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Abstract: White adipose tissue (AT) dysfunction plays an important role in the development of
cardiometabolic alterations associated with obesity. AT dysfunction is characterized by the loss of the
expansion capacity of the AT, an increment in adipocyte hypertrophy, and changes in the secretion
profile of adipose cells, associated with accumulation of macrophages and inflammation. Since not
all people with an excess of adiposity develop comorbidities, it is necessary to find simple tools that
can evidence AT dysfunction and allow the detection of those people with the potential to develop
metabolic alterations. This review focuses on the current pathophysiological mechanisms of white
AT dysfunction and emerging measurements to assess its functionality.
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1. Introduction

Obesity has become one of the biggest health problems in the world. Many researchers
have focused on developing preventive interventions and treatments to combat this prob-
lem. However, the long-term impact of those efforts has been modest [1]. In 2015, more
than 600 million adults were obese [2]. In this scenario, obesity and the associated chronic
low-grade inflammation is now considered one the most important risk factors for devel-
oping type 2 diabetes [3,4], cardiovascular dysfunctions [5], and infectious diseases [6], and
is currently an important risk factor for COVID-19 hospitalization and death [7].

The study of adipose tissue (AT) has substantially changed in the last decades. Until the
late 1940s, AT was considered merely a lipid-containing tissue with no link to metabolism.
In the late 1980s and mid-1990s, serum fat-derived factors such as adipsin, tumor-necrosis
factor (TNF)-α, and leptin were discovered [8]. In consequence, the original role of AT as
an organ that only stores energy was changed by a new concept in which AT is considered
an endocrine organ with key roles in energy homeostasis. Since then, studies on the
development, function, and pathophysiology of AT have increased substantially. In recent
years, the loss of AT functionality has been strongly associated with obesity-induced
metabolic alterations [4,9].

Overweight and obesity are defined as abnormal or excessive fat accumulation that
presents a risk to health [2]. Under a positive energy balance, AT stores the excess of
energy as triglycerides, leading to an expansion of AT. Although this expansion of AT is
a physiological mechanism to store energy, an unhealthy expansion of AT is associated
with metabolic dysfunctions [10,11]. In this minireview, we review the composition and
function of AT and then analyze the pathophysiological mechanisms of AT dysfunction
and emerging measurements to assess its functionality in humans.
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2. Adipose Tissue Composition and Function

Understanding AT structure and function is key to understanding better how it
becomes dysfunctional. White AT can typically be organized into two categories: subcu-
taneous adipose tissue (SAT) and visceral adipose tissue (VAT). SAT includes the gluteus
femoral and abdominal or upper-body area, whereas VAT includes both omental and
mesenteric depots (also known as intra-abdominal fat) [12,13], but also the fat surrounding
the heart [14], and kidneys [15], among others [16].

Within AT, the adipocyte is the cell specializing in the synthesis, storage, and hydroly-
sis of triglycerides [8]. Adipocytes are surrounded by an extracellular matrix (ECM) and
other types of cells such as stem cells, immune cells, endothelial cells, fibroblasts, and
preadipocytes, known as the stromal–vascular fraction. Preadipocytes are stem cells that
can be recruited to proliferate and differentiate to new adipocytes [17]. Indeed, AT expan-
sion can be the result of either pre-adipocyte proliferation or adipocyte hypertrophy [18].
A healthy AT expansion is characterized by AT enlargement due more to adipocyte pro-
liferation than to adipocyte hypertrophy [19,20], an increased angiogenic response that is
proportional to adipose tissue enlargement [21], an adequate extracellular matrix (ECM)
remodeling [22], and minimal inflammation.

Adipocytes also secrete specialized molecules called adipokines that have autocrine,
paracrine, and endocrine functions [23]. The adipokines include hormones, cytokines,
chemokines, growth factors, and the complement system [24]. Intriguingly, the AT also
secretes extracellular vesicles that can transport proteins, lipids, and nucleic acids (i.e.,
microRNAs) that participate in endocrine regulation [25,26].

Each gram of AT contains 1–2 million adipocytes and 4–6 million stromal cells, of
which more than half are immune cells [8]. Among the immune cells found in the AT
are the macrophages. Macrophages that secrete cytokines such as TNF-α, interleukin
(IL)-6, and IL-1β, among others, are described to have an “M1” phenotype, while the
anti-inflammatory “M2” macrophages produce immunomodulatory cytokines such as
IL-4, IL-10, and IL-13 [27,28]. A healthy expansion of adipose tissue is associated with M2
macrophages instead of M1 ones, which are proinflammatory [29].

The ECM is a network consisting of proteins and proteoglycans that provide structural
support and can mediate differentiation, migration, repair, survival, and development of
different cells. Importantly, ECM remodeling is required for healthy AT expansion [22].
ECM remodeling is a rearrangement of the ECM due the breakdown of its components by
proteases such as metalloproteinases (MMPs). This process permits adipocytes to grow
harmonically with adequate ECM replacement and vascularization. During unhealthy AT
expansion, ECM remodeling occurs, with an excess in the synthesis of ECM components,
leading to fibrosis.

3. Adipose Tissue Dysfunction

Fat percentage is highly variable among people, ranging between 5 and 60% of total
body weight [30]. In overfeeding, a compensatory increase in total energy expenditure
occurs but is usually not enough to equilibrate the intake of energy, leading to AT expan-
sion [31–33]. Currently, the AT expansion hypothesis holds that a decreased capacity for
SAT expansion favors visceral fat deposition [34–36]. This suggests that there is a limit of
SAT expandability, which also determinates a genetic susceptibility to develop disorders
such as type 2 diabetes [33]. In this sense, we center the discussion on VAT dysfunction.

The term “unhealthy expansion” of AT refers to the expansion of dysfunctional AT, in
which there is a hypersecretion of pro-inflammatory adipokines, a decreased secretion of
anti-inflammatory adipokines [11,37], a loss of the AT capacity to store energy, and a lack
of coordination between adipocyte expansion and extracellular matrix (ECM) remodeling.
Unhealthy AT expansion and, consequently, metaflammation leads to an impairment in
insulin signaling pathways in the adipocyte, thus decreasing its capacity to store energy [38].
Consequently, a chronic increase in circulating free fatty acids occurs, thus promoting a
deposit of lipids in ectopic tissues and, hence, lipotoxicity [39]. Therefore, the current
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paradigm positions the loss of functionality of AT as a link between obesity and the
associated disorders. Remarkably, the AT buffering capacity of the excess of energy is
highly variable among individuals [40], and those who that have a low threshold of healthy
AT expansion have a phenotype that is metabolically unhealthy, while those who have a
high capacity of healthy AT expansion are metabolically healthy, even if they are classified
as obese, depending on their BMI.

In adults, fat mass expansion occurs mainly through adipocyte hypertrophy, since just
around 8% of adipocytes are renewed each year from preadipocytes [41]. Interestingly, AT
expansion in the femoral area is mainly through hyperplasia in adult men and women after
8 weeks in response to overfeeding [12,41,42]. A healthy expansion of AT requires precise
coordination between adipocyte hypertrophy/hyperplasia, with adequate vascularization
and remodeling of ECM [43,44]. In this sense, when the vasculature does not supply
enough irrigation to a zone containing hypertrophic adipocytes, the latter could be exposed
to hypoxia.

Healthy AT expansion occurs during an entire lifetime, and studies to clarify the
mechanisms by which this expansion occurs are scarce [45]. How excess weight during
early life can contribute to the susceptibility to develop unhealthy expansion in adulthood
is still unknown. Apparently, there is a genetic susceptibility that determines the threshold
to develop unhealthy AT expansion with overfeeding, but this is also influenced by nu-
tritional factors, physical activity, gender, and hormonal status [33]. Omitting the genetic
background, all factors preventing inflammation appear to avoid or at least delay unhealthy
AT expansion, inflammation being a key marker of AT dysfunction.

3.1. Role of ECM Remodeling in Adipose Tissue Dysfunction

Energy availability is variable, and AT needs adequate flexibility to permit its reduc-
tion and expansion with changes in energy balance. The flexibility of the ECM permits
an adequate adaptation of the adipose tissue to these changes of energy storing, permit-
ting a reorganization of its components (ECM remodeling) when the number and size
of adipocytes is modified. Therefore, an altered ECM remodeling during adipose tissue
expansion is a feature of AT dysfunction. In this context, an excessive accumulation of ECM
components (fibrosis) results from an imbalance between the excessive synthesis of fibrillar
components and a slow degradation of these proteins. Chronic overnutrition and AT
expansion triggers an excessive synthesis of ECM components due different mechanisms.
For example, hypertrophy of adipocytes usually does not allow adequate irrigation of the
tissue, thus leading to hypoxia [46–48]. Therefore, low oxygen levels lead to molecular
adaptations in the cell, such as a high expression of hypoxia inducible factor-1 (HIF-1),
which is a transcription factor that increases expression of inflammatory cytokines and
ECM components [48–51]. In addition, the recruitment of inflammatory macrophages
(discussed in Section 3.2) leads to an increased inflammatory environment, with several
cytokines acting on adipocytes and other cells in the AT [52–54]. These cytokines stimulate
adipocytes and fibroblasts to produce ECM components [55,56]. The increased expression
of ECM proteins, such as collagen, leads to a decreased flexibility of ECM [44]. In fact,
collagen VI (an ECM protein) knockout mice consuming a high-fat diet showed larger
adipocytes and a better metabolic profile than their wild-type counterparts [57], suggesting
that a less rigid ECM would facilitate a functional AT expansion during periods of positive
energy balance.

In conclusion, how ECM remodeling occurs is essential as a mechanism leading to AT
dysfunction. In this sense, a higher flexibility of the ECM to reorganize its components and
adapt to changes in the size and number of adipocytes is a feature of healthy AT expansion
while a rigid ECM with an excessive production of its components (e.g., fibrosis) is a feature
of unhealthy AT expansion.
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3.2. Inflammation as a Key Component of AT Dysfunction and Metabolic Impairments

Chronic low-grade inflammation is a key feature of hypertrophied AT in the context
of obesity. VAT expansion is associated with an inflammatory environment and immune
cell recruitment [26,37]. This local inflammatory environment promotes macrophage
infiltration towards the AT, which exacerbates the secretion of proinflammatory cytokines,
thus contributing to a systemic inflammatory state [37,53]. In this sense, macrophage
infiltration is a key event in the genesis of inflammation and AT dysfunction [58–60]. In a
proinflammatory context, the M2 macrophages switch to the M1 phenotype, accentuating
the imbalance between pro- and anti-inflammatory factors [61]. M1–M2 polarization is
a tightly controlled process that responds to environmental changes. Toll-like receptors
(TLR) and inflammasomes are key modulators of macrophage polarization. TLR and
inflammasomes activate NF-kB and STAT 1 signaling, triggering the inflammatory response
in those cells. Wang, Liang and Zen [62], and Castoldi et al. [63] have detailed reviews
on the molecular mechanisms subjacent to macrophage polarization and the role of M1
macrophages in metabolic alterations.

In VAT, M1 macrophages infiltrate AT and surround dead hypertrophic adipocytes,
forming “crown-like” structures [64,65]. M1 macrophages secrete chemoattractant proteins
such as monocyte chemoattractant protein (MCP)-1 (also known as chemokine (C-C motif)
ligand 2, CCL2), thus generating a feedforward and exacerbating inflammation [37,66,67].
In addition, immune cell paracrine interaction with adipocytes results in the loss of AT func-
tionality [68] by inhibiting the differentiation of preadipocytes [69–71], reducing insulin
sensitivity [37,72,73], and decreasing anti-inflammatory adipokine secretion [71,74,75].
The exact molecular pathways initiating macrophage infiltration are unknown. How-
ever, adipocyte death and hypoxia can initiate an inflammatory response [76]. Signaling
pathways activated by these events are JNK and NF-κB, which control several inflamma-
tory and oxidative cascades [77]. JNK and NF-κB activation increase the production of
pro-inflammatory cytokines, endothelial adhesion molecules, and chemotactic proteins,
thus promoting monocyte infiltration in VAT and their subsequent differentiation into M1
macrophages [78]. More detailed mechanisms about the relative relevance of local versus
infiltrated macrophages in AT dysfunction have previously been described [3,78,79].

Another relevant molecular mechanism involved in AT dysfunction is the activation
of the NLRP3 inflammasome. Inflammasomes are protein-signaling platforms that are
assembled after the recognition of danger signals. After assembly, pro-caspase 1 is acti-
vated, which controls the maturation and secretion of interleukins such as IL-1β and IL-18,
which are pro-inflammatory cytokines [80]. Several metabolic stressors such as saturated
fatty acids [81], oxidative stress [82], and ceramides [83] activate the inflammasome [84],
increasing IL-1β secretion in adipocytes and immune cells. In this context, the expression
levels of NLRP3 and IL-1β are increased in the VAT of obese patients with metabolic
alterations when compared with obese patients without these alterations [85], suggesting
that the NLRP3 inflammasome has an important role in metabolic alterations associated
with obesity [86]. In this sense, NLRP3 inflammasome promotes the M1 phenotype in
macrophages from the VAT of obese mice [86,87], enhancing the inflammatory status of the
AT and contributing to its dysfunction. Interestingly, the blockade of NLRP3 inflammasome
activation in human adipocytes decreases the expression of ECM proteins, thus potentially
decreasing AT fibrosis [88].

Inflammation also impairs adipogenesis (new adipocyte formation) [89]. In in vitro inter-
action models, inflammatory factors secreted by macrophages decrease human preadipocyte
differentiation into adipocytes but increase proliferation of fibroblasts and promote a
profibrotic phenotype [90–92]. Thus, an inflammatory environment inhibits adipogene-
sis, leading to an exacerbated and pathological enlargement of existing adipocytes, thus
affecting the healthy expansibility of AT.

In addition to inflammation and ECM remodeling, oxidative stress plays a crucial role
in the pathogenesis of metabolic alterations. Oxidative stress is the imbalance between
the production of ROS (reactive oxygen species) and antioxidant mechanisms. The mito-
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chondrion is the most important sources of ROS [93]. In this sense, it has been proposed
that mitochondrial dysfunction may be a primary cause of AT inflammation [94]. Mito-
chondria dysfunction is characterized by a decrease in mitochondrial biogenesis, altered
membrane potential, a decrease in mitochondrial numbers, and altered activities of oxida-
tive proteins [95]. Recently, Long Xu et al. [96] proposed that mitochondrial dysfunction
triggers macrophage polarization, inducing AT inflammation in obesity. These data show
the relevance of oxidative stress and mitochondrial function, which have been widely
reviewed [95,97,98].

3.3. Adipose Tissue Dysfunction and Metabolic Disturbances

The relationship between obesity and insulin resistance (IR) has been widely described,
and involves numerous signaling pathways, proteins, adipokines, reactive oxygen species,
and inflammation [99]. Insulin signaling disruption is characterized by a decrease in the
ability of cells or tissues to respond to physiological levels of insulin [100,101]. The paracrine
interaction between M1 macrophage secretion and adipocytes compromises adipose cells’
functionality and promotes insulin signaling disruption [53,102,103]. In this inflammatory
context, there is an activation of several proteins, such as c-Jun N-terminal kinase (JNK)
and protein kinase C (PKC), as well as transcription factors like nuclear factor (NF)-κB.
These signaling pathways are associated with inhibition of insulin-receptor substrates
(IRSs) phosphorylation, a decrease in Akt phosphorylation, and an increase in insulin
receptor–serine phosphorylation, contributing to the disruption of insulin signaling [104].

Insulin resistance leads to increased lipolysis in AT. Disorders associated with elevated
levels of free fatty acids (FFA) in blood and metabolic disturbances of these fatty acids
along with intracellular signaling pathways in non-adipose body organs have been termed
lipotoxicity [105,106]. Hypertrophic adipocytes release FFA, which activate macrophages,
triggering a positive inflammatory loop leading to IR in adipocytes and to fatty acid
spillover [39]. In addition, FFA produced by lipolysis in VAT insulin-resistant adipocytes
are drained via the portal vein into the liver, contributing to the hepatic deposit of fatty
acids [107–109]. FFA also are released into the circulation, reaching the pancreas and
skeletal muscle, affecting insulin secretion and signaling, and hence glucose uptake [108–
111]. Likewise, the deposition of fatty acids in the heart and kidneys has also been described
in an obesity context [109,112]. Thereby, under conditions of chronic overnutrition and loss
of healthy AT expandability, surplus energy could be detrimental for the whole organism.

A typical consequence of AT dysfunction is presenting high levels of plasma triglyc-
erides, very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) [113], and
low levels of high-density lipoprotein (HDL) [114,115]. In this sense, the increase in FFA dis-
posal into the liver favors hepatic synthesis of triglycerides and their subsequent increase in
plasma. Additionally, hepatic VLDL synthesis is also increased [116]. Furthermore, with the
increasing triglycerides in plasma, there is a raised exchange of triglycerides for cholesterol
esters in HDL and LDL. Subsequently, the HDL particles become highly enriched in TG and
are more susceptible to degradation [117–119], leading to low HDL levels in plasma. These
low HDL levels are a strong predictor for cardiovascular diseases and mortality [120].

4. Current and Emergent Parameters for the Assessment of Adipose Tissue
Dysfunction

The impact of obesity on morbidity and mortality is continuously rising in the entire
world, and current therapeutic interventions of obesity are initiated too late when people
have associated metabolic or cardiovascular disease. In this context, a more accurate diag-
nosis of obesity, targeting AT dysfunction, would permit classifying people with a high
risk for the early development of cardiometabolic disease, independent of their BMI. As AT
dysfunction increases, the risk of type 2 diabetes and cardiometabolic diseases increases
independently of total fat mass [121–123]. The concept of “metabolically healthy obesity”
(MHO) has been introduced, defining an obese phenotype in which people have insulin
sensitivity, a favorable cardiometabolic profile, and a similar risk of cardiovascular mor-
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bidity and mortality compared with individuals of normal weight [124–126]. The concept
of MHO is still controversial, with no single definition, and there is current discussion
about whether this condition is effectively maintained over time [127]. Despite this, the
identification of AT functionality could be helpful to classify healthy or unhealthy adipose
tissue expansion in clinical practice to prioritize those people susceptible to developing
metabolic disorders. Here we present a critical analysis of current and emergent parameters
associated with obesity and AT dysfunction. All measurements associated with obesity
and adipose dysfunction are summarized in Table 1.

Table 1. Measurements associated with obesity and adipose dysfunction.

Measurements Associated to
Obesity Description Advantages Disadvantages

BMI [128]

Weight divided by height squared.
Depending on its value, classifies
the nutritional status of adults as

“underweight”, “normal”,
“overweight” and “obese”.

Simple and quick to assess in
clinical practice.

Does not discriminate body
composition or AT dysfunction.

Waist circumference [128,129] Assesses fat accumulation at the
abdominal level.

Simple and quick to assess in
clinical practice.

Does not distinguish between
VAT and SAT. There is no

consensus on the measurement
technique.

Metabolic Syndrome [129]

A cluster of risk factors for
cardiovascular disease and type 2

diabetes mellitus. Is diagnosed
when at least three out of five

metabolic alterations are present:
abdominal obesity measured
through waist circumference,

hypertriglyceridemia, hypertension,
low levels of HDL, and/or high

fasting glycemia.

Well documented in
the medical literature.

Diagnosis of metabolic syndrome
may be too late to evaluate the

susceptibility to develop
metabolic alterations.

Waist circumference thresholds
within BMI categories [130]

Evaluates risk of future coronary
events through waist circumference

thresholds stratified by BMI.

Simple and quick to assess in
clinical practice. It could improve
cardiometabolic risk management

in adults with excess adiposity.

It needs to be validated in
different populations and ethnic

groups.

Measurements associated with
adipose dysfunction

VAI [131]

Mathematical model that estimates
visceral functionality based on BMI,
waist circumference, triglycerides,

and HDL levels.

Inversely related to insulin
sensitivity and independently

associated with cardiometabolic
risk.

It may not be useful in the
morbid obesity population (BMI

> 40 kg /m2). It needs to be
validated in non-Caucasian

populations.

HTGW [132]

Simultaneous presence of an
increased waist circumference and

elevated fasting triglyceride
concentrations.

Associated with the content of
VAT, it could screen those
individuals susceptible to

developing metabolic alterations
more quickly.

It needs to be validated in
different populations and ethnic

groups.

Metabolic flexibility [133]

Evaluates the ability of an organism
to adapt substrate oxidation to
substrate availability, measured

through the change in respiratory
quotient under metabolic challenges

such as overnight fasting or
hyperinsulinemic–euglycemic

clamp.

It could improve the early
detection of subjects susceptible to
developing metabolic disorders

Studies are needed to validate the
impact of VAT dysfunction on

metabolic flexibility

BMI: body mass index. VAT: visceral adipose tissue. SAT: subcutaneous adipose tissue. VAI: visceral adiposity
index. HTGW: hypertriglyceridemic waist. HDL: high-density lipoprotein.

4.1. Current Parameters Associated to Obesity

The current classification of obesity, using body mass index (BMI), has several limi-
tations, as BMI is insufficient to account for depot-specific adiposity (as a measure of AT
functionality). Moreover, BMI is the quotient of weight and height squared, and is not able
to distinguish body composition [134]. In this context, the International Atherosclerosis
Society (IAS) and International Chair on Cardiometabolic Risk (ICCR) Working Group
on Visceral Obesity recommend that waist circumference should be adopted as a routine
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measurement in clinical practice, along with BMI, to classify obesity and evaluate cardio-
vascular risk [135]. Moreover, they propose cut-off points for waist circumference together
with BMI to determine risk of future coronary events [130]. Although these recommenda-
tions are not a direct measurement of visceral adiposity functionality, it is an interesting
and applicable approach to identify an obesity phenotype with higher cardiometabolic risk.

Another indicator widely used in clinical practice to evaluate cardiovascular risk is
the diagnosis of metabolic syndrome (MetS). MetS is diagnosed when at least three out
of five metabolic alterations are present, following the Alberti criteria [129]: abdominal
obesity measured through waist circumference, hypertriglyceridemia, hypertension, low
levels of HDL, and high fasting glycemia. The diagnosis of MetS is too late for evaluating
the susceptibility to develop metabolic alterations, since the metabolic alterations triggered
by adipose dysfunction are already clinically manifested. In this sense, evaluating AT
functionality before the development of MetS can be key to the adequate care and treatment
of people with adipose dysfunction.

A widely known method for characterizing metabolic risk is through the evaluation of
fat deposit distribution through waist circumference. Body fat distribution can be classified
either as central adiposity (greater VAT and ectopic fat accumulation associated with
cardiometabolic risk) or peripheral adiposity (SAT accumulation in the thighs and hips,
less associated with cardiometabolic risk) [130]. Usually, increased fat deposition in SAT is
associated with preadipocyte proliferation, a coordination between adipocyte growing and
ECM remodeling, adequate vascularization, and insulin sensitivity. Otherwise, VAT is more
associated with adipocyte hypertrophy, inflammation, oxidative stress, fibrosis, and insulin
resistance. Although waist circumference is the easiest way to measure central adiposity,
it does not discriminate between visceral and subcutaneous fat in the abdominal region.
Moreover, there is no consensus on the measurement method [135]. More importantly, how
do we know if fat accumulation is dysfunctional? Considering that the identification of AT
dysfunction cannot be performed solely through one measurement or method (i.e., BMI,
or waist circumference), or expensive image analysis (such as DEXA, magnetic resonance
imaging (MRI), or computed tomography) several proposals with clinical implications
have emerged.

4.2. Parameters Associated to AT Dysfunction
4.2.1. Visceral Adiposity Index (VAI)

VAI is a sex-dependent mathematical model that estimates visceral functionality based
on BMI, waist circumference, triglycerides, and HDL levels. This index was developed by
using data of 1498 healthy normal/overweight subjects and validated through MRI. VAI
was inversely related with insulin sensitivity evaluated by a hyperinsulinemic–euglycemic
clamp and independently associated with cardiometabolic risk [136]. In a subsequent study,
cut-off points were established according to age in the European Caucasian population to
identify adipose dysfunction [131]. According to the authors, VAI is a clinical marker of
AT dysfunction, able to identify metabolic risk before metabolic syndrome and/or cardio-
vascular complications develop [137]. Despite VAI being simple to implement, it has some
limitations. The applicability of VAI is limited to triglyceride values under 300 mg/dL since
hypertriglyceridemia alone may provide more information on the metabolic status, and it
may not be useful in the morbid obesity population (BMI > 40 kg/m2) [137]. Furthermore,
future prospective studies are needed to validate the VAI in non-Caucasian populations.

4.2.2. Hypertriglyceridemic Waist (HTGW)

Not all people with high girth have visceral accumulation, nor are at high risk of type
2 diabetes or cardiovascular disease. HTGW refers to the simultaneous presence of an
increased waist circumference and elevated fasting triglyceride concentrations. HTGW
represents the loss of the ability to store an energy excess, leading to an increase in both
visceral fat depots and blood lipid levels (hypertriglyceridemia) [138]. HTGW has been
strongly associated with high VAT content [139–141]. The cut-off points proposed are based
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on gender and have been validated in Canadian [142] and Hispanic populations [143].
HTGW is an accessible tool to estimate AT dysfunction and has been associated with
an increased risk of cardiovascular disease and type 2 diabetes in adults [132,144,145]
and adolescents [146]. However, more studies that validate cut-off points in different
populations and age stratification are still lacking.

4.2.3. Metabolic Flexibility

Metabolic flexibility is defined as the ability of an organism to adapt substrate oxida-
tion to substrate availability [133,147,148]. Metabolic flexibility can be measured through
the change in respiratory quotient under metabolic challenges such as overnight fasting or
hyperinsulinemic–euglycemic clamp [149,150]. The respiratory quotient (RQ) is defined
as the ratio between the volume of CO2 produced by the body and the volume of oxygen
consumed, and is used as an indicator of substrate use. Thus, values close to 1.0 indicate
the use of carbohydrates preferably, while values close to 0.7 and 0.8 indicate the use of
triglycerides and proteins, respectively [151,152].

For example, a metabolically flexible subject challenged to a hyperinsulinemic–euglycemic
clamp should utilize glucose as a substrate for oxidation, and then the RQ approaches
1. In contrast, a metabolically inflexible subject is unable to adapt substrate oxidation
to the substrate availability (in this case glucose), which will be evidenced as a low RQ.
Metabolic inflexibility has been proposed as a pathophysiological mechanism for ectopic
lipid accumulation and IR [147]. Sparks et al. [153] showed that the presence of small
adipocytes from SAT was associated with a higher metabolic flexibility. They also observed
an inverse correlation in adipocyte size and metabolic flexibility, suggesting that subjects
with larger adipocytes have a less metabolic flexibility than those with smaller adipocytes.
Moreover, the presence of large adipocytes in SAT was associated with increased serum
inflammatory markers. Noteworthy, the study was carried out in healthy young men,
which shows that metabolic alterations can occur in absence of obesity. The contribution of
AT to metabolic flexibility disruption, especially the role of VAT, is not yet known. However,
it is interesting that, despite how complex the flexibility of metabolism can be, it can also
be a potential marker of adipose dysfunction.

4.2.4. Biomarkers

Adiponectin and leptin are widely studied adipokines that could be markers of AT
dysfunction and cardiometabolic alterations [154]. Adiponectin is considered a “favorable”
adipokine because its actions are related to decreasing inflammation, improving insulin
sensitivity, and reducing hepatic gluconeogenesis [155]. In obese individuals, adiponectin
levels are decreased and inversely related to pathological states such as diabetes and
cardiovascular diseases [156]. Conversely, leptin is a proinflammatory adipokine that
induces monocyte proliferation and stimulates proinflammatory cytokine secretion [157].
Leptin could be an important predictor of insulin resistance independent of the degree
of obesity [158]. Leptin is also related to the thickness of the carotid intima media, thus
predicting atherosclerosis [159]. Since obesity is related to decreased levels of adiponectin
and, in turn, to increased levels of leptin, the adiponectin/leptin (A/L) ratio has emerged
as a biomarker of AT dysfunction. A decreased A/L ratio is associated with a deleterious
secretory profile by the AT [160]. Furthermore, this ratio presents a stronger correlation with
insulin resistance than leptin or adiponectin alone [161], which is useful in the identification
of those individuals at risk of MetS [162]. Despite the A/L ratio seeming to be a promising
indicator, epidemiological studies are needed to establish cut-off points for the different
obesity phenotypes.

5. Conclusions

Obesity is a pandemic that is still increasing in the world. Cardiometabolic diseases,
which are consequences of obesity, are not always dependent on bodyweight and BMI.
Instead, they are strongly associated with AT dysfunction. Unfortunately, the histopatholog-
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ical and molecular events occurring during AT dysfunction are difficult to assess. Therefore,
more investigation is needed to assess AT dysfunction using proxy measurements that
could be important tools contributing to the early identification and classification of patients
with high cardiovascular and type 2 diabetes risks. In this context, future epidemiological
research is necessary to characterize obesity phenotypes through the measurement and
establishment of specific cut-off points for widely studied adipokines, such as leptin or
adiponectin, in order to have a more refined diagnosis of those people at risk of developing
metabolic abnormalities beyond anthropometric evaluation.
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