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Abstract: Inflammaging refers to a chronic, systemic, low-grade inflammation, driven by immune
(mainly macrophages) and non-immune cells stimulated by endogenous/self, misplaced or altered
molecules, belonging to physiological aging. This age-related inflammatory status is characterized
by increased inflammation and decreased macroautophagy/autophagy (a degradation process that
removes unnecessary or dysfunctional cell components). Inflammaging predisposes to age-related
diseases, including obesity, type-2 diabetes, cancer, cardiovascular and neurodegenerative disorders,
as well as vulnerability to infectious diseases and vaccine failure, representing thus a major target
for anti-aging strategies. Phenolic compounds—found in extra-virgin olive oil (EVOO)—are well
known for their beneficial effect on longevity. Among them, hydroxytyrosol (HTyr) appears to greatly
contribute to healthy aging by its documented potent antioxidant activity. In addition, HTyr can
modulate inflammation and autophagy, thus possibly counteracting and reducing inflammaging. In
this review, we reference the literature on pure HTyr as a modulatory agent of inflammation and
autophagy, in order to highlight its possible interference with inflammaging. This HTyr-mediated
activity might contribute to healthy aging and delay the development or progression of diseases
related to aging.

Keywords: polyphenols; extra-virgin olive oil; olive vegetation waste; hydroxytyrosol; aging;
inflammaging; inflammation; autophagy; cytokines; age-related diseases

1. Introduction

Aging is a complex physiological condition, derived by the time-dependent lowering
of cell functions and dysregulation of molecular mechanisms underlying many cellular
homeostatic processes [1].

A well-established hallmark of aging is the chronic state of immune activation causing
low-grade inflammation in several tissues and organs, referred to as inflammaging [2,3].
The mechanisms underlying inflammaging are not yet completely understood. However,
continuous immune stimulation associated with cellular stress and genetic factors appears
to play a key role in generating this condition [4–6]. It has been proposed that a major
source of immune stimulation in aging consists of endogenous/self, misplaced or altered
molecules resulting from aged damaged/dead cells and organelles, and cell debris which,
recognized by innate immune receptors, induces activation of inflammatory signaling
pathways [4]. A key role in inflammaging is played by the activation of innate immune
cells (mostly recruited monocyte-derived macrophages and tissue-resident macrophages,
such as microglia), associated with upregulation of innate immune receptors and increased
activity of pro-inflammatory signaling pathways [4,6]. Particular emphasis has been given
to the balance of macrophage polarization into classically pro-inflammatory M1 and al-
ternatively anti-inflammatory M2 activated macrophages, which is critical for immune
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homeostasis [4]. In aging, continuous immune stimulation is also associated with a decline
in macroautophagy (herein referred to as autophagy)—a lysosome-mediated degrada-
tion process appointed to remove unnecessary or dysfunctional cell components [7–9].
Autophagy can regulate the function of immune and non-immune cells, affecting their
inflammatory response [10,11]. Decreased autophagic activity can contribute to inflammag-
ing in different ways, such as the direct activation of inflammatory signaling pathways
as well as the impairment of cellular housekeeping, leading to the accumulation of dam-
aged cellular and protein components, which represent inflammatory stimuli promoting
inflammation [12]. Such a systemic imbalance between increased immune stimulation and
reduced autophagy represents a major driving force for frailty, leading to aged dysfunc-
tional immune and non-immune cells, declined immune functions and thus vulnerability
to infectious diseases and vaccine failure.

The systemic pro-inflammatory status in inflammaging results in the rise of multi-
ple soluble inflammatory mediators, secreted by immune and non-immune cells in the
tissues and serum of the elderly. The inflammatory biomarkers of inflammaging include
cytokines such as IL-1β, IL-18, IL-6, TNF-α, IL-17, IFN-γ, macrophage migration inhibitory
factor (MIF), chemokines such as C-X-C motif ligand (CXCL) 8/IL-8, CXCL10/interferon-
induced protein 10 (IP-10), CXCL13, C-C motif ligand (CCL)2/monocyte chemoattractant
protein 1 (MCP-1) and CCL5/regulated on activation normal T cell expressed and secreted
chemokine (RANTES), as well as other proteins such as C-reactive protein (CRP) [13–17]. In-
creased levels of these inflammatory mediators in the elderly represent a highly significant
risk factor for most age-related diseases, including obesity, type 2 diabetes, osteoporosis,
cancer, cardiovascular and neurodegenerative diseases [18–22]. For example, TNF-α, IL-1β
and IL-6 cytokine levels are increased in the parkinsonian brain and serum [22–25], while
the CCL2 chemokine level is raised in neuroinflammation associated to neurodegenerative
diseases [26,27]. CXCL10 has been shown to be a biomarker for heart failure development
and left ventricular dysfunction [28]. In addition, aging can also be associated with the
dysregulated production of anti-inflammatory mediators, including cytokines such as
IL-10 and IL-4 [21,29,30]. Therefore, inflammaging constitutes the basis for the onset or
progression of chronic inflammatory diseases, which accelerate and propagate the aging
process locally and systemically [31–33]. Consequently, inflammaging can be considered a
major target for anti-aging strategies.

The Mediterranean diet (MD), based on fruit and vegetable intake, has been associated
with a low occurrence of the diseases related to aging [34]. Daily consumption of extra-
virgin olive oil (EVOO) is highly recommended for the beneficial role of polyphenols
found in Olea europaea L. on human health [35–38]. The main phenolic compound is
hydroxytyrosol (HTyr) (Figure 1). The central role of HTyr and its derivatives in the
prevention of oxidative stress has been recognized by the European Food Safety Authority
(EFSA), which recommends a daily intake of 20 g of EVOO containing at least 5 mg of these
polyphenols [39].
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HTyr is an amphiphilic compound; then, during olive oil processing, a fair amount
spills into olive vegetation waste (OVW), such as olive oil wastewaters and olive pomace,
which represents valuable sources from which to recover HTyr according to the “circular
economy” model [40]. In recent times, HTyr has also been found in red wine, although
with a lower concentration than in EVOO [41].
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Our review is focalized on the potential effect of HTyr in inflammaging. In particular,
we reference to literature investigating the role of purified HTyr as a modulatory agent of
inflammation and autophagy in order to highlight its possible beneficial interference with
inflammaging, an activity that might contribute to healthy aging and delay the development
or progression of diseases related to aging.

2. Hydroxytyrosol (HTyr)

HTyr is the main phenol present in EVOO. It is a small, catecholic compound ex-
hibiting antioxidant, cardioprotective, anticancer, neuroprotective and anti-inflammatory
activities [42–47]. Because of these interesting properties, it has a high therapeutic potential
and is used as a supplement and preservative for cosmeceutical, nutraceutical and food
applications.

Despite the biological relevance of HTyr, its biosynthesis is still not fully clear. Ac-
cording to Scheme 1, the proposed pathway in Rhodiola crenulate starts from L-DOPA,
which is decarboxylated to afford dopamine; dopamine is firstly deaminated to 3,4-
dihydroxyphenylacetaldehyde and finally reduced to HTyr [48].
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Scheme 1. Proposed biosynthetic pathway of HTyr [48].

As olives ripen and during their processing, the amount of HTyr increases due to
the hydrolysis of oleuropein, which produces glucose, elenolic acid and HTyr, accord-
ing to Scheme 2 [49]. The same reaction occurs after intake of oleuropein under gastric
conditions [50] and by the action of the microbiota [51].
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Scheme 2. Production of HTyr from oleuropein [49–51].

Being a hydrophilic compound, during the production of EVOO, HTyr splits be-
tween the oil and liquid wastes such as olive oil wastewater or in solid wastes such as
olive pomace, depending on the partition coefficients. These wastes represent a valuable
source of HTyr, from which it can be recovered according to the concept of the “circular
economy” [40]. Membrane technologies are sustainable and efficient to produce HTyr-
enriched extracts [52–54] and the content of HTyr can be increased, treating them with
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tyrosinase to convert tyrosol to HTyr [55]. However, these extracts contain other phenolic
compounds, and the observed biological activities can be influenced by them. In recent
times, HTyr has been identified in red wine [41] because of the action of yeasts, which
convert tyrosine to HTyr during alcoholic fermentation [56].

Many in vitro and in vivo studies are focused on the ADMET (absorption, distribution,
metabolism, excretion and toxicity) processes of HTyr responsible for its beneficial role on
health [43,44]. The absorption occurs in the small intestine, but the efficiency of the process
depends on the food matrix, age and gender. Experimental results have demonstrated
that absorption is higher if HTyr is administered as EVOO [57] and in female rats [58]. If
administered as red wine, the levels of HTyr increase in urine due to its production by
ethanol and dopamine through dopaminergic pathways [59]. After the absorption, HTyr
reaches its highest plasma concentration in 5–30 min, and it is distributed among the kidney,
liver, muscle, and brain. These peculiar properties, along with the strong antioxidant effect,
candidate HTyr as a dopaminergic neuronal protector. The metabolism of HTyr is mainly
related to the production of HTyr acetate (HTyr-Ac), homovanillyl alcohol and homovanillic
acid, which were converted into the corresponding sulfate and glucuronide by conjugation
reactions catalyzed by uridine 5-diphosphoglucuronosyl transferases and sulfotransferases.
Some HTyr metabolites are depicted in Figure 2 [43]. Additionally, the excretion of HTyr
depends on the food matrix [60] and a gender-dependent relationship was observed [58].
The main urinary HTyr metabolites are glucuronides.
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To the best of our knowledge, the toxicity of pure HTyr has not yet been studied.
However, the safety profile has been studied for Hidrox®, an HTyr-enriched extract ob-
tained by a patented process. In vivo studies have demonstrated a No Observed Adverse
Effect Level (NOAEL) of 500 mg/kg/day of HTyr [61]. At this concentration, HTyr has no
adverse effects related to genotoxicity and mutagenicity [62]. This formulation has been
designated as Generally Recognized as Safe (GRAS) and has been evaluated on oxidative
stress, neuroinflammation, apoptosis and inflammasomes [63].
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Purified HTyr can be obtained after chromatographic separations of EVOO or HTyr-
enriched extracts or after chemical or enzymatic synthesis. Several synthetic procedures
have been optimized in recent years using tyrosol and homovanillic alcohol as starting ma-
terials and efficient oxidative stoichiometric or enzymatic oxidants such as 2-iodoxybenzoic
acid or tyrosinase [64–66].

Synthesis also offers the solution to improve the bioavailability of HTyr. In fact, several
lipophilic derivatives have been prepared [67–70]. The most interesting one is HTyr-Ac
depicted in Figure 2 [71]. Dominguez-Perles et al. carried out an in vivo experiment demon-
strating the higher absorption of HTyr-Ac compared to HTyr through the corresponding
metabolites obtained after oral administration [58]. Recently, the more lipophilic compound
HTyr triacetate, called by the authors peracetylated HTyr (Per-HTyr) (Figure 3), was tested
as an anti-inflammatory agent [72].
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3. Inflammation, Inflammaging and HTyr
3.1. Inflammation and Inflammaging

Inflammation represents a crucial line of defense against pathogens. It is an evo-
lutionarily conserved protective process designed to maintain organismal homeostasis
against acute perturbations and serves as an adaptive response to infections and
injuries [73]. However, chronic, systemic inflammation develops progressively with age in
healthy individuals and contributes to organismal deterioration through a process termed
inflammaging [5,74,75].

The major inflammatory cells involved in inflammaging are macrophages, including
recruited monocyte-derived macrophages and tissue-resident macrophages such as mi-
croglia in the brain and spinal cord [4,76,77]. However, recent reports indicate also the
involvement of other immune cells, such as T lymphocytes, in eliciting aging-related tissue
inflammation [78]. For example, myocardial inflammaging is related to increased accumu-
lation of dysfunctional CD4+T cells secreting massive amounts of inflammatory interferon
(IFN)-γ [79,80]. Therefore, we can assume that, in inflammaging, both innate and adaptive
immune cells are characterized by enhanced expression and secretion of pro-inflammatory
mediators, often associated with reduced production of anti-inflammatory molecules.

The raise of pro-inflammatory mediators in inflammaging is the result of the in-
creased activation of intracellular signaling molecules, such as those belonging to the
mitogen-activated protein kinase (MAPK) pathway [81,82], as well as transcription factors,
with a pivotal role played by the nuclear factor kappa-light-chain enhancer of activated
B cells (NF-κB) [83–85]. The MAPK signaling pathway is involved in transmitting ex-
tracellular signals to the nucleus, playing critical regulatory roles in the production of
pro-inflammatory cytokines. The MAPK family consists of the following three subfamilies:
the extracellular signal-regulated kinases (ERKs; ERK1/2 and ERK5), the c-Jun N-terminal
kinases (JNKs; JNK1-3) and the p38MAPK, which activates transcription factors leading to
inflammation [81]. Therefore, MAPKs are important targets for the treatment of chronic
inflammatory diseases [82]. Then, the transcription factor NF-κB is the master regula-
tor of the expression of pro-inflammatory genes (including those encoding cytokines
and chemokines), and NF-κB upregulation has been well documented in age-related
diseases [86,87]. NF-κB activation is induced by cell stressor signals such as antigens,
toll-like receptor (TLR) ligands and cytokines (e.g., tumor necrosis factor-TNF), which, via
intermediate steps, lead to the engagement and activation of the inhibitor of the nuclear
factor-κB (IκB) kinase (IKK) complex, which guides the phosphorylation of IκB, its ubiq-
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uitination and degradation. Once degraded, the remaining NF-κB dimer, composed of
p65/p50 subunits, translocates to the nucleus and activates the transcription of inflam-
matory genes [81,83]. The MAPK pathway and NF-κB activations, tightly regulated by
phosphorylation and ubiquitination, are responsible for the production of inflammatory
cytokines such as TNF-α and IL-6. In addition, NF-κB translocation to the nucleus is re-
sponsible for the expression of IL-1β and IL-18 pro-forms that are processed and released in
their active forms by another critical component of the inflammatory response, such as the
nucleotide binding domain-like receptor pyrin domain containing the protein 3 (NLRP3)
inflammasome [88]. NLRP3 is the most extensively studied inflammatory activator among
the inflammasomes. Inflammasomes are a family of intracellular multi-protein complexes,
belonging to the family of cytoplasmic innate immune receptors, which activate inflamma-
tory caspases [88]. The NLRP3 inflammasome is mainly expressed by inflammatory innate
immune cells such as monocytes/macrophages, dendritic cells and neutrophils. However,
it can be also expressed by T lymphocytes and plasma cells, as well as by non-immune
cells, including endothelial cells, fibroblasts, muscle cells, adipose progenitor cells and
adipocytes. NLRP3 inflammasome formation, whose signaling events and way of assembly
are not fully understood, is triggered by pathogen- or damage- associated molecular pat-
terns, which are generated by endogenous stress, tissue damage or metabolic imbalances.
Thus, once the NLRP3 protein complex has formed, it activates caspase-1, which initiates
the processing and release of active IL-1β and IL-18 pro-inflammatory cytokines. Increased
NLRP3 activity associated with increased IL-1β and IL-18 levels have been demonstrated
in the elderly, and contribute to inflammaging [75,88–90]. Indeed, increased NLRP3 activa-
tion is associated with several age-related pathological conditions, including Alzheimer’s
disease, atherosclerosis and type-2 diabetes [91,92], whereas NLRP3 inhibition extends
health-spans and diminishes age-dependent degenerative conditions [90].

Another biological system implicated in inflammation and inflammaging is the micro-
biota, which is the community of bacteria, viruses, fungi and protozoa living in the human
body and interacting with it. We refer not only to the gut microbiota but also the microbiota
at different body sites, whose composition and diversity change according to age [93,94].
Age-related microbiota changes (referred to as age-related dysbiosis) modulate the immune
response and produce inflammatory molecules, contributing to immunosenescence and
inflammaging by long-term stimulation of inflammation. On the other hand, by-products
of metabolic processes in microbiota, including some short-chain fatty acids, can play a role
in inhibiting inflammation [93,94].

Altogether, inflammation in inflammaging can be the result of the imbalance between
pro- and anti-inflammatory molecules and underlies several age-related diseases.

3.2. HTyr as Modulatory Agent of Inflammation

Polyphenols have been widely recognized as anti-inflammatory agents [95–100]. In
addition, it has been shown by our and other’s laboratories that HTyr-enriched preparations,
including those derived from EVOO and OVW, as well as multicomponent nutraceutical con-
taining HTyr, can modulate several key processes related to inflammation [55,63,101–109].
However, these preparations, containing other phenolic compounds as well as HTyr,
do not allow the identification of immunomodulatory activity mediated by the single
phenol and do not exclude the potential synergistic effects for the presence of other com-
pounds. Therefore, here we reference studies that investigate the in vitro (Table 1) and
in vivo (Table 2) modulation of inflammation by purified HTyr. Moreover, we focus our
attention to data concerning the HTyr capability of directly affecting the mentioned in-
flammatory biomarkers of inflammaging, referring to other reviews for its antioxidant
activity [63,96,103,110–116].

3.2.1. Evidence In Vitro

Considering the central role of macrophages in inflammation, we first reference re-
search investigating the in vitro immunomodulatory activity of HTyr on experimental
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models of murine and human inflammatory monocytes/macrophages (Table 1). Treatment
of the human monocyte/macrophage cell line THP-1 with HTyr (25, 50, and 100 µM) for
10 min, before stimulation with lipopolysaccharide (LPS) for 3 h, resulted in a dose-
dependent reduction of TNF-α transcription [117]. Then, 30 min of HTyr (0.25, 0.5,
1 µM) pre-treatment of oxysterol mixture-stimulated human peripheral blood mononuclear
cells (PBMCs) from healthy donors reduced the secretion of pro-inflammatory cytokines
and chemokines, such as IL-1β, MIF, RANTES as well as MAPK signaling, analyzed as
p38MAPK and JNK phosphorylation [118]. In addition, HTyr (10, 20, 40, 80 µM) exerted
anti-inflammatory effects on LPS-stimulated RAW264.7 murine macrophages, in that it
downregulated LPS-induced expression of IL-1β and TNF-α, as well as suppressed NF-κB
phosphorylation and activation [119]. Another study illustrated the high anti-inflammatory
activity of Per-HTyr observed at lower doses than that used for HTyr. In fact, HTyr 50 (µM)
and Per-HTyr (12.5, 25, 50 µM) significantly reduced the production of pro-inflammatory
cytokines such as IL-1β, TNF-α, IL-6, IFN-γ and IL-17 by ex vivo murine peritoneal
macrophages stimulated with LPS for 18 h. Both polyphenols also inhibited the activation
of the signal transducer and activator of transcription 3 (STAT3), an important transcription
factor involved in the regulation of immune response, inflammation and ageing [120].
Moreover, Per-HTyr suppressed the activation of the non-canonical NLRP3 inflamma-
some (which has the same effect as the canonical NLRP3, but is mediated by caspase-11
instead of caspase-1), decreasing thus the IL-18 pro-inflammatory cytokine level [72]. In
another study, 12-h HTyr (50, 100 µM) pre-treatment of 24-h LPS-induced RAW 264.7 cells
decreased pro-inflammatory M1/CD11c+ macrophages and increased anti-inflammatory
M2/CD206+ macrophages, while reducing mRNA and protein levels of TNF-α, IL-1β, IL-6
pro-inflammatory cytokines and raising IL-10 and IL-4 anti-inflammatory cytokines. These
results were also associated with a decrease in ERK1/2 phosphorylation, indicating that
HTyr is able to promote macrophage M2 polarization with the increase of anti-inflammatory
cytokines through the inhibition of the MAPK signaling pathway [121]. However, in con-
trast to the anti-inflammatory effects of HTyr reported by different investigators so far, in
a small number of studies, HTyr appeared to exert no effect or even promote inflamma-
tion. In fact, Bigagli et al. reported that co-treatment of LPS-stimulated RAW 264.7 with
low doses (5 and 10 µM) of HTyr for 18 h produced no change in IL-1β and TNF-α gene
expression [122]. Then, co-incubation of LPS-activated human monocytes with HTyr (50,
100 µM) for 24 h increased TNF-α production by inflammatory monocytes [123]. Accord-
ingly, the expression of TNF-α was significantly increased in ex vivo murine peritoneal
macrophages co-incubated with LPS and HTyr (80 µM) for 24 or 48 h. In this study,
HTyr also increased LPS-dependent expression of the IL-10 gene, whereas it did not affect
LPS-dependent NF-κB gene expression and NF-κB phosphorylation [124].

Moreover, we reference studies on the immunomodulatory activity of HTyr on ex-
perimental models of inflammatory microglia cells (Table 1), specialized macrophages of
the central nervous system and principal orchestrators of neuroinflammation. Gallardo-
Fernandez et al. showed that HTyr (1, 10, 25 and 50 µM) was able to reduce mRNA
levels of pro-inflammatory mediators such as TNF-α, IL-1β, IL-6 and CXCL10 expressed
by LPS-induced BV2 murine microglial cells. The analysis of the possible molecular
mechanisms involved in the anti-inflammatory effect showed that HTyr decreased the
phosphorylated forms of JNK1/2 and p38MAPK, thus reducing MAPK signaling, as well
as inhibiting the activation of the NLRP3 inflammasome. In addition, HTyr treatment pre-
vented LPS-induced translocation to the nucleus of NF-κBp65 [125]. Accordingly, another
study revealed that HTyr (25, 50, 100 µM) significantly decreased the production of IL-1
β, TNF-α and IL-6 by BV2 microglia and primary microglia cells stimulated with LPS.
Moreover, HTyr significantly reduced M1/CD86+ macrophages and increased M2/CD206+
macrophages, decreased phosphorylated ERK and NF-κBp65 levels in a dose-dependent
manner and suppressed the expression of toll like receptor 4 (TLR4) in BV2 microglia.
These results suggest that HTyr can suppress LPS-induced neuroinflammatory responses
via modulation of M1/M2 microglia polarization and downregulation of TLR-4 mediated
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NF-κB activation and the ERK signaling pathway [126]. Then, a study investigated the
ability of HTyr (20, 100 µM) to alleviate neuropathic pain, by using an experimental model
of intervertebral disc degeneration (IVDD). TNF-α-stimulated primary human nucleus
pulposus cells (HNPCs) were used to simulate the local inflammatory microenvironment
observed in IVDD, and LPS was used to stimulate rat microglia cells. HTyr inhibited the
secretion of TNF-α, IL-6, IL-1β and the activation of the NLRP3 inflammasome, while it
also suppressed NF-κB activation and ERK phosphorylation. These results suggest that
HTyr plays a protective role against IVDD and secondary neuropathic pain by inhibiting
NF-κB and MAPK inflammatory pathways [127].

Finally, the anti-inflammatory activity of HTyr has also been investigated in experimen-
tal models of inflammatory non-immune cells (Table 1), such as senescent fibroblasts [128],
keratinocytes [129,130] and colonic epithelial cells [131]. Menicacci et al. investigated
the ability of HTyr to affect the inflammatory activity of senescent cells, which display
increased secretion of growth factors, inflammatory cytokines and proteolytic enzymes.
Chronic (4–6 weeks) pre-treatment with HTyr (1 µM) of pre-senescent MRC5 human lung
fibroblasts, neonatal human dermal fibroblasts (NHDF) and TNF-α-stimulated NHDF
reduced IL-6 production in all cellular experimental models. In addition, HTyr decreased
NFκB protein levels and nuclear localization. These data suggest that the modulation
of the senescence-associated inflammatory phenotype might be another important ac-
tivity underlying the anti-inflammatory activity of HTyr in inflammaging [128]. Then,
primary human keratinocytes were pre-treated with HTyr (12.5–100 µM) or HTyr-Ac (12.5–
100 µM) for 30 min and then stimulated with the IL-1β or TLR3 ligand (Poly I:C). The
expression of TNF-α, IL-6 and IL-8 inflammation-related genes was likewise inhibited by
HTyr-Ac and HTyr. Mechanistically, these polyphenols counteracted IκB degradation and
translocation of NF-κB to the nucleus, in particular to the critical binding site in the IL-8
promoter [129]. Another study showed that HTyr exerted a potent anti-inflammatory effect
on inflammatory keratinocytes in an experimental model of psoriasis, a prevalent chronic
inflammatory dermatosis. Indeed, HTyr (25, 50, 100 µM) decreased the expression of IL-6,
IL-8 and TNF-α in HaCaT keratinocytes stimulated with a M5 cytokine cocktail (composed
of TNF-α, oncostatin-M, IL-17A, IL-1α and IL-22) [130]. Lastly, a recent study demonstrated
the anti-inflammatory effect of HTyr on a human model of colonic chemical carcinogene-
sis. Primary human colonic epithelial cells (HCoEpC) were pre-treated with 1 µM HTyr
45 min before their exposition to benzo[a]pyrene [B[a]P]. Interestingly, all the inflammatory
effects induced by B[a]P could be counteracted by HTyr. In fact, HTyr reduced the release of
pro-inflammatory cytokines, chemokines and growth factors, including IL-6, IL-8, CXCL13
and vascular endothelial growth factor (VEGF), and molecules able to recruit inflammatory
monocytes and activate macrophages, which could contribute to inflammation, angiogene-
sis and tumorigenesis. Moreover, HTyr efficiently counteracted B[a]P-mediated ERK1/2
phosphorylation. These data suggest that HTyr can play an important role in preventing
tumorigenesis by chemical carcinogens [131].

Table 1. In vitro effects of HTyr on inflammation.

Treatment and Dose Model Effects Ref.

Pre-treatment
25, 50, 100 µM HTyr

Human Macrophages:
THP-1 + LPS ↓ TNF-α [117]

Pre-treatment
0.25, 0.5, 1 µM HTyr

Human Mononuclear Cells:
PBMCs + oxysterol mixture

↓ IL-1β, MIF, RANTES
↓ p38MAPK and JNK phosphorylation [118]

Co-treatment
10, 20, 40, 80 µM HTyr

Murine Macrophages:
RAW 264.7 + LPS

↓ IL-1β, TNF-α
↓ NF-κB phosphorylation [119]
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Table 1. Cont.

Treatment and Dose Model Effects Ref.

Pre-treatment
50 µM HTyr

12.5, 25, 50 µM Per-HTyr

Murine Macrophages:
ex vivo peritoneal macrophages + LPS

↓ IL-1β, IL-6, TNF-α, IL-17, IFN-γ
↓ STAT3 activation

↓ IL-18 via non-canonical
NLRP3 inflammasome

[72]

Pre-treatment
50, 100 µM HTyr

Murine Macrophages:
RAW 264.7 + LPS

↓M1, ↑M2 macrophages
↓ IL-1β, IL-6, TNF-α
↑ IL-10, IL-4

↓ ERK1/2 phosphorylation

[121]

Co-treatment
5, 10 µM HTyr

Human Peripheral Blood Monocytes:
ex vivo monocytes + LPS No change in IL-1β, TNF-α [122]

Co-treatment
50, 100 µM HTyr

Murine Macrophages:
RAW 264.7 + LPS ↑ TNF-α [123]

Co-treatment
80 µM HTyr

Murine Macrophages:
ex vivo peritoneal macrophages + LPS

↑ TNF-α, IL-10
no change in NF-κB expression

and phosphorylation
[124]

Co-treatment
1, 10, 25, 50 µM HTyr

Murine Microglia:
BV2 + LPS

↓ IL-1β, TNF-α, IL-6, CXCL10
↓ JNK1/2 and p38MAPK phosphorylation
↓ NF-κBp65 translocation to the nucleus

↓ NLRP3 inflammasome

[125]

Pre-treatment
25, 50, 100 µM HTyr

Murine Microglia:
BV2 + LPS

primary microglia + LPS

↓M1 ↑M2
↓ IL-1 β, TNF-α, IL-6

↓ TLR-4
↓ NF-κBp65 phosphorylation
↓ ERK1/2 phosphorylation

[126]

Co-treatment
20, 100 µM HTyr

Human Nucleus Pulposus Cells and
Rat Microglia:

primary HNPC + TNF-α
microglia + LPS

↓ IL-1β, TNF-α, IL-6
↓ NLRP3 inflammasome
↓ NF-κB activation

↓ ERK phosphorylation

[127]

Pre-treatment
1 µM HTyr for 4 weeks

Human Pre-senescent and Senescent
Fibroblasts:

MRC5
NHDF

NHDF + TNF-α

↓ IL-6
↓ NF-κB activation [128]

Pre-treatment
12.5–100 µM HTyr

12.5–100 µM HTyr-Ac

Human Keratinocytes:
primary keratinocytes + IL-1β

primary keratinocytes + Poly I:C

↓ TNF-α, IL-6, IL-8
↓ NF-κB activation and translocation to

binding site in the IL-8 promoter
[129]

Pre-treatment
25, 50, 100 µM HTyr

Human Psoriatic Keratinocytes:
HaCaT + M5 cytokine cocktail ↓ IL-6, IL-8, TNF-α [130]

Pre-treatment
1 µM HTyr

Chemical Carcinogenesis in
Human Primary Colonic Epithelial Cells:

HCoEpC + B[a]P

↓ IL-6, IL-8, VEGF, CXCL13
↓ ERK1/2 phosphorylation [131]

Abbreviations: Per-HTyr: peracetylated hydroxytyrosol. HTyr-Ac: hydroxytyrosyl acetate. LPS: lipopolysaccha-
ride. PBMC: peripheral blood mononuclear cells. TNF: tumor necrosis factor. IL: interleukin. MIF: macrophage
migration inhibitory factor. RANTES: regulated on activation normal T-cell expressed and secreted. CXCL: C-X-C
motif ligand. VEGF: vascular endothelial growth factor. TLR: toll-like receptor. NF-κB: nuclear factor-κB. MAPK:
mitogen-activated protein kinase. STAT: signal transducer and activator of transcription. ERK: extracellular
signal-regulated kinase. JNK: c-Jun N-terminal kinase. HNPC: human nucleus pulposus cells. MRC5: human
fibroblasts from fetal lung tissue. NHDFs: neonatal human dermal fibroblasts. B[a]P: Benzo[a]pyrene. ↓ Decrease.
↑ Increase.

3.2.2. Evidence In Vivo

The modulation of inflammation by HTyr has also been investigated in vivo, in in-
flammatory experimental animal models. As for in vitro investigations, we start by re-
porting studies on the immunomodulatory effects of HTyr on innate immune cells, such
as macrophages and microglia (Table 2). In an in vivo murine model of pristane-induced
systemic lupus erythematosus, oral administration of 100 mg/kg (4 g/day for 6 month)
HTyr was able to reduce IL-1β and IL-6 secreted by ex vivo LPS-stimulated splenocytes and
macrophages. Studies on renal tissue, in the same experimental model, showed that HTyr
also prevented the degradation of IκB, the nuclear translocation of NF-κBp65 and the phos-
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phorylation of MAPK [132]. Then, in C57BL/6 mice with an LPS-induced acute liver injury,
where infiltrated inflammatory macrophages play a critical role in liver destruction and
dysfunction, HTyr (100 mg/kg orally, once a day daily, for 2 days) decreased inflammatory
M1/CD11c+ macrophages and increased anti-inflammatory M2/CD206+ macrophages
in the liver tissue, while it reduced liver TNF-α, IL-1β and IL-6 mRNA and augmented
serum IL-10 and IL-4 protein levels. These data suggest that HTyr mitigated hepatic inflam-
mation and injury through modulating macrophage-mediated inflammation [121]. In a
model of atherosclerosis in apoE−/−mice, HTyr administration (10 mg/kg/day orally, for
16 weeks) significantly reduced the extent of aorta atherosclerotic lesions as well as serum
CRP, TNF-α, IL-1β and IL-6 levels, while it increased IL-10. In addition, HTyr reduced the
activation of inflammatory signaling molecules, such as p38MAPK phosphorylation and
NFκ-B activation in the liver, suggesting that HTyr displayed anti-atherosclerotic action via
modulating inflammation through the inhibition of inflammatory signaling molecules [133].
Accordingly, Pirozzi et al. showed that HTyr (10 mg/kg/day orally, for 5 weeks) exerted
anti-inflammatory activity in the liver of rats with nonalcoholic fatty liver disease (NAFLD),
by inhibiting liver TNF-α and IL-6 mRNA expressions [134]. Another study showed a
potent anti-inflammatory activity of HTyr in a mouse model of systemic inflammation.
In Balb/c mice pre-treated with HTyr (80 mg/kg/daily, for 2 or 5 days) and stimulated
by intra-peritoneal injection of LPS, HTyr prevented the LPS-induced increase of TNF-α
plasma levels [135].

Moreover, studies have also shown the capability of HTyr to inhibit neuroinflammation
in vivo (Table 2). In this context, it is important to consider that HTyr is capable of crossing
the blood brain barrier [136]. In mice pre-treated with HTyr (100 mg/kg by gavage, daily for
2 days) and administered with LPS, HTyr significantly damped the LPS-induced increase
of IL-6, IL-1β and TNF-α mRNA levels in the brain [126]. Moreover, Yu et al. reported
that intrathecal injection of HTyr (2 µL of HT 100 µM) alleviates neuropathic pain in rats
undergoing chronic compression of the dorsal root ganglion. Notably, HTyr reduced the
production of IL-1β, IL-6 and TNF-α inflammatory cytokines in the spinal dorsal horn.
In addition, HTyr inhibited the activation of the ERK signaling pathway by reducing the
levels of ERK phosphorylation in the spinal dorsal horn [127].

The anti-inflammatory activity of HTyr has also been investigated in inflammatory
models of murine dextran sulfate sodium (DSS)-induced colitis [137,138]. A low dose
(10 mg/kg) and high dose (50 mg/kg) of HTyr intervention significantly reduces the
markers of DDS-induced colitis such as IL-6, IL-1β and TNF-α inflammatory cytokines and
the NF-κB inflammatory pathway. Moreover, a high dose of HTyr increased the secretion
of the IL-10 anti-inflammatory cytokine. It is also noteworthy that HTyr intervention
transformed the gut microbiota, leading to a lower abundance of inflammation-related
microbes (e.g., Bacteroidaceae and Desulfovibrionaceae) and a higher level of short-chain fatty
acids producing bacteria (e.g., Lachnospiraceae, Muribaculaceae, ASF356 and Colidextribacter),
indicating that the modulation of inflammation by HTyr is also mediated by its capability
to modulate the microbiota [137]. In another study, it was found that HTyr (40 mg/kg/day
orally for 14 days) exerted anti-inflammatory activity in murine DSS-induced ulcerative
colitis by inhibiting NLRP3 inflammasome activation, through the suppression of the
expression levels of NLRP3, caspase-1 and the apoptosis-associated speck-like protein
containing a caspase recruitment domain (ASC) mRNA, thus decreasing IL-18 and IL-1β
levels. Moreover, this study confirmed the capability of HTyr to modulate gut microbiota
by exerting a shift from pathogenic bacteria (Helicobacter, Staphylococcus, Desulfovibrio and
Streptococcus) to probiotics (Lactobacillus, Lachnospiraceae NK4A136 group, [Ruminococcus]
torques group and Roseburia), and increasing the levels of short-chain fatty acids (total acid,
acetate, propionate and butyrate) [138].
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Table 2. In vivo effects of HTyr on inflammation.

HTyr Treatment and Dose Model Effects Ref.

100 mg/kg diet:
4 g/day orally
for 6 months

Murine pristane-induced Systemic Lupus
Erythematosus:

ex vivo splenocytes+LPS
ex vivo macrophages+LPS

renal tissue

↓ IL-1β, IL-6
↓ IκB degradation, p65NF-kB nuclear

translocation
↓MAPK phosphorylation

[132]

100 mg/kg/day orally for 2 days

Murine LPS-induced Acute Liver Injury:
liver tissue

liver macrophages
serum

↓M1 ↑M2 macrophages
↓ IL-1 β, TNF-α, IL-6
↓ IL-10, IL-4

[121]

10 mg/kg/day orally for
16 weeks

ApoE−/−Mice Atherosclerosis:
blood

heart tissue
liver tissue

↓ IL-1β, TNF-α, IL-6, CRP
↑ IL-10

↓ NF-kB activation
↓ p38MAPK phosphorylation

[133]

10 mg/kg/day orally for 5 weeks Rats with Nonalcoholic Fatty Liver Disease:
liver tissue ↓ TNF-α, IL-6 [134]

80 mg/kg/daily
for 2 or 5 days

Murine LPS-induced Systemic Inflammation:
plasma ↓ TNF-α [135]

100 mg/kg/day orally for 2 days Murine LPS-induced Brain Inflammation:
brain tissue ↓ IL-6, IL-1 β, and TNF-α [126]

2 µL of 100 µM
injected intrathecally

Rat Chronic Compression of Dorsal Root
Ganglion-induced Neuropathic Pain:

spinal dorsal horn

↓ IL-1β, TNF-α, IL-6
↓ ERK phosphorylation [127]

10 and 50 mg/kg/day
orally

Murine DSS-induced Colitis:
colon tissue

fecal samples

↓ IL-6, IL-1β, and TNF-α
↑ IL-10

↓ NF-κB activation
↓ Inflammation-related microbes

of gut microbiota

[137]

40 mg/kg/day orally for 14 days
Murine DSS-induced Colitis:

colon tissue
fecal samples

↓ IL-18 and IL-1β via
↓ NLRP3 inflammasome activation
↓ inflammation-related microbes of gut

microbiota

[138]

Abbreviations: LPS: lipopolysaccharide. IL: interleukin. TNF: tumor necrosis factor. DSS: dextran sodium sulfate.
NF-κB: nuclear factor-κB. MAPK: mitogen-activated protein kinase. ERK: extracellular signal-regulated kinase.
↓ Decrease ↑ Increase.

4. Autophagy, Inflammaging and HTyr
4.1. Autophagy and Inflammaging

Autophagy is an evolutionary conserved, highly regulated cellular process, responsi-
ble for the removal via lysosomal degradation of damaged cell material, such as misfolded
proteins and unnecessary or dysfunctional organelles [139]. It can also regulate cellu-
lar energy balance by triggering energy production from its own components during
nutrient starvation [140]. The autophagic process has a housekeeping role under phys-
iological conditions and an adaptive, cytoprotective role under stress, controlling thus
cellular and tissue homeostasis [141,142]. The autophagic process, its response to stress
and its regulation has been described in detail elsewhere [143]. Briefly, autophagy is a
dynamic process that is controlled by various signaling molecules, including the two main
regulators such as the mammalian/mechanistic target of rapamycin (mTOR) and the 5′

adenosine monophosphate-activated protein kinase (AMPK), which act as autophagic
inhibitor and activator, respectively [144,145]. mTOR is a serine–threonine kinase that
senses cellular nutrient levels through its connection with different signaling pathways,
including the MAPK/ERK1/2 pathway and the phosphatidylinositol 3-kinase (PI3K)/Ak
strain transforming (Akt; also known as protein kinase B) pathway, which establish the
PI3K/Akt/mTOR axis. Regarding the latter, PI3K, activated by many types of cellular
stimuli, phosphorylates the phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidyli-
nositol (3,4,5)-trisphosphate (PIP3) that recruits and activates Akt via phosphorylation.
Phosphorylated Akt, as a serine/threonine kinase, is able to stimulate mTORC1, which can
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directly activate a variety of cellular effectors, including the eukaryotic translation initiation
factor 4E-binding protein 1 (4E-BP1), to inhibit autophagy [81,144]. The autophagic driver
AMPK is a serine/threonine protein kinase and a highly conserved energy sensor, which
can be activated by allosteric regulation or by upstream kinases. Activated AMPK phos-
phorylates integrated signaling networks to promote autophagy directly (by the activation
of transcription factors) or indirectly (by the inhibition of the mTORC1 pathway) [146].
Other signaling molecules involved in autophagic regulation are sirtuins (SIRT), a family
(SIRT1-7) of nicotinamide adenine dinucleotide (NAD+)-dependent enzymes, which play
roles in diverse cellular processes including autophagy, senescence and cell survival [147].
Among them, SIRT1 and SIRT6, NAD+-dependent deacetylases belonging to class III his-
tone/protein deacetylases and members of the silent information regulator 2 (Sir2) family,
are predominantly localized in the nucleus and share functional similarities [148,149]. They
play essential roles in promoting autophagy. SIRT1 can promote autophagy both directly,
by interacting with autophagy related molecules (ATGs), and indirectly, by interacting
with upstream regulators of autophagy, such as those activating AMPK or inhibiting the
Akt/mTOR pathway [150]. SIRT6 can induce autophagy via inhibition of Akt signaling,
thus inhibiting the Akt-mTOR pathway [151].

The most common markers used for monitoring autophagy are two proteins, the microtubule-
associated protein 1 light chain 3 (LC3) and the sequestosome-1 (SQSTM1)/p62 [152]. LC3 is
recruited from the cytosol and associates with the phagophore early in autophagy; this
localization serves as a general marker for autophagic membranes and for monitoring the
process in its development. The SQSTM1/p62 protein is an ubiquitin-binding scaffold
protein, which co-localizes with cargo destined to be degraded by autophagy; itself is
degraded in autolysosomes and serves as an index of autophagic degradation.

It is now well known that autophagy contributes to the extension of longevity and
prevents age-related pathologies [142,153]. Among the beneficial effects on age-related
processes, autophagy orchestrates the differentiation and metabolic state of innate and adap-
tive immune cells, inducing immune response improving effects [154–156]. In particular,
autophagy plays a pivotal role in both the prevention of aging in immune and non-immune
cells and the suppression of inflammaging [10,11,142,153]. Indeed, autophagy prevents
inflammation by downregulating inflammation-related signals, reducing inflammatory
cytokine expression and promoting apoptotic corpse clearance [10,11]. Autophagy can sup-
press inflammatory reactions not only directly, but also indirectly through its cytoprotective
activity, by increasing cytoplasmic turnover that antagonizes the degradation of organelles
and macromolecular complexes, thus ameliorating immune system homeostasis. Although
the regulatory mechanisms for autophagy in inflammation are complex and remain to be
fully elucidated, the balance between mTOR and AMPK activation has a central role in
innate immune cell homeostasis and function [155,157]. It has been demonstrated that
downregulation of autophagy in macrophages leads to inflammation. Autophagy can
regulate the metabolic state of macrophages, in that mTOR activation, reducing the au-
tophagic flux, induces a proliferative and pro-inflammatory M1 phenotype in macrophages,
whereas AMPK activation, driving autophagy, promotes the function of anti-inflammatory
M2 macrophages [141]. In addition, AMPK can inhibit the inflammatory response by
inhibiting the pro-inflammatory NF-κB pathway in immune and non-immune cells [158].
Furthermore, enabling the removal of damaged cell material, autophagy also regulates the
intracellular danger signal-sensing multiprotein platform such as the NLRP3 inflamma-
some, inhibiting thus the activation of IL-1β and IL-18 inflammatory cytokines [159,160].
Finally, autophagy regulates also the adaptive immune response, such as T lymphocyte
function, including their metabolism, survival, development, proliferation, differentia-
tion and aging. In particular, autophagy plays a pivotal role in regulating the function
of T helper lymphocytes, regulating their secretion of cytokines in chronic inflammatory
diseases [161].

Unfortunately, the aging process is associated with a decrease in autophagy, which
further contributes to inflammaging, senescence and aging itself [153,158]. Decreased
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autophagy has been linked to a wide range of age-related inflammatory diseases, including
cardiomyopathy, neurodegenerative disorders and cancer [141,142,162]. Therefore, com-
pounds capable of promoting autophagy have recently received great attention for the
treatment of age-related diseases [12].

4.2. HTyr as a Modulatory Agent of Autophagy

Polyphenols have recently been recognized as agents capable of modulating au-
tophagy, improving thus cell homeostasis and function [163–171]. As for investigations
concerning the modulation of inflammation by HTyr, most laboratories, including ours,
performed investigations on the modulation of autophagy using HTyr-enriched prepa-
rations, which do not allow the identification of the effect mediated by the single HTyr
compound [55,172,173]. Therefore, here we reference investigations that used purified HTyr
to analyze its in vitro (Table 3) and in vivo (Table 4) capability to regulate the inflammaging
markers through modulation of autophagy.

Table 3. In vitro effects of HTyr on autophagy.

HTyr Treatment
and Dose Model Effects Ref.

Pre-treatment
25, 50, 100 µM

Rat Arthritis:
ex vivo primary chondrocytes + TNF-α

↓ IL-1β, IL-6 through
↑ autophagy via SIRT6 [174]

Pre-treatment
75 µM

Rat Arthritis:
ex vivo primary condrocytes + AOPPs

↓ IL-6, TNF-α through
↑ autophagy via SIRT1 [175]

Pre-treatment
25, 50, 100 µM

Rat Vasculitis:
ex vivo primary vascular adventitial

fibroblasts + TNF-α

↓ IL-1 β, IL-6, MCP-1 through
↑ autophagy via SIRT1-mediated

↓ AKT/mTOR
[176]

Pre-treatment
1 µM

Chemical Carcinogenesis in
Human Primary Colonic Epithelial Cells:

HCoEpC + B[a]P

↓ IL-6, Il-8, VEGF, CXCL13
↑ autophagy via ↓ 4EBP1

phosphorylation (↓mTOR pathway)
[131]

Pre-treatment
75 µM

Rat Alopecia:
primary dermal papilla cells + H2O2

↓ IL-6, TNF-α via
↑ autophagy
↑ FGF, PDGF

[177]

Abbreviations: TNF: tumor necrosis factor. IL: interleukin. MCP-1: monocyte chemoattractant protein-1. CXCL: C-
X-C motif ligand. VEGF: vascular endothelial growth factor. AOPPs: advanced oxidation protein products. SIRT:
silent mating type information regulator. AKT/mTOR: Ak strain transforming/mammalian target of rapamycin
complex. 4EBP1: eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1. B[a]P: Benzo[a]pyrene.
↓ Decrease. ↑ Increase.

Table 4. In vivo effects of HTyr on autophagy.

HTyr Treatment
and Dose Model Effects Ref.

100 mg/kg intragastrically

Murine Acute Lung Injury
intranasal LPS-induced:

lung tissue
bronchoalveolar lavage fluid

↓ TNF-α, IL-1β, IL-6, MCP-1, IL-10
↑ autophagy via SIRT-1
↓MAPK phosphorylation

↓ neutrophil and lymphocyte infiltration

[178]

50 mg/kg of diet for 8 weeks Murine Alzheimer’s disease in TgCRND8 mice:
brain tissues

↓ TNF-α
↓ amyloid protein load

↑ autophagy
↑ cognitive function: memory

[179]

Abbreviations: LPS: lipopolysaccharide. TNF: tumor necrosis factor. IL: interleukin. MCP-1: monocyte chemoat-
tractant protein-1. SIRT: silent mating type information regulator. PI3K/AKT: phosphatidylinositol 3-kinase/Ak
strain transforming. MAPK: mitogen-activated protein kinase. Tg: transgenic. ↓ Decrease ↑ Increase.

4.2.1. Evidence In Vitro

Two studies exist indicating the capability of HTyr to affect inflammation and in-
flammaging markers by modulating autophagy in experimental models of chondrocytes
stimulated by different inflammatory stimuli [174,175] (Table 3). Zhi et al. demonstrated
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that HTyr (25, 50, 100 µM) inhibited, in a dose-dependent manner, the levels of pro-
inflammatory cytokines such as IL-1β and IL-6 as well as the chemokine MCP-1 in ex vivo
rat primary chondrocytes stimulated with TNF-α. In addition, HTyr promoted autophagy
and upregulated the expression of SIRT6 at the mRNA and protein level. Moreover, SIRT6
knockdown reduced the effect of HTyr on autophagy promotion by decreasing the expres-
sion of the LC3 autophagic marker. Furthermore, both the inhibition of autophagy by the
autophagic inhibitor 3-methyladenine and SIRT6 knockdown decreased the suppressive ef-
fects of HTyr on the inflammatory response in TNF-α-induced chondrocytes. Overall, these
findings indicate that HTyr inhibits TNF-α-induced inflammatory response in chondrocytes
through regulating SIRT6-mediated autophagy, thus protecting chondrocytes from inflam-
mation and suggesting potential beneficial effects of HTyr in osteoarthritis [174]. Then,
Sun et al. investigated the anti-inflammatory effect of HTyr (75 µM) pre-treatment in rat
primary chondrocytes stimulated with advanced oxidation protein products (AOPPs). The
investigators found that HTyr increased the expression of LC3 and autophagy related (ATG)
5 and ATG 7 molecules, while it decreased the expression of p62, thus promoting autophagy
in AOPP-stimulated chondrocytes. It was also demonstrated that autophagy was promoted
through the SIRT1 pathway. Furthermore, HTyr inhibited the expression of IL-6 and TNF-α
inflammatory cytokines at the mRNA and protein level, and this inhibition was suppressed
by SIRT1 knockdown, showing that HTyr can inhibit the inflammatory response caused by
stressed chondrocytes through the promotion of SIRT1-mediated autophagy [175].

A recent study investigated the mechanisms underlying the anti-inflammatory effect
of HTyr in cardiovascular diseases, by analyzing the capability of HTyr to affect the inflam-
matory response in vascular adventitial fibroblasts (VAFs) through autophagy modulation
(Table 3). Pre-treatment of TNF-α-stimulated rat primary VAFs (obtained from thoracic
aorta) with HTyr (25, 50, 100 µM) promoted autophagy by increasing LC3 cell expression
and the autophagic flux. In addition, HTyr upregulated SIRT1 mRNA and protein expres-
sion in TNF-α-stimulated VAFs, in a dose-dependent manner. It was also demonstrated
that HTyr decreased Akt phosphorylation, and that the inhibition of both Akt and mTOR
inhibited the promotion of autophagy by HTyr, indicating that HTyr modulated autophagy
through SIRT1-mediated Akt/mTOR suppression. Furthermore, HTyr inhibited the TNF-
α-induced inflammatory response in VAFs by inhibiting the secretion of IL-1 β and the
expression of IL-6 and MCP-1 mRNA, while SIRT1 knockdown decreased both autophagy
and inflammatory inhibition by HTyr. Therefore, these findings indicate that HTyr inhibits
the inflammatory response produced by VAFs via the promotion of autophagy through
SIRT1-mediated Akt/mTOR pathway suppression [176].

Another study analyzed the autophagic modulatory activity of HTyr in a human model
of colonic chemical carcinogenesis (Table 3). HTyr (1 µM) pre-treatment of HCoEpC cells
exposed to [B[a]P] restored B[a]P-mediated reduction in cell autophagy by increasing LC3
and reducing SQSTM1/p62 expression levels. HTyr also counteracted the phosphorylation
of 4EBP1 (a downstream target of mTOR), thus counteracting mTOR activation. The
modulation of autophagy by HTyr was associated with the inhibition of the release of the
IL-6 pro-inflammatory cytokine, IL-8 and CXCL13 chemokines, and VEGF by HCoEpC cells
exposed to [B[a]P]. These results suggest that HTyr might exert tumor suppression through
the promotion of autophagy, thus playing an important role in preventing tumorigenesis
by chemical carcinogens [131].

Lastly, Chen et al. explored the potential protective actions of HTyr-promoted au-
tophagy in a rat model of stress-induced alopecia (Table 3). HTyr (75 µM) pre-treatment
of H2O2-exposed rat primary dermal papilla cells promoted autophagy, inhibited mRNA
and protein levels of IL-6 and TNF-α and enhanced the levels of hair growth factors such
as the fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF). By the
use of the chloroquine autophagic inhibitor, it was also found that the anti-inflammatory
effect was dependent on the regulation of autophagy by HTyr. These results indicate that
HTyr is capable of significantly reducing stress-induced inflammation and that this effect is
mediated by its capability to promote autophagy [177].
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4.2.2. Evidence In Vivo

The in vivo regulation of inflammation and inflammaging markers through the mod-
ulation of autophagy by HTyr has been investigated in two inflammatory experimental
animal models [178,179] (Table 4). Yang et al. investigated the potential modulatory effect
of HTyr on autophagy in a murine model of LPS-induced acute lung injury. Male BALB/c
mice, challenged with intranasal instillations of LPS, were treated with HTyr (100 mg/kg)
intragastrically 1 h prior to LPS exposure. Twenty-four hours later, lung and bronchoalve-
olar lavage fluid samples were obtained and analyzed for inflammatory and autophagic
markers. LPS-driven release of TNF-α, IL-1β, IL-6, IL-10 and MCP-1 was strongly sup-
pressed by HTyr. In addition, LPS-stimulated SIRT1 inhibition, MAPK phosphorylation
and autophagy suppression were all abolished by HTyr administration. HTyr treatment sig-
nificantly decreased pulmonary edema and inflammatory cell infiltration into lung tissues
as well as inflammatory cell levels in bronchoalveolar fluid, suggesting that the protective
effect of HTyr on lung inflammation may be attributed to the promotion of autophagy,
which is likely associated with the activation of SIRT and MAPK signaling pathways [178].
Then, Nardiello et al. indicated the capability of HTyr to inhibit inflammation in a murine
model of Alzheimer’s disease through the promotion of autophagy (Table 4). Indeed, in
4-month-old Tg (transgenic) CRND8 (overexpressing mutant human amyloid precursor
protein) mice, treated for 8 weeks with a low-fat diet supplemented with HTyr (50 mg/kg
of diet), a marked reduction of TNF-α expression in hippocampal areas associated with
a strong promotion of autophagy in brain tissues was found, as indicated by the bright
LC3 staining in the neuronal cell bodies and processes of neurons in the parietal cortex.
These results were associated with a significant improvement of murine cognitive status
and the reduction of plaque area and number of the amyloid aggregate of Aβ42 peptide
and its pyroglutamated 3-42 derivative (pE3-Aβ) in the cortex and in the hippocampus,
suggesting that HTyr mediates neuroprotection by modulating autophagy [179].

5. Discussion and Conclusions

In this review, we reference studies investigating the capability of purified HTyr to
counteract the rise of multiple inflammatory mediators of inflammaging, by modulating
inflammation and autophagy.

Encouraging results have been obtained concerning the modulation of inflammation
by the administration of purified HTyr in different experimental models of inflammation
in vitro and in vivo, indicating that HTyr can interfere with inflammaging by modulating
inflammation. In fact, HTyr decreases inflammatory biomarkers of inflammaging, such as
pro-inflammatory cytokines, chemokines and acute-phase proteins, by affecting different
steps of the inflammatory process in vitro and in vivo. Indeed, HTyr can downmodulate
the expression of the TLR-4 innate immune receptor (Table 1). HTyr also inhibits the activa-
tion of different intracellular signaling molecules involved in the inflammatory response,
including ERKs, JNK and p38 MAPK, which belong to the MAPK pathway (Tables 1 and 2).
HTyr can suppress the activation of NF-κB, the master regulator of inflammatory gene
transcription, as well as the NLRP3 inflammasome, a critical component of the inflamma-
tory response (Tables 1 and 2). Of note, HTyr can also exert anti-inflammatory activity by
modulating the composition and diversity of microbiota, in particular the gut microbiota
(Table 2). Furthermore, the inflammation modulating activity of HTyr has been illustrated
in vitro in different inflammatory cell experimental models, including innate immune cells
such as macrophages and microglia, as well as non-immune cells such as senescent fibrob-
lasts, keratinocytes and colonic epithelial cells (Table 1). However, contrasting results have
been reported regarding the capability of HTyr of inhibiting inflammation mediated by
monocytes/macrophages (Table 1). We think that the diverse results might be related to the
different experimental conditions and protocols (i.e., monocyte/macrophage experimental
models, HTyr dose, times of HTyr and LPS incubations, times in which samples were taken)
used by independent investigators, while Pojero et al. suggested that it might depend on
the timing of HTyr administration (i.e., before, during or after the incubation with LPS
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inflammatory stimuli) [97]. Further experiments are needed to explain these contrasting
results. The inflammation modulating activity of HTyr has also been illustrated in vivo in
different experimental animal models of inflammatory diseases, by analyzing ex vivo and
in vivo macrophages, blood samples, as well as renal, liver, heart, brain and colon tissues
(Table 2). Interestingly, the capability of HTyr to affect M1/M2 macrophage/microglia
polarization in vitro and in vivo has also been reported, highlighting the capability of HTyr
to increase the activation of the M2 anti-inflammatory macrophage phenotype associated
with the rise of anti-inflammatory cytokines (Tables 1 and 2).

Promising results have also been reported concerning the possible interference of
HTyr with inflammaging through the modulation of autophagy (Tables 3 and 4). How-
ever, a small number of studies analyzed this issue, especially in in vivo experimental
models (Table 4). It has been clearly shown that HTyr is capable of inhibiting the rise of
inflammaging markers such as cytokines, chemokines and growth factors through the pro-
motion of autophagy, by affecting the activation of regulatory molecules of the autophagic
process in vitro and in vivo (Tables 3 and 4). In fact, HTyr can upregulate autophagy by
activating AMPK or inhibiting the Akt/mTOR pathway, via SIRT1 and SIRT6 modula-
tion (Tables 3 and 4). Furthermore, the capability of HTyr to decrease the expression of
pro-inflammatory mediators through the promotion of autophagy has been observed in
different experimental models, including arthritis, vasculitis and colonic chemical carcino-
genesis in vitro, as well as acute lung injury and Alzheimer’s disease in vivo. However,
although the capability of upregulating autophagy by HTyr-enriched preparations has
been established in inflammatory immune cells such as macrophages [55], to the best of
our knowledge, there is no study that has investigated the capability of pure HTyr to mod-
ulate autophagy in immune cells, including macrophages. Therefore, there is a need for
studies on the capability of pure HTyr to interfere with inflammaging through modulating
autophagy in innate and adaptive immune cell-mediated inflammatory responses.

Overall, our knowledge on inflammaging and its relationship with inflammation and
autophagy is far from being complete, and there is still much to learn about the capability
of pure HTyr to interfere with inflammaging via the modulation of inflammation and
autophagy [180]. We consider that a certain number of critical issues, including the effective
dosage and time of HTyr administration, have to be addressed before proceeding with
clinical trials based on the administration of pure HTyr in elderly. In fact, the low bioavail-
ability of orally ingested polyphenols, including HTyr, greatly limits their therapeutic
use, particularly in those organs distant from the gastrointestinal tract. In addition, most
of the in vitro and in vivo studies performed so far suggest a possible preventive rather
than therapeutic activity of HTyr against inflammaging, in that in most studies, HTyr was
administered before rather than after the inflammatory stimuli.

In conclusion, we consider that the promising results, emerged from preclinical inves-
tigations, strengthen a need for further studies aimed to better characterize the interference
of HTyr with inflammaging to predict the possible effective clinical use of this compound
in aging and age-related disorders.
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