonly present taxa during in vitro studies [27,28]. These studies
however only tested the fermentation of cRG-I for one [27] or a limited number of donors
(n = 4) [28], thus limiting strong conclusions on the tentative selectivity by which cRG-I
impacts the human gut microbiota.

While a large number of test subjects is indubitably necessary to obtain representative
insights in the human gut microbiota, it is particularly important when the aim is to
assess the tentative selectivity by which a substrate affects the microbiota that can greatly
differ among human subjects. In this context, a main disadvantage of the commonly used
in vitro models is their low throughput. Moreover, current in vitro models may also be
biased by substantial alterations between the in vivo derived microbiota and the microbiota
that is establishing itself in the laboratory systems, both for short-term [27,29–31] and
long-term models [32–34]. Recently, the ex vivo SIFR® technology (Systemic Intestinal
Fermentation Research; pronounced “cipher”), a high-throughput, bioreactor-based gut
model, was shown to generate, within 24–48 h of incubation, insights down to species level
that are predictive for outcomes of clinical studies where prebiotics are repeatedly dosed
over 2–6 weeks [35].

In this study, the SIFR® technology was used to assess the selectivity by which cRG-I
affects the composition and metabolite production of the human adult gut microbiota.
The high throughput of the ex vivo SIFR® technology enabled the inclusion of 24 human
adults in the study design, which was crucial for addressing this central hypothesis. The
specificity of cRG-I was compared with IN and XA as examples of low-specificity and very
high-specificity fibres.
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Figure 1. Study design using the ex vivo SIFR® technology to assess the selectivity by which
cRG-I, IN, and XA affect the gut microbiota of 24 human adults that together covered clinically
relevant interpersonal differences in microbiota composition. (A) Reactor design using the ex vivo
SIFR® technology to test the impact of cRG-I, IN, and XA at an equivalent dose of 0.3 g/d (cRG-I_L)
or 1.5 g/d (cRG-I_H, IN and XA), compared to a reference without additional substrate (NSC) in
faecal samples of 24 human adults. (B) Schematic chemical structures of the different test products
and (C) PCA biplot based on centred values of microbial families (%) at baseline (0 h), as part of the
faecal microbiota for each of the 24 human adults. SIFR = systemic intestinal fermentation research;
cRG-I = carrot-derived rhamnogalacturonan; IN = inulin; XA = xanthan; NSC = no-substrate control.

2. Materials and Methods
2.1. Test Compounds

The test compounds evaluated were IN from chicory (I2255, Merck, Overijse, Belgium),
XA (3557, Carl Roth, Karlsruhe, Germany), and cRG-I (BeniCaros®, Nutrileads, Wagenin-
gen, The Netherlands). Inulin is a polymer of β(2,1)-bond-linked fructose residues with
a chain-terminating glucose with a fructose:glucose ratio of 20:1. Xanthan is constituted
of repeated pentasaccharides of β(1,4) glucose moieties decorated with trisaccharide side
chains comprising 2 mannose and 1 glucuronic acid units. cRG-I is a polydisperse pectic
polysaccharide derived from carrot pomace and highly enriched (80%) in the RG-I domain.
The monosaccharide composition of cRG-I is (% mol/mol): rhamnose, 14.3; arabinose, 34.8;
galactose, 19.6; fucose, 0.8; glucose, 4.3; mannose, 0.9; xylose, 0.7; galacturonic acid, 25 (25).
The schematic structures of the compounds are illustrated in Figure 1B.

2.2. SIFR® Technology

The SIFR® technology was developed to study the human gut microbiota in a highly
biorelevant manner across numerous parallel test conditions (both treatments and test
subjects) [35]. Briefly, individual bioreactors were processed in parallel in a bioreactor
management device (Cryptobiotix, Ghent, Belgium). Each bioreactor contained 5 mL of a
nutritional medium–faecal inoculum blend supplemented with 1.5 g test compound/L (also
0.3 g/L for cRG-I), then sealed individually, before being rendered anaerobic. Blend M0003
was used for the preparation of the nutritional medium (Cryptobiotix, Ghent, Belgium).
After preparation, bioreactors were incubated under continuous agitation (140 rpm) at
37 ◦C (MaxQ 6000, Thermo Scientific, Thermo Fisher Scientific, Merelbeke, Belgium).

Five experimental conditions were tested for 24 human adults: a no-substrate control
(NSC), a 0.3 g/d low dose of cRG-I (cRG-I_L), a 1.5 g/d high dose of cRG-I (cRG-I_H),
1.5 g/d inulin (IN), and 1.5 g/d of xanthan (XA) (Figure 1A). For each of the 24 faecal
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samples, an NSC incubation was initiated simultaneously, consisting of an optimized
nutritional medium and microbiota without test product. The advantage of comparing test
products to such NSC is that any changes between the NSC and test products can solely be
attributed to the addition of the test products. Following a 48 h incubation, the pressure was
measured in the bioreactors’ headspace, and liquid samples were subsequently collected
for the analysis of key fermentation parameters and microbial composition and metabolites.

Fresh faecal samples were collected according to a procedure approved by the Ethical
Committee of the University Hospital Ghent (reference number BC-09977). This procedure
required participants to sign an informed consent in which they donated their faecal sample
for the current study. The selection criteria for the 24 donor samples used herein were
as follows: 25–65 years of age, no antibiotic use in the past 3 months, no gastrointestinal
disorders (cancer, ulcers, IBD), no use of probiotic, nonsmoking, alcohol consumption
<3 units/d and BMI < 30. For this specific study, 13 male and 11 female donor samples
were assessed. The age of the test subjects ranged from 28 to 61 years and was on average
37.8 years (37.8 years for male subjects; 39.1 years for female subjects).

2.3. Fundamental Fermentation Parameters

SCFA (acetate, propionate, butyrate, and valerate) and branched-chain fatty acids
(bCFA; sum of isobutyrate, isocaproate, and isovalerate) were extracted from the samples
with diethyl ether, after addition of 2-methyl hexanoic acid as an internal standard. Briefly,
0.5 mL samples were diluted in distilled water (1:3), acidified with 0.5 mL of 48% sulfuric
acid, after which an excess of sodium chloride was added along with 0.2 mL of internal
standard (2-methylhexanoic acid) and 2 mL of diethyl ether. Upon homogenization and
subsequent separation of the water and diethyl ether layer, diethyl ether extracts were
collected and analysed using a Trace 1300 chromatograph (Thermo Fisher Scientific, Merel-
beke, Belgium) equipped with a Stabilwax-DA capillary GC column, a flame ionization
detector, and a split injector using nitrogen gas as the carrier and makeup gas. The injection
volume was 1 µL and the temperature profile was set from 110 ◦C to 240 ◦C. The carrier
gas was nitrogen, and the temperatures of the injector and detector were 240 and 250 ◦C,
respectively. The sample pH was measured using an electrode (Hannah Instruments Edge
HI2002, Temse, Belgium).

2.4. Microbiota Phylogenetic Analysis: Quantitative 16S rRNA Gene Profiling

Quantitative data were obtained by correcting abundances (%; 16S rRNA gene profil-
ing) with total cell counts (cells/mL; flow cytometry), resulting in the estimated absolute
cell counts per mL of different taxonomic groups. Initially, a bacterial cell pellet was ob-
tained by the centrifugation of 1 mL sample for 5 min at 9000× g. DNA was extracted
via the SPINeasy DNA Kit for Soil (MP Biomedicals, Eschwege, Germany), according to
the manufacturer’s instructions. Subsequently, library preparation and sequencing were
performed on an Illumina MiSeq platform with v3 chemistry. The 16S rRNA gene V3-V4
hypervariable regions were amplified using primers 341F (5’-CCT ACG GGN GGC WGC
AG-3’) and 785Rmod (5’-GAC TAC HVG GGT ATC TAA KCC-3’). Results were analysed
at different taxonomic levels (phylum, family, and OTU level). The α-diversity (species
richness) was estimated via the Chao1 diversity index. As compared to other indices, this
index estimates the number of missing OTUs (and thus “counts the uncountable”) [36].
Further, the β-diversity (dissimilarity between samples) was assessed via the weighted
Unifrac index, which accounts for both relatedness and the abundance of taxa. For the total
cell count analysis, liquid samples were diluted in anaerobic phosphate-buffered saline
(PBS), after which cells were stained with SYTO 16 at a final concentration of 1µM and
counted via a BD FACS Verse flow cytometer (BD, Erembodegem, Belgium). Data were
analysed using FlowJo, version 10.8.1.
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2.5. Statistical Analysis

All univariate and multivariate analyses were performed using GraphPad Prism
(v9.3.1; www.graphpad.comm, accessed on 23 November 2022), while the regularized
canonical correlation analysis (rCCA) was executed using the mixOmics package with
the shrinkage method for the estimation of penalisation parameters (version 6.16.3) in R
(4.1.1; www.r-project.org, accessed on 23 November 2022) [37]. Treatment effects were
compared with the NSC using a repeated measures ANOVA (based on paired testing)
and p-values were corrected with Benjamini–Hochberg’s method [38] (FDR = 0.05). Paired
testing (repeated-measures ANOVA) was performed for setups considering 24 donors with
n = 1. For the analysis of the microbial composition, three measures were taken. First, the
aforementioned statistical analysis was performed on the log10-transformed values. Second,
a value of a given taxonomic group below the limit of detection (LOD) was considered
equal to the overall LOD according to the procedure elaborated by Van den Abbeele et al.
(2023) [35]. Finally, a threshold was set to retain the 100 most abundant OTUs in the analysis,
to avoid excessive p-values corrections.

3. Results
3.1. The Study Cohort Covered Established Interpersonal Differences in Enterotypes Described for
Human Adult Gut Microbiota

At the family level, there were marked differences in faecal microbiota composition
among the 24 human adults, mostly due to differences in Prevotellaceae, Bacteroidaceae,
and/or Ruminococcaceae (Figure 1C). The stratification of faecal microbiota based on these
families is in line with the classification of faecal microbiota according to the concept of
enterotypes [16–19].

3.2. cRG-I Leads to the Most Marked and Consistent Effects on Microbiota Composition and
Metabolite Production

The microbial growth, diversity, and pH were measured to assess overall treatment
effects. First, in the untreated NSC study arm, in line with the validation study of the
SIFR® technology [35], marked increases in cell density were observed from 0 to 48 h,
while the microbial diversity in terms of species richness was maintained at the initial level
(Figure 2A,B). This preservation of in vivo derived microbiota for the entire duration of the
experiment classifies the application of SIFR® technology as an ex vivo study [35].

Interestingly, all test compounds (cRG-I_L, cRG-I_H, IN, and XA) increased the cell
numbers significantly compared to the NSC (Figure 2A), indicating that they promoted
bacterial growth. High-dose cRG-I resulted in the greatest density increase, which was
significantly higher than both IN and XA (Figure 2A). Additionally, the α-diversity (i.e.,
a measure for species richness) was maintained for all conditions tested compared to
the faecal inoculum (INO) and the NSC (Figure 2B). The β-diversity (i.e., a measure for
the dissimilarity between donors within a treatment group) was significantly decreased
by cRG-I in a dose-dependent manner compared to the NSC (Figure 2C), suggesting a
homogenizing effect of cRG-I on the gut microbiota. In other words, the cRG-I treatment
lowered the interpersonal differences among the 24 human adults. Conversely, both IN
and XA increased the β-diversity compared to the NSC and cRG-I_H, suggesting that IN
and XA further augmented pre-existing interpersonal differences in microbial composition.
Lastly, the pH decreased for all treatments compared to the NSC, with a significantly greater
decrease with cRG-I_H compared to cRG-I_L, IN, and XA (Figure 2D). There was also a
marked bimodal response in the XA treated group with the microbiota of some adults
showing no change in pH (nonresponders) while others showed a decrease (responders)
(Figure 2D).

www.graphpad.comm
www.r-project.org
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Figure 2. High-dose cRG-I resulted in a marked and consistent bacterial cell density increase, along
with decreases inβ-diversity and pH. Impact on (A) bacterial density (cells/mL), (B)α-diversity (Chao1
diversity index), (C) β-diversity (weighted Unifrac index) and (D) pH by treatments with cRG-I, IN,
and XA at an equivalent dose of 0.3 g/d (cRG-I_L) or 1.5 g/d (cRG-I_H, IN and XA), compared to
an untreated reference (NSC) for human adults (n = 24), as tested with the ex vivo SIFR® technology.
Statistical differences between treatments and NSC are indicated with asterisks (* (padjusted < 0.05),
** (padjusted < 0.01), or *** (padjusted < 0.001)). Further, differences between the low and high
doses of cRG-I are indicated with $/$$/$$$, while differences among test compounds at an equiv-
alent of 1.5 g/d are indicated with &/&&/&&&. SIFR = systemic intestinal fermentation research;
cRG-I = carrot-derived rhamnogalacturonan; IN = inulin; XA = xanthan; NSC = no-substrate control.

3.3. cRG-I Was Selectively Fermented by Taxa Consistently Present in the Commensal Gut
Microbiota of Human Adults across Different Enterotypes

Next, treatment effects on microbial composition were assessed. Given the markedly
different cell densities across samples (Figure 2A), the relative abundances of taxa were
normalized using cell numbers to yield more biologically relevant results, i.e., absolute
abundance levels [17,39]. The first insights were obtained by a targeted analysis at the
phylum level (Figure 3A–D). While cRG-I_H, IN, and XA all significantly increased Bac-
teroidetes and Firmicutes levels (Figure 3B,C), the families responsible for increased levels
of a given phylum greatly differed between treatments (Figure 3E). For example, while
the Bacteroidetes increase with cRG-I was due to a marked Bacteroidaceae stimulation,
the increase of the same phylum with XA was due to increases in Porphyromonadaceae.
Further, IN mildly increased both aforementioned families along with the Rikenellaceae
family. Likewise, the Firmicutes increase upon cRG-I and IN supplementation was due
to increases in Acidaminococcaceae, Lachnospiraceae, and Veillonellaceae, while XA markedly
increased unclassified families. Further, cRG-I_H and IN both increased the Actinobacteria
phylum (Figure 3A), while XA stimulated an unclassified Bacteria phylum (Figure 3D). The
Actinobacteria increase with cRG-I was due to a marked Bifidobacteriaceae increase, whereas
IN stimulated both Bifidobacteriaceae and Coriobacteriaceae.

Interestingly, the increased abundance of Bacteroidetes (and Bacteroidaceae) upon cRG-I
supplementation was marked and remarkably consistent across the 24 adults. This was
already significant at the five-time lower HED of 300 mg/d cRG-I (cRG-I_L).
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Figure 3. High-dose cRG-I exerted most consistent effects on gut microbial phyla and families.
Impact on four most abundant phyla, i.e., (A) Actinobacteria, (B) Bacteroidetes, (C) Firmicutes,
and (D) unclassified bacteria (cells/mL) at 48 h, upon supplementation with cRG-I, IN, and XA
at an equivalent dose of 0.3 g/d (cRG-I_L) or 1.5 g/d (cRG-I_H, IN and XA), compared to an un-
treated reference (NSC) for human adults (n = 24), as tested with the ex vivo SIFR® technology.
Statistical differences between treatments and NSC are indicated with asterisks (* (padjusted < 0.05),
** (padjusted < 0.01), or *** (padjusted < 0.001)). Further, statistical differences between the low and high
doses of cRG-I are indicated with $/$$/$$$, while differences among test compounds at an equivalent
of 1.5 g/d are indicated with &/&&/&&&. (E) Heatmap showing microbial families that were signif-
icantly affected by any of the treatments, expressed as log2(treatment/NSC). Significant differences
were indicated by bold/underlining (FDR = 0.05). SIFR = systemic intestinal fermentation research;
cRG-I = carrot-derived rhamnogalacturonan; IN = inulin; XA = xanthan; NSC = no-substrate control.

The analysis at the OTU level provided a maximal resolution into how the treatments
impacted microbial composition. The data were first presented in a PCA based on centred
data, to focus on those species that were most markedly and consistently affected (Figure 4).
This demonstrated that the most drastic changes of specific species related to the XA
responder group (15/24 donors) and cRG-I_H treatments (24/24 donors). The cRG-I
treatment led to marked, consistent, and dose-dependent increases of OTUs related to
Bacteroides dorei/vulgatus and Bifidobacterium longum (Figure 4). Further, a narrow spectrum
of XA-fermenting taxa was identified and included Porphyromonadaceae members (OTUs
related to Parabacteroides distasonis and P. merdae) and particularly an OTU4 related to
Hominilimicola fabiformis (Figure 4). Upon IN treatment, a broad spectrum of OTUs increased,
yet given the lack of consistency across donors, these changes were not represented in the
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PCA that aimed to explain the largest possible variation in only two components. Taxa
that were affected upon IN treatment in a highly donor-dependent manner included OTUs
related to Collinsella aerofaciens, Bifidobacterium adolescentis, Bacteroides ovatus, Bacteroides
caccae, and Ruminococcus faecis (Figure 4).
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Figure 4. High-dose cRG-I markedly and consistently increased OTUs related to Bacteroides
dorei/vulgatus and Bifidobacterium longum. PCA biplot based on centred values of OTUs (cells/mL)
along with dedicated violin plots for OTUs determining the sample distribution at 48 h, upon
supplementation with cRG-I, IN, and XA at an equivalent dose of 0.3 g/d (cRG-I_L) or 1.5 g/d
(cRG-I_H, IN and XA), compared to an untreated reference (NSC) for human adults (n = 24), as
tested with the ex vivo SIFR® technology. Statistical differences between treatments and NSC are
indicated with asterisks (* (padjusted < 0.05), ** (padjusted < 0.01), or *** (padjusted < 0.001)). Further,
statistical differences between the low and high doses of cRG-I are indicated with $/$$/$$$, while
differences among test compounds at an equivalent of 1.5 g/d are indicated with &/&&/&&&.
OTU = operational taxonomic unit; PCA = principal component analysis; cRG-I = carrot-derived
rhamnogalacturonan; IN = inulin; XA = xanthan; XAR = XA responders, XANR = XA nonresponders;
NSC = no-substrate control; SIFR = systemic intestinal fermentation research.

All significantly affected OTUs (among the 100 most abundant) were also presented
in a heat map (Figure S1) thus providing insights in less abundant taxa. A striking ob-
servation was that cRG-I significantly increased a broad spectrum of OTUs (30 in total)
belonging to Bifidobacteriaceae (2), Bacteroidaceae (4), Acidaminococcaceae (1), unclassified
Clostridiales (1), Lachnospiraceae (18), Ruminococcaceae (3), and Veillonellaceae (1); including
OTUs of health-related species such as Bifidobacterium longum, Bifidobacterium adolescentis,
Anaerobutyricum hallii, and Faecalibacterium prausnitzii. In contrast, while a broad spectrum
of OTUs tended to also increase upon IN supplementation, the large interpersonal dif-
ferences of IN-related treatment effects resulted in only eight OTUs being significantly
affected by the IN treatment. Finally, XA did not impact any low abundant OTUs sug-
gesting a highly specific fermentation by the aforementioned Hominilimicola fabiformis
and Parabacteroides species in donors harbouring a microbiota containing OTUs related to
these species.
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3.4. cRG-I Most Markedly and Consistently Stimulated Acetate and Propionate Production with
Only Minor Increases in Gas Production

Finally, markers of microbial activity were assessed, i.e., SCFA, bCFA, and gas produc-
tion. An exploratory PCA analysis revealed that IN and cRG-I_H most strongly affected
these endpoints. Overall, the effect of cRG-I was again more consistent across the 24 human
adults as shown by the smaller surface area of data clustering for cRG-I compared to IN
(Figure 5A). Further, XA-treated samples again displayed a bimodal distribution, with XA
responders (XAR) and XA non responders (XANR) positioning in the middle and to the left,
respectively (Figure 5A).
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Figure 5. High-dose cRG-I most strongly increased total SCFA due to a marked increase of ac-
etate and propionate, with relatively small increases of gas production. (A) PCA biplot based on
standardized values of SCFA (mM) along with dedicated violin plots for (B) acetate, (C) propionate,
(D) butyrate, (E) bCFA, (F) total SCFA, and (G) gas production (mbar) at 48 h, upon supplementation
with cRG-I, IN, and XA at an equivalent dose of 0.3 g/d (cRG-I_L) or 1.5 g/d (cRG-I_H, IN and
XA), compared to an untreated reference (NSC) for human adults (n = 24), as tested with the ex vivo
SIFR® technology. Statistical differences between treatments and NSC are indicated with asterisks
(* (padjusted < 0.05), ** (padjusted < 0.01), or *** (padjusted < 0.001)). Further, statistical differences
between the low and high doses of cRG-I are indicated with $/$$/$$$, while differences among test
compounds at an equivalent of 1.5 g/d are indicated with &/&&/&&&. SCFA = short-chain fatty
acids; PCA = principal component analysis; cRG-I = carrot-derived rhamnogalacturonan; IN = inulin;
XA = xanthan; NSC = no-substrate control; SIFR = systemic intestinal fermentation research.

All treatment conditions significantly increased acetate, propionate, and butyrate com-
pared to NSC, with greater increases in acetate and propionate in cRG-I_H compared to other
treatments (Figure 5B–D). While both substrates were dosed at 1.5 g/d, cRG-I resulted in
significantly higher acetate (+40%) and propionate (+22%) levels compared to IN. Further,
only cRG-I_H and IN significantly decreased bCFA compared to NSC (Figure 5E). Total SCFA
were significantly increased by all treatments compared to NSC, with a higher increase in
the cRG-I_H-treated samples compared to other compounds (Figure 5F) (+32% compared to
IN). In XA-treated samples, a bimodal response profile was again observed for total SCFA
with some samples showing no change (Figure 5F). Gas production also increased in all
treatments compared to NSC, with a higher increase in the IN-treated samples compared to
other compound treatments (Figure 5G). Despite the marked SCFA production with cRG-I_H,
gas production was remarkably lower compared to IN (−44%) (Figure 5G).
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When examining the coefficient of variations (CVs) for each analyte, XA had the
highest CVs for total SCFA, acetate, and propionate as well as gas production compared
to other test compounds (Figure S2). The IN treatment had the highest CVs for butyrate
and for bCFA, while the high and low doses of cRG-I had the lowest CVs for SCFA and
bCFA (Figure S2). This indicated that IN and XA led to higher interpersonal differences
in microbial metabolite production, while high-dose cRG-I led to lower interpersonal
differences even when compared to NSC for most parameters. In other words, cRG-I
resulted in predictable effects on microbial metabolite production.

3.5. Specific OTUs Correlated with Specific Metabolites upon cRG-I Supplementation

To understand the relationship between changes in fermentation parameters and changes
in microbial composition, correlation analyses were performed between fermentation param-
eters and the 49 OTUs that were significantly affected by at least one treatment (Figure 6).
Interestingly, for the low and particularly the high dose of cRG-I (Figure 6A,B), many of
the OTUs significantly stimulated by cRG-I (indicated with an asterisk) related with specific
SCFA, suggesting the involvement of specific species during cRG-I fermentation. In line with
the metabolic ability of these taxa, OTUs related to B. dorei/vulgatus and B. thetaiotaomicron
correlated with acetate and propionate, while butyrate production was associated with the
presence of OTUs related to Blautia species (OTU24/41), A. hallii (OTU33), and F. prausnitzii
(OTU5). Further, for XA, marked correlations were established for XA-fermenting taxa: while
OTU4/77 correlated with acetate production, the OTU related to P. merdae more strongly
correlated with propionate (Figure 6C). Finally, for IN, less correlations were observed as these
were obscured by the high interpersonal differences observed upon IN treatment (Figure 6D).
Nevertheless, interesting correlations of acetate with B. adolescentis and butyrate with C. comes
and F. prausnitzii were established, suggesting that these species are key drivers for pathways
producing these SCFA upon IN treatment (Figure 6D).
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4. Discussion

The high-throughput, ex vivo SIFR® technology enabled the testing of the impact
of supplementation with different fibres on the faecal microbiota of 24 human adults in
parallel. Such a large number is unprecedented in preclinical in vitro study designs. This
was of key importance to not only ensure representative findings but to also accurately
evaluate the selectivity by which various fibres impact the human gut microbiota. The
biorelevance of the interpersonal differences among the 24 test subjects also followed from
the observation that they were driven by differential levels of Prevotellaceae, Bacteroidaceae,
and/or Ruminococcaceae, in line with the well-known concept of enterotypes [16–19]. Over-
all, the key finding of the study was that cRG-I treatment lowered interpersonal differences
in microbial composition and metabolite production due to the selective stimulation of taxa
that were consistently present in the gut microbiome of human adults. This contrasted with
IN and XA, which enhanced interpersonal differences. The remarkable homogenization
effect of cRG-I highlighted in the current SIFR® experiment was recently also observed in a
randomized placebo-controlled clinical trial, where treatments with 0.3 g/d and 1.5 g of
cRG-I/d were shown to significantly lower interindividual microbiota variability measured
as the between-subject β-diversity after 8 weeks of intervention (manuscript in preparation).
Of note, the striking decrease in interindividual variation had earlier been observed in a
mouse model of enteric infection as well (manuscript in preparation). This confirms the
remarkable homogenization effect of cRG-I, the coherence of the effect even across models
and host species, and further confirms the predictivity of the SIFR® technology for the
impact of fibre supplementation in (human) intervention studies [35].

The specific taxa that increased upon cRG-I treatment included, amongst others, acetate/
propionate-producing Bacteroidaceae (B. dorei/vulgatus and B. thetaiotaomicron) [10], acetate-
producing Bifidobacteriaceae (B. longum and B. adolescentis) [40], and butyrate-producing species
such as Anaerobutyricum hallii [41,42], Blautia sp. [43,44], and Faecalibacterium prausnitzii [45].
The marked correlation between these species and said SCFA is in line with their respective
metabolic capabilities. It further emphasizes the advantage of including a large number of
subjects as this is key to establishing correlations between metabolites and bacterial species
and thus shedding light on the mechanistic effect of cRG-I on the gut microbiota. While
this is already possible with 6 test subjects [35], correlations are even stronger when work-
ing with 24 test subjects. The two most profoundly increased OTUs were those related to
B. dorei/vulgatus and B. longum, suggesting that these species are likely keystone species for
cRG-I fermentation, as previously suggested [27,28]. While Bacteroides species are generally
known to possess a broad range of carbohydrate-active enzymes (CAZymes) within their
polysaccharide utilization loci (PUL) [46,47], B. dorei/vulgatus seems to be the most competitive
amongst Bacteroides species to ferment cRG-I. The initial fermentation of large cRG-I polymers
by Bacteroides species likely releases cRG-I fragments that are then consumed by Bifidobacteri-
aceae, known degraders of arabinans and galactans, the main side chains of cRG-I [48,49]. Such
cooperative mechanisms between Bacteroides and Bifidobacterium species in the fermentation
of complex polymers have been described before [50]. Moreover, the current study suggests
that this initial step feeds a trophic network involving a spectrum of phylogenetically diverse
species that all benefited from cRG-I treatment. Indeed, 30 OTUs not only belonging to
Bifidobacteriaceae and Bacteroidaceae, but also to Acidaminococcaceae, unclassified Clostridiales,
Ruminococcaceae, Veillonellaceae, and particularly Lachnospiraceae, all significantly increased
upon cRG-I treatment. As demonstrated for other complex polysaccharides [51], the high
complexity of the cRG-I chemical structure is likely responsible for supporting the growth
of such a broad range of taxa. The consistency of how these taxa were boosted among the
24 human adults was, however, highly remarkable and resulted in robust effects on metabolite
production as well. This striking consistency could result in predicable outcomes of cRG-I
interventions in healthy subjects despite differences in gut microbiota composition. In line
with the recently proposed classification of fibres based on their “specificity” [21,22], cRG-I
displays properties of a medium-high specificity fibre, thus reliably increasing the abundance
of beneficial bacterial species commonly found in the gut microbiota of healthy adults.
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While XA also significantly decreased pH and boosted SCFA production (mostly
acetate and to a lesser extent, propionate), these changes were less pronounced compared
to cRG-I, given that 9 of the 24 donors were nonfermenters to XA treatment. XA fermen-
tation related to markedly increased levels of a very narrow spectrum of OTUs related to
Parabacteroides merdae, Parabacteroides distasonis, and particularly Hominilimicola fabiformis,
a species recently isolated by Afrizal et al. via single-cell dispensing [52]. The absence of
H. fabiformis was characteristic of the microbiota of nonfermenters. This is in line with recent
findings of Ostrowski et al. (2022) [26], who demonstrated an uncultured Ruminococcaceae
species (R. UCG13) to be the keystone degrader of the xanthan gum backbone via a novel
glycoside hydrolase family 5 (GH5) enzyme. Interestingly, the 16S rRNA gene sequence of
R. UCG13 revealed a >99% sequence similarity with H. fabiformis (M. Ostrowski, personal
communication, 4 April 2023). While unable to ferment the high molecular weight polymer,
Bacteroides/Parabacteroides species were shown capable of consuming oligosaccharides gen-
erated by the keystone H. fabiformis species. As XA thus classifies as a very high specificity
fibre, it depends on the presence of keystone species capable of initiating its colonic fermen-
tation to potentially lead to health benefits. Very high specificity fibres solely fermented by
keystone species that are not consistently present among the gut microbiota of individuals
(as is the case for XA) may thus lead to poorly predictable outcomes in human studies, as
they increase the overall interpersonal differences upon supplementation.

IN treatment also markedly enhanced the intersubject β-diversity. This resulted from
donor-dependent increases of a variety of OTUs related among others to Collinsella aerofaciens,
Bifidobacterium adolescentis, Bacteroides ovatus, Bacteroides caccae, Ruminococcus faecis, and
Coprococcus comes. Another example of the low specificity of IN was the marked correla-
tion of the increase in Faecalibacterium prausnitzii and butyrate levels upon IN treatment in
some but not all donors. Such a strong donor-dependent microbiota modulation is in agree-
ment with recent studies that describe IN as a low specificity fibre used by a wide array of gut
microbes [24,25,35]. As a remark, the stimulation of Bifidobacteriaceae is the most pronounced
microbiota change commonly induced by IN in clinical studies [53]. In the clinical study
performed by Vandeputte et al., IN was dosed at 12 g/d, possibly leading to a profound
colonic pH decrease. High-fibre doses do not only impact the gut microbiota but also change
the gut environment as was demonstrated by marked luminal pH decreases when dosing high
amounts of IN to humanized rats [54]. Such a lower pH likely explains the stronger effects
of IN dosed at levels above 10 g/d on acid-tolerant Bifidobacteriaceae in contrast to Bacteroides
species that thrive better at higher pH [55]. The low dose simulated during the current study
(1.5 g/d) explains the milder effects on Bifidobacteriaceae. Overall, while low-specificity fibres
(such as IN) offer the advantage that there are no or less nonfermenters, the outcomes of such
interventions are less predictable as the baseline interindividual differences will be maintained
or even enhanced.

As described above, inulin and cRG-I both stimulate Bifidobacterium species, albeit in a
specific manner. The health benefits attributed to Bifidobacterium species are numerous and
include antipathogenic effects, immune modulation, the prevention of gut disorders, and
the production of beneficial metabolites and vitamins [56–59]. High counts of bifidobacteria
have frequently been correlated to health, which has led to the development of B. longum
and B. adolescentis strains as probiotics [60]. While inulin is easily digested by numerous
gut commensals, the cRG-I fermentation necessitates the cooperation between Bacteroides
and Bifidobacterium spp. acting as primary and secondary degraders, respectively, further
promoting the cross-feeding of key anti-inflammatory species such as F. prausnitzii [61]
and A. hallii [62]. Bacteroides spp., on the other hand, have been associated with health or
diseased situations depending on the species, their intestinal location, and the host health
status [63–65] but play an important role in feeding the gut metabolic network.

When focusing on changes in fundamental fermentation parameters, cRG-I resulted
in significantly higher acetate (+40%), propionate (+22%), and thus also total SCFA levels
(+32%) compared to IN, both dosed at an equivalent of 1.5 g/d. Nevertheless, gas produc-
tion was significantly lower for cRG-I compared to IN (−44%). A strong gas production
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upon intake of IN (or other fructans such as FOS) due to a rapid colonic fermentation
has been observed before and could result in limited tolerance at high doses [66,67]. In-
terestingly, cRG-I thus combines the property of leading to a pronounced production of
SCFA [8,9] combined with a low gas production that should translate in a better tolerability.

5. Conclusions

In conclusion, unlike IN, cRG-I and XA were shown to be high and very high specificity
fibres, respectively, possessing chemical characteristics that likely allow them to be utilized
by a selected or only a narrow group of intestinal commensals, thus supporting the need
for developing more selective or targeted gut microbiota modulators with more predictable
outcomes [14,24,25]. The current study also pointed out that high-specificity fibres could
also be overly specific, as is the case for XA, for which a considerable number of test subjects
were not responding to treatment due to the absence of the highly specialized keystone
XA degraders. In contrast, the keystone species involved in cRG-I fermentation were
consistently present among human adults regardless of the enterotype, so that cRG-I was
fermented by all donors tested, resulting in a remarkably robust impact on both microbiota
composition and function (as measured by fermentation parameters). This suggests that
cRG-I is a remarkable medium-high-specificity fibre leading to the targeted stimulation
of specific Bifidobacterium and Bacteroides spp. and this could lead to consistent health
outcomes in humans.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu15092090/s1, Figure S1. High-dose cRG-I exerted most con-
sistent effects on OTUs mostly belonging to the Bifidobacteriaceae, Bacteroidaceae, Lachnospiraceae, and
Ruminococcaceae, Figure S2. High-dose cRG-I resulted in low interpersonal differences in terms of
SCFA and bCFA pro-duction, while IN (low specificity) and XA (very high specificity resulting in
responders and nonresponders) increased interpersonal differences.
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