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Abstract: Type 2 diabetes mellitus (T2DM) shares a common molecular mechanism and underlying
pathology with dementia, and studies indicate that dementia is widespread in people with T2DM.
Currently, T2DM-induced cognitive impairment is characterized by altered insulin and cerebral
glucose metabolism, leading to a shorter life span. Increasing evidence indicates that nutritional and
metabolic treatments can possibly alleviate these issues, as there is a lack of efficient preventative
and treatment methods. The ketogenic diet (KD) is a very high-fat, low-carbohydrate diet that
induces ketosis in the body by producing a fasting-like effect, and neurons in the aged brain are
protected from damage by ketone bodies. Moreover, the creation of ketone bodies may improve brain
neuronal function, decrease inflammatory expression and reactive oxygen species (ROS) production,
and restore neuronal metabolism. As a result, the KD has drawn attention as a potential treatment
for neurological diseases, such as T2DM-induced dementia. This review aims to examine the role
of the KD in the prevention of dementia risk in T2DM patients and to outline specific aspects
of the neuroprotective effects of the KD, providing a rationale for the implementation of dietary
interventions as a therapeutic strategy for T2DM-induced dementia in the future.
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1. Introduction

Diabetes mellitus (DM) is a metabolic disorder caused by decreased insulin production
and is characterized by persistent hyperglycemia and abnormalities in carbohydrate, lipid,
and protein metabolism. By 2045, it is projected that 783 million individuals between the
ages of 20 and 79 will have diabetes; this number is increased from the approximately
537 million individuals with diabetes in 2021 [1]. There are two distinct forms of DM,
and each has a unique frequency and pathogenesis. Type 1 DM (T1DM) accounts for
5–10% of all occurrences of diabetes and is characterized by the death of pancreatic cells
by T-cell-mediated immunity. Type 2 DM (T2DM) is characterized by insulin resistance
and accounts for 90% of all cases of diabetes [2,3]. Because different parts of the brain are
vulnerable to changes in the balance of insulin and glucose, both T1DM and T2DM lead to
impairments in the central nervous system (CNS) to varying degrees. However, T2DM is
associated with a 50% higher risk of cognitive impairment than T1DM [4].

T2DM is currently the most prevalent type of metabolic illness caused by atypical
insulin regulation. T2DM and other metabolic disorders that impact glucose homeostasis
may increase the risk of developing certain neurodegenerative illnesses [5,6]. In addition,
T2DM has been linked to oxidative stress, inflammation, synapse loss, and decreased neural
plasticity in the CNS, which may lead to a neurodegenerative process that is characterized
by cognitive impairment and memory loss [7,8]. According to epidemiological research,
people with T2DM have a higher incidence of cognitive impairment, including Alzheimer’s
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disease (AD), than people without the disease [5]. Finally, the population trend for dementia
is quite similar to that seen in T2DM, and as a result, DM and dementia co-occur more
frequently than would be expected by chance alone [9].

2. Diabetes Mellitus and Cognitive Disability
2.1. Dementia and Cognitive Impairment

According to an epidemiological study, more than 55 million individuals worldwide
have dementia, and more than 10 million new cases are diagnosed each year [10]. Memory,
reasoning, orientation, comprehension, computation, learning capacity, language, and
judgement are just a few of the processes that dementia impacts. For instance, the frontal
and temporal lobes of the brain are more frequently affected by Tau protein accumulation
and plaque development, which may cause dementia and result in irreversible neuronal
cell death [11]. Moreover, Parkinson’s disease results in an aberrant build-up of alpha-
synuclein in the neurons of the substantia nigra, which causes Lewy body dementia [12].
Blood clots, malformed blood arteries, and abnormal brain tissue are the causes of vascular
dementia [13].

Dementia associated with several brain regions has surpassed heart disease as the
primary cause of death in people with DM [14]. Individuals with DM, in contrast to the
general population, have an increased risk of developing dementia, particularly vascular
dementia. Many systematic studies that compared people with DM to those without DM
reported summary relative risks (SRRs) of 2.38 (95% confidence interval (CI) 1.79–3.18)
for vascular dementia and 1.39 (95% CI 1.16–1.66) for AD [15]. Nineteen population-
based studies that included 44,714 persons, 6184 of whom had DM, revealed similar
outcomes and an RR of 1.21 (95% CI 1.02–1.45) for mild cognitive impairment [16]. Those
with DM had higher odds of developing dementia from any cause compared to people
without the condition, according to two meta-analyses of prospective cohort studies [17,18].
Furthermore, it was demonstrated that T2DM accelerates the development of dementia
in patients with mild cognitive impairment [19]. Another significant finding revealed that
individuals with T2DM had a 45% prevalence of mild cognitive impairment, compared to
a stated prevalence of 3–22% for the general population [20]. However, it should be noted
that the frequency of moderate cognitive impairment in those with T2DM was similar in
those under 60 (46%) and those over 60 (44%); these findings are in contrast to those of
other studies that suggested that mild cognitive impairment was more prevalent in older
persons, particularly those over 65 [21]. However, a different meta-analysis showed that
there was cognitive decline among T2DM patients under the age of 65, indicating that there
may be a burden of cognitive disease among younger individuals with DM [22].

2.2. T2DM and Dementia

T2DM and dementia are age-related conditions that impact millions of people world-
wide. Blood glucose levels in T2DM individuals with dementia are abnormal, and they
are 1.5–2.5 times more likely to experience neurological problems than people without
diabetes. Compared to patients without diabetes, patients with diabetes have a higher
prevalence of AD, which is also linked to a higher incidence or fatality rate [12]. DM is
associated with insulin resistance (IR), and dysregulation in the molecular mechanism
of insulin production may result in histopathological abnormalities in DM. A significant
risk factor for dementia and cognitive decline is hyperglycemia, which may also have a
deleterious effect on cognitive performance. Individuals with T2DM are prone to develop
dementia and other neurological conditions, but sporadic dementia tends to be more preva-
lent [23]. The brain uses a glucose homeostasis mechanism to manage the energy level
throughout the body. It has been found that up to 80% of dementia patients exhibit glucose
intolerance [24]. During more than 11 years of research, scientists have discovered a higher
prevalence of dementia and AD, as well as a 50–100% higher chance of acquiring dementia,
in people with diabetes [25]. Memory loss, difficulty concentrating, difficulty with routine
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tasks, altered behavior, and confusion about time and location are all common dementia
symptoms [9]. The relationship of T2DM and dementia is shown in Figure 1.
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Figure 1. Impaired blood glucose metabolism in T2DM-induced dementia. Patients with dementia
from T2DM exhibit systemic hyperglycemia, hyperlipidemia, and hyperinsulinemia. Decreases in
insulin resistance and insulin sensitivity are characteristics of T2DM. A lack of insulin sensitivity
prevents the liver from absorbing and using glucose from the blood. Defective glucose absorption
encourages the liver to speed up gluconeogenesis and glycogenolysis, which raises the level of
glucose in the blood. Decreased glucose uptake also causes a dependency on fatty acid metabolism as
the main source of energy production. Hepatic fatty acids also encourage the synthesis of triglycerides
and ketone bodies, and reactive oxygen species and oxidative imbalance are caused by excess glucose
in hepatic mitochondria. In addition, the passive removal of materials from the blood is inhibited
by capillarization and inflammatory cytokine release, both of which are promoted by oxidative
stress. Finally, the brain also displays insulin resistance with excess glucose through blood, which
contributes to increasing neuronal damage and neuroinflammation.

3. Overview of a Ketogenic Diet

A high-fat, low-carb diet with the right quantities of protein, vitamins, and minerals is
known as a ketogenic diet (KD). Under normal physiological conditions, the body prefers
to consume carbs, which are broken down into glucose and distributed throughout the
body to provide energy, but this diet stimulates the body to consume fats more readily.
It has been determined that the KD may be implemented to treat neurodegenerative and
neuropsychiatric diseases [26,27]. This high-fat, moderate-protein, low-carb diet releases
ketone bodies (principally β–hydroxybutyrate (β-OHB) and acetate) from the breakdown
of fat that act as an alternative fuel, shifting away from the use of glucose as the body’s
primary energy source. The KD was first employed by doctors as a treatment for epilepsy
in the 1920s [26]. By following a sustained KD, as opposed to starvation, one can reach a
degree of nutritional ketosis that is much below that of pathological ketoacidosis [28]. For
example, the resting β-OHB concentration was elevated to approximately 2.0 Mm after
aerobic exercise, and during a 1 h recovery period, β-OHB decreased to 0.85 mM after the
nutritional ketogenic diet. These findings suggest that short-term nutritional ketosis does
not impair aerobic exercise capacity, which may be due to increased utilization of β-OHB
when carbohydrate stores are diminished [29]. The brain has evolved to use ketones to
protect and enhance crucial central functions in situations of glucose restriction or elevated
energy needs [30]. This is particularly true during periods of fasting during sleep, when
circulating ketone bodies, particularly β-OHB, can be increased and maintained by ketones.
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The symptoms of some age-related disorders have been found to improve with higher
levels of β-OHB [31], thus offering justification for the creation of therapeutic ketogenic
treatments for neurodegenerative disorders [32]. The biochemistry of ketogenesis in the
liver and brain is shown in the Figure 2.
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Figure 2. Illustration of the biochemistry of ketogenesis in the liver and brain. Long-term glucose
restriction causes the ratio of glucagon to insulin to rise, which causes the release of free fatty acids
into the blood. Carnitine acylcarnitine translocase-1 (CAT-1) transports free fatty acids into liver mito-
chondria, where they are utilized to oxidize fatty acids to produce acetyl coenzyme A (acetyl-CoA).
The production of ketone bodies allows these molecules to start the ketogenesis process. Acetyl-
CoA is transformed into acetoacetate, which then permits the reversible reduction to acetone and
β-hydroxybutyrate (β-OHB). These ketone bodies subsequently leave the liver and travel through
the circulation to reach peripheral tissues and the brain, where they are carried in the brain by mono-
carboxylic acid transporters. In the brain, β-OHB can be changed back into acetoacetate, acting as a
potential source of acetyl-CoA to release energy through the tricarboxylic acid cycle. Abbreviations:
Acetyl-CoA, acetyl coenzyme A; β-OHB, β-hydroxybutyrate; CAT, carnitine acylcarnitine translocase;
CO2, carbon dioxide; FAs, fatty acids; MCT, monocarboxylic acid transporter; TCA, tricarboxylic acid.

The KD and other dietary therapies have been studied as novel therapeutic modal-
ities, primarily for the treatment of T2DM. In numerous studies, the KD has also been
demonstrated to decrease insulin resistance and enhance glucose tolerance in an animal
model [33] and in patients with T2DM [34]. Recent studies have, nevertheless, emphasized
the crucial functions of the KD in the treatment of a number of neurological illnesses [35–37].
Researchers have recently focused on the neuroprotective properties of the KD. Despite
mounting evidence that food therapy is effective, the precise mechanism underlying its
protective effects is yet unknown. In this review, we evaluated the experimental and
clinical evidence and examined the processes underlying the neuroprotective benefits of
the KD, proposing that the application of a KD might be a feasible therapeutic option for
T2DM-induced dementia based on its neuroprotective qualities.

4. Neuroprotective Effects of the Ketogenic Diet
4.1. Modulating Brain Neurotransmitters

When there is a lack of nutrients after exercise or when there are not enough carbohy-
drates available, brain neurons use ketone bodies as a source of energy. Gluconeogenesis,
the tricarboxylic acid cycle, and fatty acid β-oxidation are connected to the regulation of
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ketone bodies [38]. Gamma-aminobutyric acid (GABA) and glutamate neurotransmitter
activity have been shown to decrease under hyperglycemic circumstances, and cholinergic
transmission has been discovered to be dysregulated in the hippocampus [39]. In patients
with T2DM, the levels of dopamine and its receptors are decreased [40]. Serotonin and
dopamine are associated with sadness and anxiety and are regulated by KB, which also
increases the levels of GABA and excitatory glutamate [41]. Moreover, ketone bodies
participate in cell survival and neural anti-apoptotic mechanisms [41]. The underlying
mechanisms are related to how ketone bodies control brain signaling, boost insulin sen-
sitivity, decrease the consequences of oxidative stress, boost synaptic activity, and keep
neurotransmitter activity at a constant level. Indeed, we are aware that low ketone body
levels could result in pathogenic T2DM situations [42]. However, the modulation of ketone
bodies at various levels in neuroprotection and neurotoxicity in diabetes-induced dementia
therapeutic strategies requires more study.

4.2. Modulating β-Amyloid

Malfunctions in the respiratory chain and mitochondria might affect the metabolism of
amyloid precursor protein (APP), producing hazardous β-peptide (Aβ) [43]. The KD offers
ketones as substitute metabolic substrates for the brain, perhaps alleviating the effects of
impaired glucose metabolism [44]. Moreover, KD may aid in reducing the development of
amyloid plaques by reversing the toxicity of Aβ (1–42) [44,45]. Exogenous β-OHB-treated
mice exhibited better mitochondrial performance, decreased brain Aβ levels, and protection
from amyloid toxicity [46]. After just 40 days of treatment, the KD led to decreased soluble
Aβ deposit levels in transgenic mice with AD by 25% [47]. However, we should note that
the existence of the ApoE4 genotype in humans, which is a risk factor for the development
of AD, may influence this process [48].

4.3. Modulating the Blood–Brain Barrier

In both T1DM and T2DM mouse models, hyperglycemia, blood–brain barrier (BBB)
permeability, and cognitive impairment are strongly associated with each other [49]. Be-
cause the BBB maintains brain homeostasis and limits access of hazardous substances and
infections to the brain, its disruption can impair cognitive function by causing abnormal
molecular transport between the peripheral circulation and the brain [50]. Although there is
currently no conclusive evidence, given the current state of our knowledge, it is reasonable
to approach this subject from a prospective viewpoint. At the BBB, membrane disruption
can also occur, similar to what occurs in the intestinal barrier. For instance, this disruption
occurs in epilepsy, AD, and other neurological illnesses [51,52]. The BBB becomes more per-
meable to β-OHB when blood ketones are present in higher concentrations [53]. Ketosis can
lead to the restoration of BBB integrity, which increases the amount of connexin-43 (Cx43),
monocarboxylate transporters (MCTs), and glucose transporters (GLUT transporters) that
are used to create the barrier [54,55]. Furthermore, a KD increases the concentration of
proteins involved in clearing out amyloid plaques, including glycoprotein P (P-gp) and
phosphatidylinositol-binding clathrin assembly protein (PICALM), which facilitates the
outflow of the aforementioned amyloid plaques across the BBB [56].

4.4. Maintaining the Brain Energy Supply

When there is relatively little energy available, a KD can boost metabolic efficiency
and keep the overall metabolic quantity steady, improving the ability of neurons to resist
damage. Studies have shown that ketones are a more effective energy source than glucose.
They are digested more quickly than glucose and can enter the tricarboxylic acid cycle
without passing through the glycolytic pathway [57,58]. Glycolysis and fatty acid produc-
tion are suppressed as a result of the peroxisome proliferator-activated receptor (PPAR)
being activated by fatty acids [59]. A KD increases ATP generation through mitochon-
drial oxidation while decreasing glycolytic ATP production [59], which enhances oxidative
mitochondrial metabolism, resulting in downstream metabolic changes. The key factors
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leading to protection against neuronal death by apoptosis and necrosis include ketosis,
higher serum fat levels, and lower serum glucose levels. For instance, earlier research
found that a KD influences the overexpression of genes in the hippocampus region that
encode enzymes involved in mitochondrial and energy metabolism [60]. Hence, by offering
alternative energy substrates, therapeutic ketosis might be seen as a type of metabolic
therapy. These metabolic alterations enhance brain metabolism and restore mitochondrial
ATP synthesis. Moreover, after KD treatment, reduced formation of reactive oxygen species
(ROS), antioxidant benefits, reduced inflammatory response, and increased activity of
neurotrophic factors are seen [58]. The stability of synaptic activity across neurons is also
a result of elevated amounts of Krebs cycle intermediates, elevated GABA to glutamate
ratios, and activated ATP-sensitive potassium channels [58].

4.5. Restoring Cardiometabolic Function

Previous research has provided evidence for a possible connection between cerebrovas-
cular function and cognitive function [61]. Only one study has examined the relationship
between cerebrovascular function and cognition in adults, and the results showed a link
between cerebrovascular function and overall cognition in older women [62]. Over the
course of two years, a study compared the effects of the KD to standard therapy in patients
with T2DM and discovered significant gains in restoring cardiometabolic function while
using less medication [63]. This was demonstrated by decreases in lipids, blood pressure,
body mass index (BMI), fasting glucose, and fasting insulin in the KD group. Diabetes
was also resolved in the KD group but not in the control group (53.5% reversal, 17.6%
remission). Several studies examining the effects after 10 weeks and one year revealed
similar decreases in BMI and medication use when comparing a KD to conventional ther-
apy in T2DM patients [64,65]. Furthermore, comparable encouraging cardiometabolic
alterations were discovered in a recent five-year clinical trial of the KD in T2DM patients,
indicating the possibility of positive long-term effects. Finally, it has been discovered that a
KD reverses the rise in tiny low-density lipoprotein (LDL) particles, a frequent feature of di-
abetic dyslipidemia [66]. Hence, it has been suggested that these beneficial cardiometabolic
alterations have lowered the risk of cardiovascular disease in the T2DM population, while
further study is required to offer solid proof.

4.6. Modulating Oxidative Stress

Mitochondria are also a major source and target of reactive oxygen species (ROS). The
initial form of ROS is superoxide, which is later converted to hydrogen peroxide (H2O2).
Mitochondrial dysfunction produces excessive ROS and reduces the mitochondrial electron
transport chain (mETC) activity and ATP synthesis [67]. Moreover, mitochondrial DNA
(mtDNA)-encoding respiratory chain complexes are susceptible to ROS, resulting in oxida-
tive damage and mutations of mtDNA. This further damages the function of mETC and
aggravates energy failure and oxidative stress [68]. In T2DM, enhanced mitochondrial ROS
levels have also been observed to activate the apoptotic cascade by triggering the release
of cytochrome c, leading to neuronal apoptosis and impaired cognition [69,70]. In T2DM,
oxidative stress also induces a novel form of iron-mediated cell death via phospholipid
peroxidation and ferroptosis. In hippocampal neurons of mice, transferrin receptor 1 levels
are upregulated, the levels of ferroportin-1 and ferritin heavy chain are decreased, the
expression of mitochondrial ferritin is decreased, and the expression of mitoferrin was
increased, suggesting hippocampal neuronal and mitochondrial iron overload [71,72]. In
addition, excess Fe2+ can react with H2O2 to generate hydroxyl radicals with stronger
oxidative ability through the Fenton reaction and undergo a lipid peroxidation reaction
with unsaturated fatty acids [73]. Elevated mitochondrial ROS and decreased glutathione
peroxidase activity lead to the accumulation of lipid peroxides, which trigger ferroptosis
and cognitive deficits in hippocampal neurons in T2DM [72].

A KD increases ketone synthesis in the liver and reduces blood glucose levels. The
oxidation of fatty acids, especially polyunsaturated fatty acids (PUFAs), is the primary
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cause of the rise after a KD [74]. PUFAs control the membrane receptors in neurons, activate
peroxidase by inhibiting voltage-gated sodium and calcium channels, and upregulate the
production of mitochondrial uncoupling protein (UCP). The uncoupling procedure lowers
the voltage of the mitochondrial membrane, which eventually lowers the generation of
ROS [75,76]. β-OHB is said to scavenge ROS, but acetate does so when the concentration
of ROS exceeds the physiological range (IC50 20–67 mM) [77]. A frequent mechanism
linked to β-OHB is the positive effects on the redox potential of the electron transport
chain [78]. Only β-OHB and acetate can stop ATP decline in neurons, even though all
ketones (β-OHB and acetate) can minimize ROS accumulation and neuronal cell death
caused by the suppression of glycolysis [79,80]. In addition, acetate did not have this
impact on an in vivo model of hypoglycemia where β-OHB protected hippocampal lipid
peroxidation [81,82]. The most notable modifications were seen in the hippocampus. The
glutathione peroxidase levels and total antioxidant capabilities were increased, according
to in vivo experiments in which mice were fed a KD. In a clinical study, a KD increased
glutathione in the brains of epileptic children, suggesting a pivotal role of glutathione in
the antioxidant neuroprotective effect of the KD in the human brain [83]. The mechanism
by which a KD increases GSH may involve the upregulation of nuclear factor erythroid
2-related factor 2 (Nrf2) transcription factor, which is a primary responder to cellular stress
that promotes glutathione biosynthesis in rats [84]. The upregulation of Nrf2 may de-
pend on the mild oxidative and electrophilic stress initially induced by the KD, leading
to chronic cellular adaptation, the induction of protective proteins, and stable improve-
ments in the redox state [84]. However, another clinical study showed that ketone bodies
may reduce reactive oxygen species without increasing GSH [8]. This difference might
depend on GSH homeostasis impairment due to the particular experimental settings for
the in vitro study [83]. In animal models of brain damage, a KD was able to activate
the Nrf2 pathway, and Nrf2 was then transported into the nucleus. This increased the
expression of the downstream antioxidant protein heme oxygenase-1 (HO-1), which is
regarded as one of the most crucial components for preventing oxidative stress [85]. In a
study using an ischaemic stroke model, ketone therapy following brief middle cerebral
artery (MCA) blockade improved mitochondrial activity and decreased oxidative stress,
thereby lowering the infarct amount and enhancing neurological function after ischaemic
stroke. The increase in NAD+-dependent Sirtuin 3 (SIRT3) and its downstream substrates,
superoxide dismutase 2 (SOD2) and forkhead box O3A (FOXO3A), in the penumbra area
was responsible for neuroprotective effects [86]. However, a recent study using transgenic
mice with defective mitochondrial DNA repair found histological evidence of neurological
degeneration linked to the KD, despite a rise in mitochondrial biogenesis and antioxidant
markers [87]. Additional contradictory evidence revealed that prolonged exposure to high
ketone concentrations can cause oxidative damage. High dosages of β-OHB or acetate
may cause lipid peroxidation, nitric oxide production, and reduced expression of SOD,
glutathione peroxidase, and catalase, according to research performed on calf hepatocytes.
Another study, for instance, found that acetate, but not β-OHB, stimulated the mitogen-
activated protein kinase (MAPK) pathway in rat hepatocytes [88,89]. Thus, the role of the
KD in oxidative stress needs more research.

4.7. Modulating Inflammatory Responses

Inflammation and oxidative stress are two crucial components of AD neuropathology
that underlie neurotoxic processes that result in neuronal death in the parts of the brain
involved in memory and cognitive functions [90,91], which is caused by the release of
proinflammatory cytokines and NO and the suppression of neurotrophins [90]. A KD has
varying and inconsistent ways through which it can regulate inflammatory responses and
immune cell activities [55]. Long-term nutrient restriction may lessen inflammation [92].
T1DM-induced persistent ketosis is regarded as a proinflammatory state [93]. The fun-
damental reason why β-OHB has an impact on inflammation is that the monocytes and
macrophages of the immune system express large amounts of GPR109A. High concen-
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trations of ketones counteract the anti-inflammatory effects of β-OHB [94,95]. The G
protein-coupled receptor GPR109A, also known as the hydroxy-carboxylic acid 2 (HCA2)
receptor, is found on neutrophils, macrophages, and adipocytes. According to multiple
prior studies, GPR109A ligands have anti-inflammatory effects on obesity, atherosclerosis,
neurological disorders, inflammatory bowel diseases, and different types of cancer [96]. It
was discovered that retinal pigment epithelium (RPE) cells from individuals and animals
with diabetes have increased GPR109A expression [95]. Genetic deletion or pharmacologi-
cal suppression of GPR109A negated the anti-inflammatory effects of β-OHB in RPE cells.
Overexpression of GPR109A could augment such effects [94]. Earlier research proposed
that the actions of β-OHB on HCA2 receptors could be the mechanism through which
KD exerts its neuroprotective benefits [36]. These findings demonstrated that following a
distal MCA blockage, animals fed a KD or given β-OHB through subcutaneous minipumps
had reduced ischemic infarct volumes. This effect was not present in HCAR2-null mice.
Moreover, β-OHB reduced proinflammatory proteins (COX-2, iNOS) or released cytokines
(IL-1, IL-6, TNF, CCL2/MCP-1) in LPS- or TNF-induced inflammation, in part by reducing
NF-κB translocation [97]. Nevertheless, the GPR109A-dependent protection afforded by
β-OHB in neurodegenerative inflammatory responses did not entail inflammatory medi-
ators, such MAPK pathway activation (ERK, JNK, or P38), but instead may necessitate
COX-1-dependent PGD2 synthesis [36,95]. It is interesting to note that although the ability
of macrophages to inhibit the NLRP3 inflammasome via β-OHB was discovered to be
independent of GPR109A, this ability is essential in ischemic stroke rats [92].

The KD also exerts effects on inflammatory processes by inhibiting the activation of
the NF-kB light-chain enhancer of activated B cells [36]. It causes an uptick in the immuno-
logical response and the downregulation of COX2 and inducible nitric oxide synthase [98],
and cytokines, such IL-1b, IL-6, CCL2/MCP-1, and TNF-α, are less active [99]. Moreover,
peroxisome proliferator-activated receptor (PPAR) can decrease the production of NF-
kB, hence reducing the neuronal damage caused by N-methyl-D-excitotoxicity aspartate
(NMDA) [100]. Additionally, the KD exerts anti-inflammatory actions by inhibiting the
activation of microglial cells [101], which produce higher levels of neuroprotective media-
tors, such as neurotrophins (such as neurotrophin-3 (NT-3), brain-derived neurotrophic
factor (BDNF), and glial cell line-derived neurotrophic factor (GDNF)), and increases the
proapoptotic characteristics and levels of molecular chaperones (proteins preventing the
aggregation of polypeptides into potentially toxic molecules) [102,103]. The enhanced
expression of inflammatory cytokines can be reversed by β-OHB [76]. Finally, we speculate
that one of the most significant diabetes-induced dementia-modifying effects of a KD may
be lowering inflammation.

5. Summary

Abnormalities in cognitive function can develop as a side effect in both T1DM and
T2DM patients. However, those with a history of T2DM experience this cognitive dys-
function more severely and frequently. The KD has been utilized for many years to treat a
variety of neurological conditions, and a sizable number of studies have recently confirmed
the function of the KD in neuroprotection. By lowering oxidative stress, regulating energy
metabolism, controlling inflammation, and affecting other potential processes, it may exert
neuroprotective effects. It is inevitable that all neurological diseases will impact human
health through oxidative damage, energy metabolism issues, or inflammatory responses,
even though the precise processes of the KD in the treatment of neurological diseases are
still unknown. Many mechanisms are frequently involved in neurological illnesses, and the
KD may also contribute to regulating these pathways. This review explores the complex
role of a KD application in dementia caused by T2DM and its potential working mecha-
nisms. There are many variables, including hyperglycemia, obesity, neuroinflammation,
oxidative stress, and Aβ plaques, and each has a separate or combined impact on cognitive
impairments. Here, we have covered in great length how the KD affects cognitive function
in the brain, facilitating disease treatment and enhancing patient symptoms and quality of
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life. The KD has great application potential in clinical settings. To improve the method and
effectiveness of KD therapy, which can better prevent or possibly reverse T2DM-associated
dementia, future studies are required to define the roles of the components in KD, their
therapeutic targets, and related pathways.
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