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Abstract: Herein, we investigated the effect of fish oil supplementation combined with a strength-
training protocol, for 6 weeks, on muscle damage induced by a single bout of strength exercise in
untrained young men. Sixteen men were divided into two groups, supplemented or not with fish
oil, and they were evaluated at the pre-training period and post-training period. We investigated
changes before and 0, 24, and 48 h after a single hypertrophic exercise session. Creatine kinase (CK)
and lactate dehydrogenase (LDH) activities, plasma interleukin-6 (IL-6) and C-reactive protein (CRP)
levels, and the redox imbalance were increased in response to the single-bout session of hypertrophic
exercises at baseline (pre-training period) and decreased during the post-training period in the control
group due to the repeated-bout effect (RBE). The fish oil supplementation exacerbated this reduction
and improved the redox state. In summary, our findings demonstrate that, in untrained young men
submitted to a strength-training protocol, fish oil supplementation is ideal for alleviating the muscle
injury, inflammation, and redox imbalance induced by a single session of intense strength exercises,
highlighting this supplementation as a beneficial strategy for young men that intend to engage in
strength-training programs.

Keywords: non-linear strength training; n-3 polyunsaturated fatty acids; inflammation; muscle
damage; oxidative stress

1. Introduction

Muscle damage induced by unusual eccentric exercises results in several skeletal
muscle changes, including the release of muscle enzymes into the blood, a reduction in
muscle strength, an increase in muscle soreness, and the activation of the inflammatory
process and oxidative stress [1]. Nowadays, it is known that these alterations, when well-
controlled, are required for adequate and complete muscle recovery [1]. However, when
the inflammatory response and oxidative stress are exacerbated, an imbalance occurs in
these processes, impairing or delaying muscle repair and regeneration [1,2]. This condition
also causes high ATP generation via anaerobic metabolism, muscle inflammation, and
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oxidative stress. Oxidative stress leads to a change in iron homeostasis and antioxidant
depletion, as observed by variations in the reduced: oxidized glutathione ratio [3,4]. Indirect
markers of muscle damage—e.g., the plasma activities of creatine kinase (CK) and lactate
dehydrogenase (LDH) [4–6]—are frequently evaluated to monitor the efficiency and risks of
strength-training protocols in exercising subjects and athletes. Usually, the plasma activities
of these enzymes increase within 6 to 8 h after a strength exercise session, peaking between
48 and 72 h and remaining elevated for up to 7 days [5,7]. Delayed-onset muscle soreness
associated with muscle injury also peaks between 24 and 48 h post-exercise, and it is more
pronounced in non-trained individuals and older people than in high-performance strength
athletes [5,7].

After a muscle injury induced by eccentric contractions, the inflammatory response
initiates tissue repair and regeneration [1,8]. This response involves the release of cytokines,
including interleukin-6 (IL-6), interleukin-1b (IL-1b), and tumor necrosis factor-a (TNF-
α). IL-6 is the main cytokine to increase after physical exercise [9,10]. These cytokines
also increase in strenuous, high-intensity, and intermittent exercises [11,12]. These three
pro-inflammatory cytokines act on the liver, stimulating the production and release of
C-reactive protein (CRP), an indicator of systemic acute inflammation [13]. After a single
extenuating aerobic or strength exercise session, CRP plasma levels increase [14,15].

The term the “repeated-bout effect” (RBE) commonly refers to the protective adapta-
tion against muscle injury caused by an identical or a similar bout of eccentric exercises
after a single bout of eccentric exercise or after a period of strength training [16–18]. This
phenomenon has been observed in several animal and human models and usually lasts
from weeks to months [19]. The mechanisms involved in the RBE are not entirely un-
derstood, but several theories have been proposed, including mechanical, cellular, and
neural adaptations [18,19]. Potential interventions for increasing this effect can also help to
decrease the impact of muscle damage in subjects during their training program.

Muscle disorders (e.g., lesions, oxidative stress, inflammation, and atrophy) often oc-
cur in several conditions, including in exercise-induced injuries and chronic diseases (e.g.,
obesity, diabetes, metabolic syndrome, and cardiovascular diseases). Cryotherapy [20–22]
and the administration of antioxidant and anti-inflammatory agents [23,24], including
omega-3 polyunsaturated fatty acids (n-3 PUFAs) [25–28], have been proposed to provide
a protective effect in these muscle disorders or exercise-induced muscle injury. The main
anti-inflammatory n-3 PUFAs comprise eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA), which have been demonstrated to reduce plasma lipids [3,29,30], oxidative
stress conditions [31,32], insulin sensitivity [31,33,34], and inflammation [33,35]. Similar to
regular and moderate aerobic exercise, n-3 PUFAs reduce fat mass [36,37] and cardiovas-
cular risks [38,39], but they do not raise physical capabilities [40] or performance [41,42].
Interestingly, when young endurance athletes are supplemented with highly purified n-3
PUFAs (2.1 g DHA + 240 mg EPA per day for 10 wks), they present reduced muscle damage
(plasma CK and LDH activities), inflammatory markers (plasma IL-6 and IL-1β), and
muscle soreness after an eccentric-induced muscle damage exercise session [43].

It was observed that n-3 PUFAs increase muscle strength gain in older women sub-
mitted to a strength-training program [44] or resistance exercise training [44–46]. Due to
their anti-inflammatory effects, n-3 PUFAs have beneficial effects in some diseases, such as
neurodevelopmental disorders related to oxidative stress (Rett Syndrome) [47], multiple
sclerosis [48], and depression [49]. The effects of fish oil supplementation on muscle dam-
age induced by different physical exercise protocols have also been demonstrated in several
studies. Acute supplementation (3 days, 3 g per day) with krill oil (a natural source of n-3
PUFAs) was sufficient to reduce muscle damage induced by exercise (plasma CK activity)
and malondialdehyde content, a stress oxidative marker, but it did not have a significant
effect on inflammatory cytokines in resistance-trained young men [28]. In another study,
it was observed that supplementation with fish oil for 6 wks in untrained young men
induces a reduction in oxidative stress markers (thiobarbituric-acid-reactive substances and
H2O2-induced DNA damage) after a single bout of eccentric exercise, but it did not have an



Nutrients 2023, 15, 1708 3 of 19

effect on muscle damage markers or muscle soreness [50]. In highly trained athletes (power
training or high-intensity interval training activities), krill oil supplementation (2.5 g per
day), for 12 weeks, was associated with reduced oxidative stress after a high-intensity
physical exercise session [51]. In untrained young men, fish oil supplementation (600 mg
EPA and 260 mg DHA per day), for 8 weeks, was able to attenuate the muscle strength loss,
range of motion, muscle soreness, and plasma IL-6 increase induced by a session of maximal
voluntary eccentric contractions of the elbow flexors [52]. Some of these effects (the range of
motion and serum CK activity) were also observed when subjects were supplemented for a
shorter period (4 weeks) [53]. Previously, fish oil supplementation (3 g per day) for 4 weeks
was also associated with reduced muscle soreness, an increase in plasma IL-6, and muscle
peak power after downhill running at 65% VO2max for 60 min [54]. In another study, it was
observed that fish oil supplementation (6 g per day, for 7 weeks) improved muscle recovery
and decreased muscle soreness after a damaging eccentric exercise session in recreationally
active participants [55]. In summary, previous studies have evaluated the modulation of
n-3 PUFA supplementation on muscle injury induced by a single session of damaging
exercises in untrained and trained participants, as well as in athletes. However, there are
no studies addressing the combined effect of fish oil supplementation and strength exercise
training on muscle damage in untrained participants. Thus, our study aimed to demon-
strate the effect of n-3 PUFA supplementation in combination with a strength-training
protocol for 6 weeks on the muscle injury, inflammation, and redox balance induced by
a single bout of intense strength exercises in untrained young men. For this purpose, we
evaluated the plasma levels of cytokines and C-reactive protein, cortisol and testosterone,
the activities of creatine kinase and lactate dehydrogenase, and redox state parameters
(total iron, heme iron, reduced and oxidized glutathione, and Trolox equivalent antioxidant
capacity—TEAC).

2. Material and Methods
2.1. Participants

All experimental procedures were carried out following the approval of the Ethical
Committee for Research of the Cruzeiro do Sul University (Protocol Number: 0392009) and
performed in compliance with the Helsinki Declaration. Initially, a total of 21 healthy men,
between 20 and 30 years old, were eligible to participate in the study. All participants were
classified as physically active using the International Questionnaire of Physical Activity, but
they had not engaged in any aerobic or resistance training program in the last 12 months.
In this study, we decided to investigate only young men to eliminate the influence of the
hormonal variations observed in women due to the menstrual cycle, since female hormones
have been associated with different leukocyte responses during exercise-induced muscle
injury [56]. Individuals with muscle injury, endocrine disease, and hormonal or nutritional
supplement usage were excluded from the study. The participants were randomly divided
into two groups: a control group (n = 10) and a group supplemented with fish oil, a natural
source of n-3 PUFAs (n = 11). At the end of the experimental protocol, 2 participants
from the control group and 3 from the fish oil group were excluded from the study for
different reasons: withdrawal from participating in the study (1 from the fish oil group),
an inability to attend the strength-training protocol (at least 85% of participation; 2 from
the control group and 1 from the fish oil group), and inadequate supplementation (at least
90% adherence, as assessed by the capsule count at the end of the experimental protocol;
1 from the fish oil group). Thus, at the end, 8 participants of each group completed the
experimental protocol, and their results were used in the analysis.

2.2. A Single Bout of a Strength Exercise Protocol

A single bout of strength exercises, consisting of 6 sets of 10 maximum repetitions,
with intervals of 1 min between sets, was applied at baseline (the pre-training period) and
after six weeks of training (the post-training period). The temporal responses (before and 0,
24, and 48 h after the single session) of muscle damage markers—the plasma activity of CK
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and LDH, and the circulating concentration of inflammatory cytokines (IL-6, TNF-α, and
IL-1β) and CRP—were monitored, according to previous studies [5,57]. Plasma cortisol
and testosterone levels were measured before and immediately after the single session of
strength exercises, and the redox parameters were only measured after 24 h.

2.3. Strength-Training Protocol

All participants were supervised by a well-experienced professional in strength train-
ing, for the whole training protocol period (6 weeks), which was performed at the Cruzeiro
do Sul University (Sao Paulo, Brazil). As an exclusion criterion, a minimum participation
of 85% was required for the entire strength-training protocol. All participants were sub-
mitted to a strength-training protocol, which comprised a daily undulating periodization
model [17] for six weeks, three times per week. Briefly, the participants performed the
following training schedule: weeks 1, 3, and 6 (hypertrophy)—6 series of 10 repetitions
with a 1 min interval (6 × 10 with 1 min interval); weeks 2 and 4 (strength)—5 × 5 with a
3 min interval; and week 5 (resistance)—2 × 20 with a 1 min interval.

2.4. Supplementation with Fish Oil

Fish oil capsules were provided by the Naturalis Nutricao & Farma LTDA (Sao Paulo,
Brazil). The participants received 3 capsules of fish oil per day as recommended by
the manufacturer. As demonstrated in previous studies, nutritional intervention or fish
oil supplementation changes the fatty acid profile after a few weeks [53,58]. A high-
performance liquid chromatography (HPLC) analysis for the determination of the fatty
acid profile in the fish oil capsules demonstrated that each capsule contained 260 mg EPA
and 202 mg DHA. Therefore, the daily doses of n-3 PUFAs were 780 mg of EPA and 606 mg
of DHA. The participants were supplemented for the six weeks of the daily undulating
strength training. At the end of the experimental protocol, the remaining fish oil capsules
were counted to determine the adherence of the participants to the fish oil supplementation.
One participant was excluded because he had less than 90% adherence.

2.5. Blood Collection and Plasma Separation

The participants were instructed to not eat for at least four h before blood collection for
a biochemical analysis of the plasma. The participants were instructed to have their regular
breakfast after waking up (up to 07:00–08:00 a.m.), and blood collection was performed
between 11:00 and 12:00 a.m.; therefore, all participants were in the same feeding state.
Samples were collected before and 0, 24, and 48 h after a single session of a bout of strength
exercise. After that, the blood samples were immediately processed for plasma separation,
which was aliquoted and kept at −80 ◦C until analysis.

2.6. Measurements of Plasma Cytokines and C-Reactive Protein

IL-6, TNF-α, and IL-1βwere measured using a quantitative immunoassay, an Enzyme-
Linked Immunosorbent Assay (ELISA), with kits obtained from R&D System (Minneapolis,
MN, USA). The concentration of plasma CRP was determined using a commercial kit from
Bioclin (Belo Horizonte, Minas Gerais, Brazil) with immunoturbidimetry.

2.7. Plasma Activities of Creatine Kinase and Lactate Dehydrogenase

The activities of plasma CK and LDH were measured using a commercial kit from Bio-
clin (Belo Horizonte, Minas Gerais, Brazil). CK catalyzes the dephosphorylation of creatine
phosphate with the production of adenosine triphosphate (ATP), which reacts with glucose
in hexokinase, forming glucose-6-phosphate (G6P). Glucose-6-phosphate dehydrogenase
oxidizes G6P to 6-phosphogluconate, reducing nicotinamide adenine dinucleotide (NAD+)
to NADH, which can be detected via spectrophotometry at 340 nm. LDH catalyzes the
pyruvate reduction using NADH, producing lactate and NAD+. The decomposition of
NADH is proportional to the enzyme activity, and it can be measured at 340 nm.
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2.8. Measurements of Cortisol and Testosterone

The plasma concentrations of testosterone and cortisol were determined using ELISA,
following the specifications of the kits from Cayman Chemical Company (Ann Arbor, MI,
USA), according to the manufactures’ instructions.

2.9. Determination of Redox State Parameters
2.9.1. Total Iron Determination

The plasma total iron concentration was determined using a kit from Doles-Bioquímica
Clínica (Goiania, Brazil). The Fe2+:ferrozine complex formed after reducing the ferric ions
(Fe3+) released from several sources during exercise was measured at 560 nm. The reducing
system comprises 0.36 M hydroxylamine chloride, 0.10 M glycine, 14 mM thiosemicar-
bazide, and 0.50 mM octylphenoxypolyetoxyethanol, at pH 2 [59]. The specific effects
of exercise on redox parameters and background levels in rested subjects were normal-
ized to 1.0, and post-exercise values are, thus, expressed as relative values (compared
to pre-exercise values). Areas under curves were calculated between background levels
(pre-exercise) and 24 h post-exercise levels (AUCpre-24 h).

2.9.2. Heme Iron Determination

Plasma heme iron (from hemoglobin, myoglobin, and other heme proteins) was
assayed using a method based on heme iron oxidation by the ferricyanide anion contained
in a solution of 0.10 M KH2PO4, 60 mM K3[Fe(CN)6], 77 mM KCN, and 82 mM Triton
X-100. Heme iron cyanide is stoichiometrically detected at 540 nm, using hemoglobin
as a standard curve. The background levels in rested subjects were normalized to 1.0,
and post-exercise values are, thus, expressed as relative values (compared to pre-exercise
values). Areas under curves were calculated between background levels (pre-exercise) and
24 h post-exercise levels (AUCpre-24 h).

2.9.3. Plasma Trolox Equivalent Antioxidant Capacity (TEAC)

The Trolox equivalent antioxidant capacity in plasma was assayed as described by
Van den Berg et al. [60]. Briefly, a 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonate radical
solution (ABTS−) was prepared by mixing 2.5 mM 2,2′-azobis-(2-amidinopropane) and HCl
(ABAP) with 20 mM ABTS stock solution in 100 mM phosphate buffer (pH 7.4), containing
150 mM NaCl (PBS). The solution was heated for 12 min at 60 ◦C, protected from light,
and stored at room temperature, and absorbance at 734 nm should be 0.35–0.40 to ensure
sufficient ABTS—formation. Since ABTS—gradually decomposes (approximately 2% per
hour), regular blanks (in the absence of samples) were recorded for appropriate subtractions.
The background levels in rested subjects were normalized to 1.0, and post-exercise values
are, thus, expressed as relative values (compared to pre-exercise values). Areas under
curves were calculated between background levels (pre-exercise) and 24 h post-exercise
levels (AUCpre-24 h).

2.9.4. Reduced and Oxidized Glutathione Measurements

The reduced (GSH) and oxidized (GSSG) glutathione content in plasma was measured
as described by Rahman et al. (Rahman et al., 2006) [61]. The method is based on the
reaction of reduced thiol groups (such as in GSH) with 5,5′-dithiobis-2-nitrobenzoic acid
(DTNB) to form 5-thio-2-nitrobenzoic acid (TNB), which is stoichiometrically detected via
absorbance at 412 nm. Purified GSH and GSSG were used as standards. The background
levels in rested subjects were normalized to 1.0, and post-exercise values are, thus, expressed
as relative values (compared to pre-exercise values). Areas under curves were calculated
between background levels (pre-exercise) and 24 h post-exercise levels (AUCpre-24 h).

2.10. Statistical Analysis

The results are presented as mean± standard error of the mean (S. E. M.) and analyzed
using Student’s t-test when comparing AUC changes (pre- and post-training) between
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the fish oil and control groups and using two-way ANOVA, followed by Bonferroni post-
test for multiple comparisons to evaluate the effect of training and/or supplementation
(control pre-training vs. control post-training; fish oil pre-training vs. fish oil post-training;
control pre-training vs. fish oil pre-training; and control post-training vs. fish oil post-
training). The Cohen’s d effect size values were determined based on the mean differences
between the fish oil and control groups and pooled SD: Cohen’s d = (M2 −M1)/SDpooled;
SDpooled =

√
((SD1

2 + SD2
2)/2) [62,63].

3. Results
3.1. Plasma Activity of Creatine Kinase and Lactate Dehydrogenase

A single bout of strength exercise increased the CK and LDH activities in the control
and n-3 PUFA-fed groups at baseline (the pre-training period), as shown in Figure 1A,C,
respectively. During the post-training period, this increase was attenuated in the control
group and reduced by the fish oil supplementation. We did not find any statistical difference
using the two-way ANOVA test, but when the AUCs of the control group and the fish
oil group were compared using Student’s t-test, we observed a marked difference, as
demonstrated in Figure 1B,D. The AUCs of the CK and LDH activities were also analyzed
using Cohen’s d effect size; the supplemented group exhibited a higher attenuation than
the control group (effect sizes of −1.44 and −1.40, respectively). The intra-assay coefficient
of variance (CV%) was 3.6–7.0% for CK activity and 4.4–9.0% for LDH activity.
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Figure 1. Effect of the fish oil supplementation on plasma activity of (A) creatine kinase (CK) and
(C) lactate dehydrogenase (LDH), in response to a single bout of strength exercises, at baseline
(pre-training period) and after 6 weeks of daily undulating strength training (post-training period).
On the left, time-dependent plasma CK and LDH activities (before and 0, 24, and 48 h after a single
bout of strength exercises). On the right, decrease in the area under curve (AUC) of the temporal
plasma CK (B) and LDH (D) activities after 6 weeks of daily undulating strength training. Results
presented as mean ± S.E.M. p < 0.02 for CK activity, and p < 0.05 for LDH activity, comparing control
group with fish oil group.

3.2. Determination of Inflammation Markers

A single bout of strength exercises increased the plasma concentrations of IL-6 and
CRP in both groups at baseline (the pre-training period). Following the strength-training
protocol (the post-training period), this increase was significantly attenuated in the control
group and exacerbated in the fish-oil-supplemented group (Figure 2A,C). No difference
was found using the two-way ANOVA test, but a marked reduction was observed when
the AUCs of the control group and the fish oil group were compared using Student’s t-test,
as demonstrated in Figure 2B,D. When the AUCs of the plasma IL-6 and CRP levels were
compared using Cohen’s d effect size, the supplemented group showed a higher reduction
than the control group (effect sizes of −1.30 and −1.21, respectively). The linearity (r2)
for the IL-6 assay was 0.983. The intra-assay coefficient of variance (CV%) was 4.2–8.50%
for IL-6 and 1.1–3.9% for CRP. We did not observe any significant alteration in the plasma
IL-1b and TNF-α levels.
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3.3. Plasma Testosterone: Cortisol Ratio

The testosterone: cortisol ratio was not significantly modified by a single bout of
strength exercises before (pre-training) and after (post-training) six weeks of the strength-
training protocol. Fish oil supplementation did not alter this response (Figure 3). The
linearity (r2) for the testosterone assay was 0.991, and for the cortisol assay, it was 0.966.
The intra-assay coefficient of variance (CV%) was 4.1–6.2.0% for testosterone and 3.7–8.3%
for cortisol.
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Figure 2. Effect of fish oil supplementation on plasma interlekin-6 (IL-6) (A) and C-reactive protein
(CRP) (C) concentrations, in response to a single bout of strength exercises, at baseline (pre-training
period) and after 6 weeks of non-linear strength training (post-training period). On the left, time-
dependent plasma concentration (before and 0, 24, and 48 h after a single session of hypertrophic
exercises). On the right, reduction in the area under curve (AUC) of the temporal plasma concen-
trations of IL-6 (B) and CRP (D) after 6 weeks of daily undulating training, associated or not with
fish oil supplementation. Results presented as mean ± S.E.M. p < 0.02 for IL-6, and p < 0.05 for CRP,
comparing control group with fish oil group.
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Figure 3. Effect of fish supplementation on plasma testosterone:cortisol ratio in response to a single
bout of strength exercise before (pre-training) and after (post-training) 6 weeks of daily undulating
strength training. Results presented as mean ± S.E.M.

3.4. Measurement of Plasma Redox Parameters

After six weeks of daily undulating strength training, it was found that fish oil sup-
plementation did not modify the plasma concentrations of iron, heme iron, and TEAC
after 24 h of a single bout of strength exercises when compared to those of the control
group, using Student’s t-test. However, it significantly increased GSH and decreased GSSG
levels (effect sizes of +1.44 and −1.55, respectively) (Figure 4A). Consequently, the ratio of
GSH/GSSH was increased by fish oil supplementation (an effect size of +5.97) (Figure 4B).
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4. Discussion

Various previous studies have demonstrated the beneficial effects of fish oil supple-
mentation on markers of muscle injury (plasma CK and LDH activities), inflammation
(plasma levels of pro-inflammatory cytokines), muscle soreness, and oxidative stress in-
duced by different protocols of a single bout of damaging exercises, both in untrained and
trained participants, including athletes [28,50–54]. In these studies, the participants were
supplemented with fish oil prior to a protocol of a single bout of exercise that induces
muscle damage. The main novelty of our study is that it addresses the effect of fish oil
supplementation in combination with strength exercise training on exercise-induced muscle
damage in untrained participants. Thus, our study is particularly important because it
demonstrates that, in untrained young men submitted to strength exercise training, fish oil
supplementation is ideal for alleviating the muscle injury, inflammation, and redox balance
induced by a single bout of intense strength exercises.

At baseline (the pre-training period), a single bout of strength exercise increased
plasma CK and LDH activities and IL-6 and CRP concentrations, classical markers of
muscle damage and inflammation, respectively. However, these effects were significantly
attenuated after six weeks of daily undulating training (the post-training period), demon-
strating a protective muscle adaptation to the training. The RBE occurs when the individual
presents attenuation in muscle injury, inflammation, and soreness after the same or similar
bouts of physical exercise or training over time. Thus, the RBE is an important physiological
adaptation to protect the skeletal muscle against excessive damage and inflammation, re-
ducing the soreness and muscle recovery time after successive bouts of the same or similar
physical exercise sessions or training [16–18]. Two components are mainly involved in
the RBE in our study: (i) the first bout of strength exercise and (ii) the strength training.
Regular physical training promotes anti-inflammatory and antioxidant responses [64,65],
which additionally contribute to the RBE.

After muscle damage, an adequate and well-controlled inflammatory response is re-
quired to completely restore muscle homeostasis and for recovery [1]. This response
involves the recruitment of leukocytes into injured tissue and the production of pro-
inflammatory cytokines, consequently increasing these mediators’ local and systemic
concentrations [1,10]. However, an exacerbated inflammatory response after eccentric
exercises can impair or delay muscle repair and regeneration. In our study, we observed
an increased temporal plasma release of IL-6 and CRP after a single bout of strength ex-
ercises, but there were no differences in TNF-α or IL-1β plasma concentrations. Previous
studies have also found no alterations in pro-inflammatory cytokines induced by physical
activity [5,14]. The pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, are essential for
the acute inflammatory response, as they stimulate the production of acute-phase proteins,
including CRP. This response depends on the characteristics of the physical exercise in-
volved, including the intensity, volume, and intervals among series [15,66]. Other authors
suggest that pro-inflammatory cytokines are locally produced by the exercised muscles
and released into circulation but rapidly degrade, remaining stable in plasma for a short
period [8]. These observations can explain, at least in part, our results concerning the
pro-inflammatory cytokines IL-1β and TNF-α.

Supplementation with n-3 PUFA additionally increased the RBE, as demonstrated by
the reduction in the plasma activities of CK and LDH and the circulating concentrations
of IL-6 and CRP. Although the mechanisms involved in the RBE are not entirely known
yet, cellular modifications may occur as a result of the fish oil supplementation, improving
the protective adaptation against muscle damage induced by strength exercises. Some
studies suggest that the increased recruitment of sarcomeres during contraction decreases
mechanical stress, avoiding the rupture of myofibrils [67]. The reduced inflammatory
process in the participants submitted to the fish oil supplementation could further attenuate
the response induced by strength exercises.

The relationship between testosterone and cortisol in response to physical exercise
indicates physical stress or an imbalance between anabolic and catabolic processes [68,69].
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We did not observe any alteration in the testosterone/cortisol ratio as a result of the strength-
training protocol or the fish oil supplementation, suggesting that our experimental protocol
could not modify physical stress or the anabolic/catabolic balance. Uchida et al. [57] evalu-
ated the influence of different intensities (50, 75, 90, and 110% of 1RM) of the bench press
exercise on the same hormones, and they also did not find any changes in the plasma con-
centrations of both steroid hormones. The authors suggested that the possible cause of this
effect was the low volume of exercise and muscle mass involved in the bench press exercise.
Crewther et al. [70] studied the impact of three different sessions of squat exercises (45%,
75%, and 88% of 1RM) on plasma testosterone and cortisol concentrations. Interestingly,
the session of 75% led to the highest increase compared to the other sessions. Thus, the
modulation of the testosterone/cortisol ratio depends on the experimental protocol.

Several authors have used antioxidant compounds to reduce oxidative stress induced
by physical exercise [71,72], including interventions with fish oil [25–28]. Regarding redox
parameters at the end of the non-linear strength training in our study, no changes in the
plasma concentrations of iron, heme iron, and TEAC were observed as a result of the fish
oil supplementation. However, increased GSH, decreased GSSG, and consequently an in-
creased GSH/GSSG ratio were found in the supplemented group, suggesting an improved
antioxidant defense. GSH rapidly reacts nonenzymatically with reactive oxygen/nitrogen
species (ROS/RNS), including the hydroxyl radical, dinitrogen trioxide (N2O3), and per-
oxynitrite [73]. Moreover, GSH also participates in enzymatic antioxidant defense, e.g.,
as a substrate of the GPx-mediated reduction of peroxides, resulting in the production of
GSSG. The fish oil supplementation improved the GSH/GSSG antioxidant system. An
elevated GSH/GSSG ratio is required to control the reducing environment [74]. The effects
of n-3 PUFAs and/or physical exercise might be effective under conditions of an impaired
redox balance [26], including in older people [75] and in metabolic and inflammatory
diseases [47,76].

The anti-inflammatory effect of n-3 PUFA has been demonstrated by various research
groups, and it has been related to the beneficial effects of these metabolites in different
inflammatory diseases, obesity, diabetes mellitus, metabolic syndrome, cardiovascular
diseases, fatty liver disease, and cancer [77–80]. The mechanisms of action of n-3 PUFA
involve several signaling pathways, including the activation of GPR120 [81], the generation
of anti-inflammatory and/or pro-resolution lipid mediators (resolvins, protectins, and
maresins) [82], and the reduction of pro-inflammatory lipid derivatives (prostaglandin
and thromboxane 2 series, and leukotriene 4 series) [83]. Our group also demonstrated
that n-3 PUFA supplementation improves mitochondrial function in the skeletal muscle
of an animal model of high-fat diet-induced obesity [34]. We propose herein that n-3
PUFA could potentialize the repeated-bout effect induced by strength training through
several actions, including (1) the anti-inflammatory effect, reducing the production of pro-
inflammatory cytokines; (2) improved mitochondrial function in skeletal muscle, decreasing
the generation of lipid derivatives and reactive oxygen species; and (3) decreased oxidative
stress, resulting in diminished muscle damage. This proposition and the main findings of
this work are summarized in Figure 5.

Our study is the first to demonstrate the beneficial effects of fish oil supplementation in
combination with a strength-training protocol for 6 weeks on the muscle damage markers,
inflammation, and redox imbalance induced by a single bout of strength exercises. It is
important to describe some of the limitations of our study. First, we investigated the effects
of n-3 PUFAs and strength training for a short period (6 weeks); further studies are required
to evaluate the effects for longer periods. Second, we assessed the adherence to the fish oil
supplementation only by counting the remaining fish oil capsules at the end of the experi-
mental protocol; a direct measurement (e.g., the determination of plasma fatty acid profiles)
is lacking. Third, we analyzed only young men; further studies are required to analyze
young women at different phases of the menstrual cycle and other groups of participants,
including older people. Lastly, we used a small sample size (n = 8 per group), which could
have reduced the statistical power of our analysis. However, the Cohen’s d effect size values
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of our data (d > 1.0) suggest a large effect of the fish oil supplementation. In addition, the
effects of fish oil supplementation on exercise-induced muscle injury were also observed in
previous studies that used a similar number of participants (n = 7–11 per group) to demon-
strate the effects of the supplementation [53–55]. Thus, based on the findings of previous
studies, the well-controlled strength-training protocol that we used, and the Cohen’s d
effect size values that we found, our results seem to be statistically representative.
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In summary, supplementation with n-3 PUFAs improved the RBE and redox pa-
rameters in healthy young men submitted to daily undulating training for six weeks,
as demonstrated by the decreased muscle damage (plasma activities of CK and LDH),
pro-inflammatory markers (IL-6 and CRP), and redox biomarkers (increased GSH/GSSG
ratio) after a bout of strength exercises. Thus, our study is of particular interest because
it demonstrates that, in untrained young men submitted to a strength-training protocol,
fish oil supplementation is ideal for alleviating the muscle injury, inflammation, and redox
imbalance induced by a single session of intense strength exercise. Our findings highlight
fish oil supplementation as an effective nutritional strategy to reduce the muscle damage,
inflammation, and redox imbalance in untrained individuals who intend to engage in
strength-training programs. Further studies are necessary to determine the persistence of
this modulation for prolonged training periods and the effects of fish oil supplementation
combined with strength exercise training in other groups of participants, including young
women and older people.
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