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Abstract: Nowadays, it is common for people to take photographs of every beverage, snack, or meal
they eat and then post these photographs on social media platforms. Leveraging these social trends,
real-time food recognition and reliable classification of these captured food images can potentially
help replace some of the tedious recording and coding of food diaries to enable personalized dietary
interventions. Although Central Asian cuisine is culturally and historically distinct, there has been
little published data on the food and dietary habits of people in this region. To fill this gap, we
aim to create a reliable dataset of regional foods that is easily accessible to both public consumers
and researchers. To the best of our knowledge, this is the first work on the creation of a Central
Asian Food Dataset (CAFD). The final dataset contains 42 food categories and over 16,000 images of
national dishes unique to this region. We achieved a classification accuracy of 88.70% (42 classes) on
the CAFD using the ResNet152 neural network model. The food recognition models trained on the
CAFD demonstrate the effectiveness and high accuracy of computer vision for dietary assessment.

Keywords: nutritional intervention; computer vision; food classification; Central Asian food; dietary
assessment; food recognition; AI; Central Asia; food dataset

1. Introduction

Recent developments in “omics” technology have made it tempting to collect and
bank large amounts of biological material. One subfield of this area, foodomics, has recently
attracted the interest of researchers thanks to its potential to expand our understanding of
the biochemical profile of food and its effects on physiological processes in our bodies [1].
However, if the measurement of dietary and lifestyle factors is ignored or collected with
inappropriate instruments, this would potentially diminish the expected health benefits of
the genome and large-scale cohort studies [2]. This might also diminish the full potential
of precision lifestyle medicine and the application of positive dietary and lifestyle inter-
ventions. Therefore, it is vital to give due attention to appropriate assessment of dietary
intake [3,4]. Current methods for assessing dietary intake are cumbersome and generate
data that require a great deal of effort to code and subsequently analyze. Another limitation
of using traditional approaches is the subjective and inconsistent classification of food
groups by different individuals. In recent decades, artificial intelligence (AI) has begun
to penetrate the food industry by offering promising approaches to the modeling and
improvement of food product characteristics [5], recipe evaluation [6], food identification,
and dietary analysis [7].

In recent years, food computation from visual data has become a prominent area of
research thanks to computer vision (CV) development and the increasing use of smart-
phones and social media [8]. These platforms have enabled access to a wide range of
food-related information, including images, recipes, and consumption logs. As a result,
these data can be used for various tasks, from influencing our behavior and culture to
improving medical, biological, gastronomic, and agronomic research. At the forefront of
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these efforts is the development of deep learning-based food image recognition systems
with multiple applications in dietary assessment, smart restaurants and supermarkets,
food safety inspection and control, and agriculture. Automatic food image recognition
and classification can increase the accuracy of nutritional records in various devices (e.g.,
smartphones) and offers considerable benefits in assisting visually impaired people [8].
A number of datasets have been collected for food classification, localization, real-time
recognition, and quantity evaluation [9,10].

Most of the existing food classification datasets are web-crawled collections and
include Western, European, Chinese, and other Asian cuisines (see Table 1). For exam-
ple, Bossard et al. [11] created the Food-101 dataset, which contains 101 European food
classes with 1000 images per class and has become a benchmark for many recognition
models and datasets [12,13]. The fine-grained Chinese food dataset VireoFood-172 [14]
and its follow-up Vireo-Food251 [15] have been employed for ingredient recognition sys-
tems [15]. Another large-scale dataset ISIA Food-500 was introduced by Min et al. [16] and
contained 500 categories with over 400,000 images. The dataset contains Asian, European,
and African food. Sahoo et al. [10] developed a food recognition system called FoodAI that
uses deep learning and can be deployed on smartphones. FoodAI was trained on a dataset
of 400,000 images from the Internet and can recognize 756 food classes, mainly foods eaten
in Singapore [10]. To date, the most comprehensive large-scale dataset is Food2K [17]. This
dataset contains over one million images across 2000 food classes from different cuisines.
The dataset is fine-grained, meaning that various classes for the same food type differ in
ingredients. The two largest food datasets, FoodAI and Food2K, can significantly enhance
food computation models. However, FoodAI is not open source, while Food2K is not
publicly available. Nevertheless, the developers of the Food2K dataset have released a
food recognition challenge dataset called Food1K, which contains approximately 400,000
images, and as the name implies, 1000 food classes [18].

As mentioned earlier, most food datasets contain predominantly Western and Asian
dishes consumed around the world, rather than specific national dishes such as those found
in Central Asia. To create a system capable of recognizing food specific to a certain region,
local preferences, specialties, and cuisines should be considered. For example, ref. [18]
introduced the Turkish Food Dataset, which contains 15 Turkish food items. Therefore, we
aimed to develop and create a unique food recognition system specific to our region that
takes into account the way food is prepared, served, and consumed, as well as other local
preferences.

Table 1. Summary of food classification datasets.

Dataset Year # Classes # Images Cuisine Public

Food-101 [11] 2014 101 101,000 European yes

VireoFood-172 [14] 2016 172 110,241 Chinese/Asian yes

TurkishFoods-15 [18] 2017 15 7500 Turkish yes

FoodAI [10] 2019 756 400,000 International no

VireoFood-251 [15] 2020 251 169,673 Chinese/Asian yes

ISIA Food-500 [16] 2020 500 399,726 Chinese/International yes

Food2K [17] 2021 2000 1,036,564 Chinese/International no

Food1K [17] 2021 1000 400,000 Chinese/International yes

Central Asian Food Dataset (CAFD) 2022 42 16,499 Central Asian yes

The datasets listed in Table 1 paved the way for the development of food recognition
models. For instance, Aktı et al. [19] developed a mobile food recognition system that
achieved an accuracy of 94% on 23 Middle Eastern food items. Another study addressed
the integration of convolutional neural networks (CNNs) and text models to predict and
analyze the nutrient content of food images and food ingredients [20]. Based on the My-
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FoodRepo dataset, which contains 24,119 images and 39,325 polygons (i.e., the number of
food items), an instance segmentation model was proposed in [21]). The authors experi-
mented with different models to show that the precision in predicting the food ingredients
can be increased.

Central Asia has one of the highest rates of premature mortality from non-communicable
diseases (NCDs), such as cardiovascular diseases, diabetes, and certain types of cancer [22].
Dietary habits are one of the major factors contributing to the prevalence of NCDs. In fact,
a recent study of about 200 countries showed that the burden of diet-related deaths in
Central Asia is among the highest in the world [23]. The resulting premature deaths and
illnesses negatively impact socioeconomic development and undermine progress toward
sustainable development goals (SDGs) [24].

Investigating the associations between dietary intake and other lifestyle factors with
cardio-metabolic risk factors in adult Central Asians would provide evidence for public
health policy. In addition, integrating AI into smartphone diet-tracking applications could
significantly improve nutrition literacy among local populations. Since AI requires data
to create models, this work introduces the first dataset of Central Asian food images and
deep learning-based food classification models trained on these data. The Central Asian
Food Dataset (CAFD) contains more than 16,000 images of 42 national and local foods
not included in any of the datasets listed in Table 1. We performed extensive parametric
experiments to illustrate the performance of the models trained on the CAFD. Additional
experiments were conducted to build food recognition models using the combined CAFD
and Food1K datasets, which is currently one of the largest datasets in terms of the number
of classes. Furthermore, this work will help to facilitate future nutrition research to be
conducted in this field for these ethnic populations.

The remainder of the paper is as follows: Section 2 presents the methods used to
develop the CAFD, specifically, data collection, labeling, and other pre-processing steps.
Section 3 explains the food recognition models and details the parametric experiments.
Section 4 discusses the food recognition model performance, and Section 5 concludes
the paper.

2. Central Asian Food Dataset

In this paper, we present a novel large-scale Central Asian Food Dataset (CAFD) (see
Figure 1). This dataset is composed of 16,499 images with 42 classes encompassing the most
popular Central Asian cuisine consumed locally. We conducted extensive data cleaning,
iterative annotation, and multiple inspections to ensure the high quality of the dataset.
We envision that this large-scale, high-quality dataset could be useful for developing food
image representation learning for food-related vision tasks. In addition, the CAFD can
serve as a sizable fine-grained benchmark for visual recognition.

To obtain a high-quality food image dataset with broad coverage, high diversity,
and high sample density, we followed a five-step process. First, we created a list of the
most popular food items eaten in Central Asia. Second, we scraped images from popular
search engines (e.g., Bing, Google, YouTube, and Yandex) and social media websites (e.g.,
Instagram and Facebook) using query words in different languages. We wrote a Python
script using the Selenium library to automatically download images from the Internet. To
increase the number of images in the underrepresented classes (e.g., sheep head, asip, and
nauryz-kozhe), we scraped recipe videos from YouTube, cropped parts with the finished
dish, and extracted certain frames. Images from the videos were automatically extracted
using the Roboflow [25] software at a rate of one frame per second to obtain food images
from different camera angles and under different lighting conditions. To ensure the high
quality of the dataset the HashImage Python library was used to conduct exact duplicate
removal. Most of the images contained multiple food items and background clutter. Since
this work focuses on food image classification, we needed a single food item per image.
Therefore, in the third step, two image annotators created bounding boxes for each food
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item in the images using the Roboflow software Figure 2. Each bounding box has a label
(i.e., 0 to 41 for the 42 classes) indicating the food item contained within.

Figure 1. Sample images for Central Asian Food Dataset classes.

Class: taba nan

Class: plov

Class: manty

Figure 2. Data pre-processing: Food labeling and cropping on Roboflow. Original image and final
cropped images with the respective labels.
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Fourth, we extracted all of the images and their label files from Roboflow. Each image
has its respective label file in the “.txt” format that contains the coordinates of the bounding
box and its class. Next, we cropped the food items from the original images based on their
bounding box coordinates, as shown in Figure 2. The final images were stored in separate
directories based on the food class. Sample images for the 42 classes are shown in Figure 1.
All images in this paper are from Wikipedia and delo-vcusa.ru and are provided under the
Creative Commons (CC) license (creativecommons.org/licenses/by-nc-nd/4.0/ (accessed
on 15 February 2023)).

The final dataset has an imbalanced number of images per class, ranging from 99
to 922. Figure 3 illustrates the distribution of images per class. The dataset is publicly
available in our GitHub (https://github.com/IS2AI/Central-Asian-Food-Dataset (accessed
on 23 March2023)) repository.

Figure 3. CAFD statistics by class.

3. Food Recognition Models

Image classification is a computer vision task that extracts a single descriptor (i.e., class)
from an entire image. State-of-the-art image classification models are based on CNNs,
which essentially employ convolutional filters to generate features from the image to
identify an object. Image classification models have improved dramatically over the last
decade thanks to the availability of large datasets. Indeed, training these models requires a
vast amount of training data depending on the number of classes and the domain. Since
it is not always feasible to collect and label a sufficient amount of training data, transfer
learning is often used. Transfer learning is a technique in which some parts of a machine
learning (ML) model used to solve one problem are used in solving a similar problem but
in a different domain [26]. For example, transfer learning could be applied to solve the
problem of classifying whether an image contains food by using the knowledge of the
model obtained during training to detect whether there are any beverages in the image.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/IS2AI/Central-Asian-Food-Dataset
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In this work, we applied transfer learning to our food classification problem us-
ing model weights pre-trained on ImageNet, a large dataset containing over 14 million
images [27]. ImageNet contains 1000 different object classes (e.g., animals, technology,
everyday items, plants, etc.). Classification models identify the object based on the ex-
tracted features, such as shape, color, and texture. Therefore, models pre-trained on a large
number of images from ImageNet are powerful, as they learn to identify diverse shapes
and features. In this case, one can take advantage of transfer learning to solve a problem
with a much smaller dataset.

To verify our food recognition models, we trained them on the publicly available
Food1K dataset. Further, we tested the combination of both CAFD and Food1K to obtain a
food classifier with the largest number of food classes 1042 classes) known to us. This also
allowed us to determine whether or not our CAFD had overlapping classes with Food1K.

Since the Food1K dataset was released for the International Conference on Computer
Vision (ICCV) Food Recognition Challenge Competition, only training and validation sets
were available. Therefore, we split the validation set into two equal parts to obtain a valida-
tion set and a test set. With respect to the CAFD, we split the dataset into approximately
70% for the training set, 15% for the validation set, and 15% for the test set. About 30% of
the images in the final dataset are cropped from raw images with multiple food items. Thus,
to avoid the bias caused by the background of the food images in the training, validation,
and testing sets, we first divided the original images into the above sets and then cropped
the food items. In addition, the data were in two formats: scraped images and frames
extracted from YouTube videos. Since multiple frames came from each video, we split them
into training, validation, and test sets to avoid data leakage during model training. Table 2
shows the number of images in the training, validation, and test sets for three different
datasets.

Table 2. Image distribution across the training (train), validation (valid), and test sets.

Dataset Train Valid Test

CAFD 11,008 2763 2728

Food1K 317,277 26,495 26,495

CAFD+Food1K 328,285 29,258 29,223

We performed transfer learning on Pytorch using the pre-trained models on ImageNet.
We selected 10 models of different architectures, complexity, and a number of parameters
to evaluate their performance on the CAFD (see Table 3). VGG-16, a large early CNN-
based network with 16 layers and approximately 138 million trainable parameters [28],
achieved an accuracy of 92.5% on the ImageNet dataset. Squeezenet1, in contrast, is a
small model with only one million trainable parameters [29]. This allows for faster training
and deployment on hardware with limited memory capacity. We experimented with five
different models with the residual network (ResNet) architecture [30–32]. Skip connections
in the ResNets enabled network depth extension and better performance. DenseNet-121
and EfficientNet-b4 have architectures similar to those of ResNets, except that they aim to
reduce model complexity by introducing different scaling methods [33,34].

The training was performed on a single Tesla V100 GPU on an Nvidia DGX-2 server.
Models were trained for 40 epochs with a learning rate of 0.001, batch size of 64, and a
categorical cross-entropy loss. The input size of images varied (i.e., 224 × 224 for VGG-16
and ResNets, 380 × 380 for EfficientNet). Because the datasets were highly imbalanced and
large, we used Top-5 accuracy in addition to Top-1 accuracy as a model evaluation metric.
Top-1 accuracy is the usual metric for accuracy. With this metric, the highest probability
output of the model must match the ground truth exactly. An alternative measure, Top-5
accuracy, extends this concept. The ground truth class must be one of the five most probable
outputs. Further, to identify and analyze the best and worst-classified food classes, we used
the precision, recall, and F1-score metrics. Precision indicates how many of the samples in
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a given class (e.g., images of “samsa”) are correctly classified. Recall, on the other hand,
indicates the proportion of images actually containing the food class “samsa” measured
against all samples predicted as “samsa”. F1-score is the harmonic mean of precision and
recall and is computed as follows:

F1-score =
2 · Precision · Recall
Precision + Recall

4. Results and Discussion

The results of the classification models are summarized in Table 3. Overall, all models
performed better on the CAFD than on both Food1K and CAFD+Food1K. Compared
to Food1K, all models obtained slightly better results on CAFD+Food1K, indicating the
accuracy and cleanness of the CAFD. Furthermore, this implies that there are no classes in
CAFD and Food1K that overlap significantly.

Table 3. Top-1 and Top-5 accuracies for different food classification models and datasets.

Base Model
# Parameters CAFD Food1k CAFD+Food1K

(mln) Top-1 Acc. Top-5 Acc. Top-1 Acc. Top-5 Acc. Top-1 Acc. Top-5 Acc.

VGG-16 (2014) [28] 138 86.03 98.33 80.67 95.24 80.87 96.19
Squeezenet1_0 (2014) [29] 1 79.58 97.29 71.33 91.23 69.16 90.15

ResNet50 (2015) [30] 25.6 88.03 98.44 82.44 97.01 83.22 97.25
ResNet101 (2015) [30] 44.5 88.51 98.44 84.10 97.34 84.20 97.45
ResNet152 (2015) [30] 60 88.70 98.59 84.85 97.80 84.75 97.58

ResNext50-32 (2016) [31] 25 87.95 98.44 81.17 96.67 84.81 97.65
Wide ResNet-50 (2016) [32] 69 88.21 98.59 82.20 97.28 85.27 97.81
DenseNet-121 (2017) [33] 8 86.95 98.26 83.03 97.14 82.45 96.93
EfficientNet-b4 (2019) [34] 19 81.28 97.37 87.47 98.04 87.75 98.01

VGG-16 achieved 86.03% for Top-1 accuracy and 98.33% for Top-5 accuracy on the
CAFD. As for the Food1K and CAFD+Food1K datasets, performance was lower due to the
substantially larger number of classes (1000 and 1042, respectively). Top-1 was 80.67% and
Top-5 was 95.24% for Food1K, and 80.87% and 96.19% for CAFD+Food1K. The Squeezenet
architecture has a smaller number of parameters, but more layers, and, unlike the VGG
architecture, delays the down-sampling of the input image size toward the end of the
network. Squeezenet1 achieved a Top-1 accuracy of 79.58% on the CAFD, 71.33% on
Food1K, and 69.19% on CAFD+Food1K. Since the model has a small architecture, the
performance decreases for larger datasets.

ResNet architectures, which can utilize very deep networks by avoiding diminishing
gradients, achieved about 88% for Top-1 accuracy and approximately 98% for Top-5 accu-
racy on the CAFD. The Top-1 score is above 82%, and Top-5 is nearly 97% for both Food1K
and CAFD+Food1K. It can be observed that as the network depth increases, the accuracy
grows higher. For example, in the case of ResNet50 (50 convolutional layer blocks), the Top-
1 accuracy was 88.03% and Top-5 was 98.44% for the CAFD. ResNet152, on the other hand,
achieved a Top-1 accuracy of 88.70% and a Top-5 accuracy of 98.59% on the CAFD, which is
the highest performance on this dataset among all models. For Food1K and CAFD+Food1K,
the ResNet models showed similar performance, and the ResNet152 variant achieved the
highest score within the ResNet family. Increasing the level of granularity of the captured
feature by utilizing a wider network, Wide ResNet-50, improved accuracy with a Top-1
accuracy of 88.21% on the CAFD compared to ResNet50 (88.03%). EfficientNet-b4 achieved
the best results on both Food1K (Top-1 is 87.47% and Top-5 is 98.04%) and CAFD+Food1K
(Top-1 is 87.75% and Top-5 is 98.01%), which both had a very large number of classes in our
experiments.

Tables 4 and 5 list the 10 CAFD classes best and worst detected by the best-performing
models trained on the CAFD (ResNet152) and CAFD+Food1K (EfficientNet-b4). In both
cases, similar classes performed best (6 out of 10: plov, naryn, samsa, sushki, sheep head,
and achichuk). Most of the best-detected classes have a high number of images or have
very distinct features, shapes, or colors compared to all other classes in the dataset (see
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Figure 3). For example, the detection of the classes “naryn”, “plov”, and “samsa” resulted
in precision scores of 96%, 93%, and 94%, respectively, (see Table 4). A precision score of
0.96 was obtained for the class “sushki” and 0.95 for “achichuk”, which have unique shapes
and colors (see Table 1), indicating that almost all samples in the test set were correctly
predicted. As for the worst predicted classes, 5 out of 10 classes were identical in both cases:
shashlik chicken with vegetables, shashlik beef, asip, kazy-karta, and lagman without soup.
These results illustrate that fine-grained or similar-looking classes cause more confusion
and deteriorate the performance of the model (e.g., “shashlik chicken with vegetables” and
“shashlik beef”, “kazy-karta” and “asip”). The worst scores were obtained for the food
class “shashlik chicken with vegetables” (a precision score of 0.71 when trained only on
the CAFD) and the class “lagman without soup” (a precision score of 0.6 when trained on
CAFD+Food1K). This indicates that about 30–40% of the test samples were inaccurately
predicted for these classes.

Table 4. Ten CAFD classes best and worst detected by the ResNet152 model.

Best Detected CAFD Classes Worst Detected CAFD Classes

Class Precision Recall F1-Score Class Precision Recall F1-Score

Sushki 0.96 1 0.98 Shashlik chicken with vegetables 0.71 0.67 0.69
Achichuk 0.95 1 0.98 Shashlik beef with vegetables 0.66 0.72 0.69

Sheep head 0.94 1 0.97 Shashlik chicken 0.67 0.74 0.7
Naryn 0.96 0.98 0.97 Shashlik minced meat 0.79 0.64 0.71
Plov 0.93 0.99 0.96 Asip 0.85 0.62 0.72

Tushpara with soup 0.93 0.97 0.95 Shashlik beef 0.74 0.69 0.72
Sorpa 0.97 0.93 0.95 Lagman without soup 0.83 0.68 0.75
Samsa 0.94 0.96 0.95 Kazy-karta 0.83 0.74 0.78

Hvorost 0.98 0.91 0.95 Beshbarmak with kazy 0.78 0.8 0.79
Manty 0.92 0.95 0.94 Tushpara fried 0.88 0.76 0.81

Table 5. Ten CAFD and Food1K classes best and worst detected by the EfficientNet-b4 model.

Best Detected CAFD and Food1K Classes Worst Detected CAFD and Food1K Classes

Class Precision Recall F1-Score Class Precision Recall F1-Score

Sushki 0.91 1 0.96 Lagman without soup 0.6 0.27 0.37
Achichuk 1 0.95 0.97 Asip 0.88 0.38 0.53

Sheed head 0.94 0.94 0.94 Talkan-zhent 0.86 0.53 0.66
Airan-katyk 0.83 0.93 0.88 Doner lavash 0.75 0.6 0.67

Plov 0.97 0.90 0.93 Shashlik chicken with vegetables 0.88 0.64 0.74
Cheburek 0.92 0.90 0.91 Lagman fried 0.96 0.68 0.8
Irimshik 0.93 0.88 0.91 Doner nan 1 0.68 0.81
Samsa 0.93 0.88 0.90 Shashlik chicken 0.61 0.69 0.65
Naryn 0.97 0.87 0.92 Shashlik beef 0.67 0.69 0.68

Chak-chak 0.9 0.87 0.92 Kazy-karta 0.8 0.7 0.74

Figure 4 illustrates samples of the confused classes for three cases (beef shashlik with
vegetables, kattama-nan, and asip). Next to each of the (ground truth) classes are sample
images of four classes that are most commonly confused with them. This suggests that
further neural network topology optimization or data augmentation should be undertaken
to distinguish between these food items, as the nutritional content of some of these food
items differs significantly. For instance, a 100 g serving of (lean) beef shashlik provides
250 kcal, 28 g protein, and 15 g fat; chicken shashlik contains 180 kcal, 27 g protein, and
7 g fat, and mutton shashlik contains 290 kcal, 24 g protein, and 20 g fat. Therefore, for
subsequent dietary analyses, there would be a difference between the fat and the total
calorie intake of the individuals.
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Figure 4. Examples of the confused classes.

The proposed Central Asian Food Dataset has several potential applications, including
the creation or modification of new recipes using ingredient combinations that are unique
and commonly consumed by ethnic groups in this region. In addition, our dataset can
help restaurants and food service providers plan their menus to be more appealing to
target audiences in Central Asia. Food manufacturers can also use our food dataset to
optimize their production processes and combat fraudulent food practices. In summary,
our Central Asian Food Dataset can have a significant impact on the food industry. It
can be used to improve food quality, develop new recipes and personalized dietary plans,
optimize production processes, and increase food safety. Additionally, there is potential for
integration with other food recognition systems

5. Conclusions

With the development of CV and the availability of devices, food recognition is
gaining a considerable advantage over other approaches in automating and increasing the
accuracy of dietary assessment. In this work, we present the Central Asian Food Dataset,
which contains 16,499 images for 42 food classes. The dataset consists of commonly
consumed Central Asian dishes that are not included in the vast majority of currently
existing open-source datasets. To illustrate the performance of CV models on the CAFD,
we trained a number of food recognition models using this dataset. In addition, we present
transfer learning results using the largest dataset currently available, CAFD+Food1K, which
contains a total of 1042 classes. We have achieved a Top-5 accuracy of 98.59% and 98.01%
for the CAFD and CAFD+Food1K, respectively. The source code, pre-trained models, and
the CAFD are publicly available in our GitHub repository.

The performance of the food recognition models developed using the CAFD demon-
strates the effectiveness and potential of our dataset for dietary analysis tools and ap-
plications. As our next step, we will explore different neural network architectures and
data augmentation methods to improve the classification of some of the less accurately
recognized food items. We will also explore how the CAFD can be utilized to benefit other
dietary-related tasks including using it in a social media bot to capture the lifestyle and
other nutritional factors of the population living in the area. In this study, we have worked
with classification models for one food item per image. As a continuation of this work, we
will look at food localization and create a food scene recognition dataset where multiple
food items are present in a single image. To validate this dataset, we will utilize object
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recognition models that can locate food items in an image and classify them. It is also
likely that the dataset will contain more food classes since food scenes usually include local
national dishes consumed with other Western or Asian foods. Based on the additional food
classes, we will be able to extend the current food categories.
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