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Abstract: Long-chain polyunsaturated fatty acids (LCPUFAs) are semi-essential fatty acids widely
studied in adult subjects for their healthy-heart effects, especially on secondary prevention in patients
who already experienced a cardiac event. LCPUFAs consumption is safe, without adverse effects,
and they are usually well-tolerated; they can be taken either in foods or as nutritional supplements.
LCPUFAs’ positive effect on global health has been worldwide recognized also for pediatric patients.
In childhood and adolescence, research has mainly focused on LCPUFAs’ effects on neurodevelop-
ment, brain and visual functions and on maternal–fetal medicine, yet their cardiovascular effects in
childhood are still understudied. Atherosclerosis is a multifactorial process that starts even before
birth and progresses throughout life; thus, cardiovascular prevention is advisable and effective from
the very first years of life. Nutritional and lifestyle interventions are the main factors that can interfere
with atherosclerosis in childhood, and the consumption of specific nutrients, such as LCPUFAs,
can enhance positive nutritional effects. The aim of our narrative review is to analyze the effect of
LCPUFAs on cardiovascular risk factors and on cardiovascular risk prevention in developmental age,
focusing on specific conditions such as weight excess and dyslipidemia.

Keywords: hypercholesterolemia; hypertriglyceridemia; long-chain polyunsaturated fatty acids;
NAFLD; omega-3; pediatrics; overweight

1. Introduction

Long-chain polyunsaturated fatty acids (LCPUFAs) can be classified as nutraceuticals,
as they are nutrients that can have positive effects on human health. In the past decades,
LCPUFAs have been widely studied in adult subjects for their healthy-heart effects, and
promising results have been reached in cardiovascular prevention and treatment [1]. In
addition, LCPUFAs have many positive effects in developmental age. In childhood and
adolescence, research has mainly focused on LCPUFAs’ effects on neurodevelopment,
brain and visual functions and on maternal–fetal medicine [2]. LCPUFAs healthy-heart
actions in developmental age have been studied only in recent years, yet this seems to be
an important issue, as LCPUFAs seem to exert positive cardiovascular actions in children
and adolescents as well. The aim of our narrative review is to analyze LCPUFAs’ effects on
cardiovascular risk prevention in children and adolescents.

2. Cardiovascular Risk in Developmental Age

Coronary heart disease (CHD) is one of the major morbidity and mortality causes
in Western countries [3]. CHD affects mainly adult subjects, but it is worldwide known
and accepted that the atherosclerotic process starts before birth and progresses throughout
childhood [4,5]. Atherosclerosis is a multifactorial process, and the exposure to condi-
tions linked to increased cardiovascular risk accelerates and worsens the atherosclerotic
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cascade [6]. The main cardiovascular risk factors are summarized in Figure 1, which are
adapted from the INTERHEART Study data [7].
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Figure 1. The main cardiovascular risk factors, derived from the INTERHEART Study data. Hyperc-
holesterolemia is highlighted in red, as it is one of the most remarkable risk factors in pediatric age
(adapted from reference [7]).

CHD prevention is highly recommended and advisable starting from fetal age and
throughout childhood and it can be performed at different stages, as shown in Table 1.

Table 1. Types of prevention.

Different Types of Prevention

Primordial prevention Aimed at preventing risk factors

Primary prevention Aimed at early identification and treatment of risk factors

Secondary prevention Aimed at reducing the risk of other CHD events in subjects
who have already had CHD events

CHD risk factors can be present starting from birth, often on a genetic basis, or they
can become evident in the following years of life both on a genetic and metabolic basis.
CHD detection, treatment and risk stratification is fundamental in developmental age [8].
Hypercholesterolemia, especially in its familial form, is a cardiovascular risk factor already
present, detectable and treatable from the first years of life, and an early and adequate
treatment literally helps patients “gain decades of life” [9]. The main tools that can be
used in CHD prevention in childhood are nutrition, lifestyle changes, nutraceuticals and
pharmacological treatment, according to the extent and the type of risk factor that has to
be treated. LCPUFAs are among the most widely studied nutraceuticals in cardiovascular
prevention [8].

3. Long-Chain Polyunsaturated Fatty Acids (LCPUFAs)

Fatty acids are fat-soluble compounds consisting of hydrocarbon chains with a methyl
group at one end and a carboxyl group at the other one. The biological activity of fatty
acids is defined by the presence, number and position of each double bond present in
each compound as well as by the length of the carbon chain itself [10]. Fatty acids are
defined as “unsaturated” when they contain at least one double bond within their chain
and “polyunsaturated fatty acids” (PUFAs) when two or more double bonds are present
in the acyl chain. Otherwise, fatty acids are defined as “saturated” when they do not
contain any double bonds [10]. PUFAs are metabolized in several tissues, although mostly
in the liver [11].

3.1. Omega-3 and Omega-6 Series

PUFAs can be subdivided in two families, both having important implications in
human health: “omega-3” and “omega-6” series, according to the location of the last double
bond to the methyl terminal of the molecule. Fatty acids that cannot be synthesized by
humans are considered as “essential fatty acids”, and they must be introduced with diet.
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Essential fatty acids are linoleic acid (LA, C18:2, precursor of the n-6 series) and α-linolenic
acid (ALA, C18:3, precursor of the n-3 series). As shown in Figure 2, LA and ALA are
the “founder” members of each PUFA family, and as essential fatty acids, they need to be
introduced with diet [12].
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Figure 2. Biosynthesis pathway of LCPUFAs from precursors, adapted from Patterson et al. [12].

As mentioned above, LA is the precursor of omega-6 PUFAs, and ALA is the pre-
cursor of omega-3 PUFAs, both being progressively desaturated and elongated by the
same enzymes [13–16]. Eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and
docosaexaehnoic acid (DHA) derive from ALA, and arachidonic acid (AA) derives from
LA, respectively, and they are the most relevant fatty acids. These fatty acids are consid-
ered as “conditionally essential” because they can be synthesized by humans, but their
synthesis depends on the relative availability of the respective substrate and on the efficacy
of the converting enzymes [16,17]. In humans, this process seems to be insufficient; studies
showed that in young men, the conversion rate of ALA to EPA and DHA was 8% and 4%,
respectively, whereas in healthy young women, the conversion rate was 21% for EPA and
9% for DHA [18]. EPA can also be a substrate for the creation of DHA and vice versa, even
if the conversion efficiency of EPA into DHA is <0.1% in adult males [19,20].

In the European population, the mean intake of fatty acids stands at 28–42% of the
total daily energy consumed [21], whereas in the ancestral diet, the intake of these nutrients
has been esteemed to be approximately 20–30% of the total energy [22,23]. Basically,
during the last decades, industrialized societies have experienced a dramatic increase in the
consumption of lipids, specifically saturated fats, omega-6 PUFAs and trans-fatty acids, as
well as an overall decrease in omega-3 PUFAs intake [24]. As a result, in Western countries,
the average LA dietary intake is 5 to 15 times higher than that of ALA [25]. Indeed, although
the optimal omega-6 to omega-3 PUFAs ratio should be about 4:1, LA-derived fatty acids
dietary intake is currently much more predominant in Western diets (omega-6/omega-3
ratio > 10:1). In addition, it has been observed that ALA intake significantly increases EPA
and DPA levels, but there is a significantly lower increase for those of DHA in certain blood
cell lines (white blood cells, red blood cells and platelets) and in breast milk [26].

As LA and ALA are not synthesized in animals, the first studies demonstrating the es-
sentiality of these molecules were conducted on rats, and their deficiency caused a series of
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severe symptoms [27]. Several studies have shown that omega-3 and omega-6 PUFAs play
important roles in membrane lipid composition: they can alter the blood lipid profile, influ-
ence gene expression, and interfere with eicosanoid biosynthesis and with cell signaling
cascades [12,28,29]. Indeed, omega-6 and omega-3 PUFAs are fundamental for the synthesis
of eicosanoids such as thromboxane (TX), prostaglandins (PGs), leukotrienes, prostacyclin
(PGI), hydroxycosatetraenoic acid, hydroperoxytetraenoic acid and lipoxins, which play an
essential role in vascular pathophysiology [30]. These eicosanoids are involved in different
physiological actions, including vasodilation, vasoconstriction, pro/antiplatelet pro/anti-
inflammatory effects, cell growth, cell proliferation and immune response. However, it is
worth mentioning that the functions of EPA-derived PGs differ from those derived from AA.
In fact, while AA-derived PGE2 and TXA2 promote inflammation and platelet aggregation
as well as act as vasoconstrictors, PGE and TXA derived from EPA only act as vasodilators
and anti-aggregators [31].

3.2. Nutritional Sources of LCPUFAs

In the human diet, the main ALA sources are vegetables, especially vegetable oils and
some seeds and nuts [31]. Among vegetable oils, a good amount of ALA can be found in
walnut, canola, soybean, linseed and echium seed oils. For example, linseed oil is very rich
in ALA (49.2 g/100 g) [16]. A high amount of ALA can also be found in algae [13], paprika
Capsicum annuum (30.27% in the Jariza variety and 29.93% in the Jaranda variety) [32],
Trichosanthes kirilowii (33.77–38.66% of seed’s oils) [33], and chia Salvia hispanica (64.04%
of seed’s oil FA and 16.4 g/100 g of ground chia seeds) [34,35].

As reported by the CREA, the Italian leading research organization dedicated to agri-
food chains [36] (Table 2), high amounts of ALA are also found in other vegetable foods
such as beans, dried lentils, nuts, maize, soya flour, wheat germ, garlic, oatmeal, pearl
barley, buckwheat and various other ones. The ALA content in animal products seems
to be generally lower, and the agri-food industry has further contributed to the depletion
of omega-3 FAs in animal meat. Wild animals and birds that eat wild plants are very
thin, and the fat content of their carcasses is 3.9% [37] with about five times more PUFAs
content per gram than that found in domestic livestock [38]. Modern animal husbandry
has emphasized the use of grains poor in omega-3 and rich in omega-6 to feed livestock, so
domestic beef contains very small or insignificant quantities of ALA, whereas deer feeding
on ferns and mosses contain more ALA in their meat [39].

Table 2. α-Linolenic acid (ALA) content of some plant and animal foods.

Food G of Lipids per 100 g of Food ALA % of Total Lipids

Beans, dried, raw 2 33.33
Lentils, dried, raw 1 12.82

Walnuts, dried 68.1 11.89
Soya oil 99.9 8.01

Wheat germ Oil 99.9 5.72
Sole, fresh 1.4 5.68

Trout, fresh 3 3.81
Lamb, lean only, raw 8.8 2.62

Milk, cow, partially skimmed 1.5 2.11
Beef, rib, lean only 6.1 2.10

Pecan Nuts 71.8 1.88

Modern aquaculture also produces fish containing fewer omega-3 PUFAs than that natu-
rally grown in rivers, lakes, sea and ocean [39]. Nevertheless, as shown in Tables 3 and 4 [36],
fish remains the primary source of EPA and DHA supply for humans [40]. This can be
explained by the fact that many fish feed on algae rich in EPA and DHA [41,42]. Microalgae
are considered as the main omega-3 LCPUFAs producers in the biosphere. For example,
Crypthecodinium cohnii and Schizochytrium spp. contain 40% and 55% of the total FAs in the
form of DHA, respectively, being the two main algal sources of DHA [43].
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Table 3. Eicosapentaenoic acid (EPA) content of some fish/seafood and animal meat.

Food G of Lipids per 100 g of Food EPA % of Total Lipids

Squid, fresh 1.7 18.24
Sole, fresh 1.4 17.86

Octopus, fresh 1 17.82
Turkey, whole, with skin, raw 6.9 13.61

Sea bass, fresh 1.5 8.57
Salmon, fresh 12 8.43

Cod, deep frozen, raw 0.6 6.94
Trout, fresh 3 5.71

Beef, hind part cuts 3.4 2.74
Beef, in jelly, canned 1.8 2.71

Horse, lean only 1 1.27
Goat, lean only 2.3 1.09
Swine, light, leg 3.2 1.03

Table 4. Docosahexaenoic acid (DHA) content of some fish/seafood and animal meat.

Food G of Lipids per 100 g of Food DHA % of Total Lipids

Cod, deep frozen, roasted in
oven 0.9 38.65

Tuna, fresh 8.1 26.54
Sole, fresh 1.4 25.97

Trout, deep frozen 2.3 22.98
Octopus, fresh 1 21.78
Salmon, fresh 12 11.27

Liver, chicken, raw 6.3 4.78
Beef, front part cuts 7 1.50

Chicken egg, whole, powder 36.4 0.81

In addition, fish oils are rich in EPA and DHA. Cod liver oil contains 12.2% EPA,
12.7% DHA and 1.7% DPA [44], haddock oil contains 14.8% EPA, 24.8% DHA and 1.9% DPA,
halibut oil contains 9.6% EPA, 30.6% DHA and 2.6% DPA [45], salmon oil contains 6.2% EPA,
9.1% DHA and 1.8% DPA [46]. In fish and fish oils, omega-3 LCPUFAs are mostly present
as free FAs and triacylglycerides [47,48]. For these reasons, omega-3 supplements produced
by the food industry are mainly derived from fish [49].

The appropriate daily intake values for the Italian population are 250 mg of EPA+DHA
and 100 mg of DHA for subjects aged less than 18 years; LCPUFAs should account for
5–10% of total daily energy, of which omega-6 account for 4–8% and omega-3 account for
0.5–2%, respectively [50].

As previously mentioned, ALA is the precursor to EPA and DHA in the human
body. However, this bioconversion is limited, and therefore, an adequate dietary intake
of long-chain omega-3 is required. However, it should be underlined that it is strongly
recommended to take omega-3 PUFAs also from other food sources as part of a balanced
diet, since the frequent consumption of seafood can expose subjects to the neurotoxic effect
of methyl mercury, which is highly detrimental for the development of the fetus’ central
nervous system [51].

3.3. LCPUFAs in Pregnancy and Lactation

Human milk is known to contain LCPUFAs, mostly consisting of 0.5–0.6% AA and
0.2–0.3% DHA [52], providing approximately 7 mg DHA for every 100 mL over a 12-month
lactation period [53]. DHA is well represented in the forebrain areas involved in processes
and memory. Autopsy studies have revealed a higher forebrain DHA presence in breastfed
infants compared to formula-fed non-supplemented infants [54,55]. Although a direct
cause–effect relation could not be extrapolated, higher developmental scores observed in
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breastfed subjects have been linked to this DHA brain different concentration [56,57]. It has
also been reported that maternal LCPUFAs intake during pregnancy increases the duration
of pregnancy and reduces the frequency of preterm delivery [58] as well as the likelihood
of the child suffering from asthma in adolescence [59].

The main results of studies on the effects of DHA supplementation in pregnant and
lactating women have shown that breastfed infants appear to benefit from the presence of
DHA in human milk if maternal supplementation is started during pregnancy. In fact, high-
dose DHA supplementation initiated at mid-pregnancy in mothers has been associated
with long-term positive effects on neurodevelopment and intelligence quotient scores [2].
Data from two large intervention trials showed the effects of high maternal intakes of DHA
(ranging from 0.8 to 2.2 g/day) starting at 18–20 weeks of gestation and continued until
childbirth [60] or up to 3 months postpartum [61]. These intakes were associated with higher
child scores for hand–eye coordination at 2.5 years [60] and for cognitive functions at 4 [61]
and 7 years [62]. A further study that tested DHA supplementation at the dose of 400 mg
per day in pregnant women from the 18th week of gestation until delivery highlighted
the problem of a baseline DHA deficiency in pregnant women. In fact, a higher risk of
poor visual acuity has been found among infants born to women who did not take DHA
supplements [63]. No improvement in visual performance was demonstrated with lower
DHA dosages (200 mg/day) [64]. However, measurable and long-term functional effects on
cognitive development have been associated with higher dosage DHA supplementations
started at mid-pregnancy, whether or not they were prolonged during breastfeeding [65].
Given these data, milk companies have undertaken supplementation studies to explore the
functional associations of dietary DHA supplementation in formula-fed infants. Here again,
the infant’s DHA status at birth and genetic inheritance seem to play a major role [62].

4. Long-Chain Polyunsaturated Fatty Acids (LCPUFAs) in Cardiovascular Prevention
in Adult Population

Omega-3 LCPUFA have been widely studied and used in cardiovascular risk preven-
tion and treatment in the adult population. The administration of omega-3 LCPUFA has
been proved to be safe and generally well tolerated [1]. EPA and DHA are used in adult
subjects with hypertriglyceridemia to lower plasma triglyceride levels. A 2 to 4 g per day
supplementation of EPA and DHA combination has been proven to be effective in reducing
triglycerides-rich lipoproteins, in particular VLDL. EPA and DHA act through their interac-
tion with peroxisome proliferator-activated receptors (PPARs), thus causing a reduction
in Apolipoprotein B secretion, even if their overall mechanism of action is certainly much
more complex and only partially understood [1]. Omega-3 effects on cardiovascular health
have been studied since many decades. In the DART study published in 1989, a group of
male subjects on secondary prevention after myocardial infarction showed a 29% reduction
in mortality after a two-year treatment with omega-3 when compared to placebo [66]. In
the Japan EPA Lipid Intervention (JELIS) study, EPA 1.8 g/day supplementation in adult
patients on statin therapy (20% with history of coronary heart disease at baseline) led to
a 19% risk reduction in major coronary events in a 4.6 years follow-up [67]. The GISSI
study [68] can be considered a milestone in this field [68]: after a twelve-month treatment
with omega-3, patients with recent myocardial infarction showed a 15% reduction in global
mortality and cardiovascular mortality when compared to patients receiving placebo. The
efficacy of high dose omega-3 supplementation on lowering serum triglycerides in adult
patients has been confirmed in many recent studies [69–71], highlighting a reduction up to
45% of basal values, and in one metanalysis [1]. In adult subjects, many studies have been
conducted on the effect of omega-3 on non-lipid cardiovascular disease parameters. In the
Reduction of Cardiovascular Events with EPA-Intervention Trial (REDUCE-IT) [72], the
authors evaluated the effect of EPA contained in fish oil on Atherosclerotic Cardiovascular
Disease (ASCVD) outcomes in adult patients with hypertriglyceridemia. The 2 g/day EPA
supplementation resulted in a 25% reduction in relative risk of major cardiovascular events
when compared to placebo. These findings were confirmed by the EVAPORATE trial, in
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which patients supplemented with high-dose of icosapent ethyl (with respect to those
receiving a placebo with the same mineral oil comparator used in the REDUCE-IT) had a
reduction in atherosclerotic plaque progression [73]. In the STRENGHT study, a study to as-
sess long-term outcomes of Statin Residual Risk with Epanova in High Cardiovascular Risk
Patients with Hypertriglyceridaemia, the 4 g daily consumption of EPA and DHA was not
effective in reducing triglycerides levels [74]. In a recently published EAS document [75],
the discrepant results of these two studies were attributed to the different choice of com-
parator (the mineral oil comparator used in the REDUCE-IT study could cause a collateral
increase in LDL-C and Apolipoprotein B, whereas the corn oil used in the STRENGHT
study is neutral), to the different formulations used and to the differences in the patient
populations enrolled (higher percentage of patients with established coronary artery dis-
ease in the REDUCE-IT). Therefore, in the EAS document, it is recommended to be cautious
when prescribing omega-3 supplements for cardiovascular risk reduction, paying attention
also to the fact that atrial fibrillation’s incidence was higher in the intervention groups
in both studies [75]. In the VITamin D and OmegA-3 TriaL (VITAL) study, a large-scale
randomized trial, omega-3 supplementation’s effect on cardiovascular disease prevention
was tested in the general population, which was unselected for increased CHD risk. In
this study, supplementation with 1 g/day of omega-3 (1.2:1 ratio of EPA to DHA) and
2000 UI/day of vitamin D3 for 5.3 years significantly reduced total myocardial infarction,
fatal myocardial infarction and recurrent hospitalization for heart failure when compared
to the group receiving placebo (olive oil) [76]. In a recent document of the European Society
of Cardiology (ESC), it has been suggested that additional studies are needed to better
clarify which category of subjects may be more likely to benefit from omega-3 supplemen-
tation [77]. Studies analyzing the effect of omega-3 on total mortality and on cardiovascular
risk showed no significant effect but only a suggestion that omega-3 LCPUFAs may reduce
CHD [78]. In particular, the omega-3 supplementation of pediatric patients with attention
deficit hyperactivity disorder resulted in a positive effect on functional outcome even if the
available evidence is not sufficient to recommend omega-3 supplementation. A transient
benefit was also highlighted in patients with cystic fibrosis. Further studies are already
ongoing and will be certainly needed in this field also because the dose of omega-3 to be
administered is a very relevant issue to obtain the desired outcome.

5. Long-Chain Polyunsaturated Fatty Acids (LCPUFAs) in Cardiovascular Prevention
in the Pediatric Population

LCPUFAs’ effects in developmental age have been widely studied. In a recent multi-
center, randomized double-blind controlled study aimed at investigating the effect of DHA
supplementation on metabolic markers of obese children, children receiving DHA showed
a remarkable increase in DHA plasma levels, which could have an anti-inflammatory
effect [79]. In another study, it has been postulated that the presence of high-plasma
omega-3 LCPUFA values may exert positive effects in terms of visual–spatial attention
mechanism in reading and writing functions [80]. In a multicentric trial, supplementation
with up to 7 mg/kg/day of DHA did not improve neurological functions in children with
phenylketonuria [81].

LCUPFAs’ effect on cardiovascular prevention in developmental age has been recently
studied, even if it has been less investigated than in adult subjects. ESPGHAN has recently
stated the positive effect of LCPUFAs on global health in the pediatric population [82]. We
will analyze the main conditions and cardiovascular risk factors that seem to be affected by
omega-3 supplementation.

5.1. Non-Alcoholic Fatty Liver Disease

In children aged below 18 years, Non-Alcoholic Fatty Liver Disease (NAFLD) is de-
fined as a chronic hepatic fat accumulation that is not due to genetic disorders, drugs
affecting liver function, infections or ethanol consumption [83]. It represents the most
common cause of chronic liver disorders in developmental age, especially in Western
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countries [84]. NAFLD is strongly associated with obesity, insulin resistance, hypertension
and dyslipidemia [85]. For this reason, it can be considered the hepatic manifestation of
the metabolic syndrome [86], which consists, based on the International Diabetes Federa-
tion (IDF) criteria, of a combination of abdominal obesity with two or more other clinical
features, including high blood pressure, elevated triglycerides, low HDL cholesterol, and
hyperglycemia [87]. Therefore, NAFLD can be considered as a remarkable cardiovascu-
lar risk factor in particular regarding early atherosclerotic changes, systolic and diastolic
dysfunction, high blood pressure and cardiac hypertrophy [88]. For adult subjects, the
definition of NAFLD has been recently updated to that of metabolic dysfunction-associated
fatty liver disease (MAFLD) [89]. An international panel of experts has recently proposed
diagnostic criteria for MALFD in pediatric subjects even if it is still debated to include the
Homeostasis Model Assessment Insulin Resistance (HOMA-IR) and C Reactive Protein
values among the diagnostic criteria [90]. In overweight children, the prevalence of NAFLD
can be estimated at around 31.6% [91], whereas MAFLD in European overweight children
and adolescents may account for 24.2% [90,92]. NAFLD includes two different histological
patterns: NAFL (Non-Alcoholic Fatty Liver), which is identified by a simple steatosis in
5% or more hepatocytes, and NASH (Non-Alcoholic Steato-hepatitis), which is associated
with lobular inflammation and hepatocellular damage with or without fibrosis [93]. If
not promptly detected and treated, the natural history of NAFLD consists of a progres-
sion from NAFL to NASH, which in turn can evolve into cirrhosis and hepatocellular
carcinoma [94]. Multiple risk factors are involved in the development and progression of
NAFLD. Certainly, obesity and sedentary lifestyle are the most significant ones, which are
followed by genetic, metabolic, epigenetic and environmental factors, and gut microbial
dysbiosis [95]. According to the “multiple-hit-hypothesis”, pediatric NAFLD pathogenesis
is a complex process, where the main actors are represented by fat accumulation, lipo-
toxicity, liver inflammation and oxidative stress [96–98]. NASPGHAN and ESPGHAN
recommend screening for NAFLD in obese children between 9 and 11 years of age, and in
overweight children with additional risk factors such as insulin resistance, dyslipidemia or
a family history of NAFLD. As screening tool, NASPGHAN guidelines recommend the
assessment of serum alanine aminotransferase (ALT), whereas ESPGHAN recommends an
ultrasound scan in association with ALT [99]. However, the gold standard for the diagnosis
of NAFLD still remains the liver biopsy for histological evaluation, despite its invasive
nature [100]. Currently, an approved pharmacological therapy for pediatric NAFLD is still
missing, and the main treatment is represented by an improvement of diet and physical
activity [101]. Several studies, also in consideration of the etiopathogenesis of this liver
disorder, have been performed with the aim to find pharmacotherapy strategies and di-
etary supplementations, such as antioxidants (vitamin E), insulin sensitizers (metformin),
ursodeoxycholic acid (UDCA) and probiotics. Omega-3, including DHA and EPA, have
been studied as NAFLD treatment in developmental age [102,103]. Indeed, LCPUFAs may
play a pivotal role in pediatric metabolic syndrome through epigenetic effects (including
miRNA, histone acetylation and DNA methylation), thus influencing the expression of
genes involved in inflammatory and other metabolic pathways, which are essential for
the metabolic syndrome induction [104]. In this section, we focus on the role of LCPUFAs
in children with diagnosis of NAFLD, with the purpose of investigating their possible
beneficial effects. LCPUFAs, owing to their biological mechanisms, have a role in reduc-
ing inflammation pathways and in regulating nuclear transcription factors involved in
liver lipid metabolism and adipose tissue function, which are altered in NAFLD [105].
Nobili et al. performed a double-blind randomized controlled trial on 60 children, with
biopsy-proven NAFLD, referred to the Liver Unit of the Bambino Gesù Pediatric Hospi-
tal in Rome (Italy). They showed that a 6-month DHA supplementation improves liver
fat content detected by ultrasonography, increases insulin sensitive index and decreases
plasma triglycerides levels, regardless of the DHA supplementation dose (250 mg/day or
500 mg/day). However, they did not report long-lasting effects on ALT and body mass
index (BMI) following DHA supplementation [106]. Jules et al. performed a cross-sectional
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analysis, as a part of the Treatment of Non-Alcoholic Fatty Liver Disease in Children
(TONIC) trial and the NAFLD database study, to evaluate fish intake and omega-3 fatty
acids intake and their effect on ALT serum levels and liver histological features in pediatric
patients with NAFLD. Their results showed that children with NAFLD consume a lower
amount of omega-3 fatty acids than recommended and that a higher fish and omega-3
fatty acids intake is associated with a reduction in ALT values and with a reduction in
both portal and lobular liver inflammation detected after liver biopsy [107]. Even if specific
recommendations about fish and omega-3 fatty acids intake in the young population with
NAFLD are still unavailable, the majority of authors suggest consuming at least two por-
tions (approximately 224 g) of fish per week [108]. Boyraz et al. carried out a randomized
trial analyzing the effect of omega-3 treatment (1000 mg of PUFAs once daily) for 12 months
in 56 obese Turkish children with NAFLD. They found that children who received PUFAs
had an improvement in insulin sensitivity, systolic blood pressure, fasting glucose, ALT
and aspartate aminotransferase (AST) levels, and triglycerides values compared to the
placebo group. Furthermore, they reported an ultrasonography amelioration of fat liver
content in the intervention group [109]. Another randomized controlled study, carried
out by the expert group from the Hepato-Metabolic Department of the Bambino Gesù
Pediatric Hospital in Rome, established beneficial outcomes of the dietary supplementation
with DHA (500 mg) and vitamin D (800 UI) orally once a day for 24 weeks in children
with NAFLD histological diagnosis. Triglycerides, ALT and insulin resistance decreased
with the mixture treatment and reduction in hepatic stellate cells (HSC) activation, and
fibrillar collagen was evident at histological examination [110]. LCPUFAs, through liver
and abdominal visceral fat improvement, can also reduce cardiovascular risk in overweight
children with NAFLD, as observed in a randomized trial in which NAFLD young patients
were treated with DHA (250 mg/day) for a six-month period. Moreover, in the DHA group,
a positive trend for fasting insulin and triglycerides serum levels was described [111]. In
contrast, in a study carried out in four Pediatric Departments in Poland on patients with
NAFLD aged 11–15 years, the use of omega-3 in a young population with NAFLD was
not recommended. The authors found that omega-3 fatty acid supplementation (DHA
and EPA 450–1300 mg/day) for 6 months did not decrease ALT levels and did not lead to
any improvement in ultrasound detected liver steatosis, even if AST and gamma-glutamyl
transpeptidase (GGT) serum concentrations were reduced [112]. In conclusion, the majority
of available trials suggest that omega-3 fatty acids supplementation should be considered
as a strategy for pediatric NAFLD due to their significant positive effects on hepatic fat
content, insulin resistance, lipid levels and histological pathways (Table 5). LCPUFAs sup-
plementation should not be used as a single strategy but as a complement of nutritional and
lifestyle interventions, which represent milestones in the cardiovascular disease prevention
in developmental age [113]. Further studies are needed to evaluate long-term outcomes
of LCPUFAs supplementation in pediatric patients with NAFLD and consequently on the
associated cardiovascular diseases.

Table 5. Studies on the LCPUFAs’ effects in pediatric Non-Alcoholic Fatty Liver Disease.

Type of Study Population Intervention Results Author

Randomized controlled
trial

60 children with NAFLD
diagnosis

Age 8–12 years

DHA 250 mg/day
or 500 mg/day for

6 months

- Reduction in liver
fat content (US)

- Improvement of
insulin sensitivity Nobili et al., 2011 [106]

Cross-sectional analysis
223 children with NAFLD

diagnosis
8–17 years

To evaluate fish and
omega-3 fatty-acids intake

and their effects on ALT
and liver histological

characteristics

- Lower than
recommended
LCPUFAs intake

- Higher LCPUFAs
intake improves
portal and lobular
inflammation

St-Jules et al., 2013 [107]
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Table 5. Cont.

Type of Study Population Intervention Results Author

Randomized trial
108 obese children with

NAFLD diagnosis
9–17 years

LCPUFAs 1000 mg/day
for 12 months

- Reduction in fasting
glucose,
triglycerides, AST,
ALT, insulin
resistance

- Improvement of
liver ultrasound
features

Boyraz et al., 2015 [109]

Randomized trial 60 children with NAFLD
4–16 years

DHA (500 mg/day) and
Vitamin D (800 UI/day)

for 24 weeks

- Improvement of
insulin resistance,
triglycerides, ALT

- Reduction in HSC
activation and
fibrillar collagen

Della Corte et al.,
2016 [110]

Randomized trial
51 children with NAFLD

diagnosis
<18 years

DHA 250 mg/day for
6 months

- Improvement of
liver and abdominal
visceral fat (MRI)

- Improvement of
insulin and
triglycerides levels

Pacifico et al., 2015 [111]

Randomized controlled
trial

76 overweight/obese
children with NAFLD

diagnosis
Median age 13

DHA and EPA
450–1300 mg/day for

6 months

- No ALT reduction
- No liver ultrasound

amelioration
- Improvement of

AST and GGT levels

Janczyk et al., 2015 [112]

DHA: docosahexaenoic acid, EPA: eicosapentaenoic acid, LCPUFAs: long-chain polyunsaturated fatty acids, US:
ultrasound, MRI: Magnetic Resonance Imaging, ALT: alanine transaminase, AST: aspartate aminotransferase,
GGT: gamma-glutamyl transpeptidase, HSC: hepatic stellate cells.

5.2. Hypercholesterolemia

Pederiva et al. reported on the short-term use of nutraceuticals, in association with
nutritional treatment, for the control of the cardiovascular risk progression, starting from
infancy. Supplementation with omega-3 LCPUFAs, in particular DHA, is able to improve
plasma HDL cholesterol levels in pediatric patients with FH [114]. Unfortunately, the
use of nutraceuticals in pediatric patients with hypercholesterolemia is still debated be-
cause there are scarce and contrasting results about their long-term efficacy and safety
in pediatric age. Their use is of particular interest in pediatric patients with familial
hypercholesterolemia (FH), one of the most common inherited diseases, involving ap-
proximately 1 out of 250 individuals in the general population [9]. In a double-blind,
placebo-controlled, randomized study (EARLY study), the effect of a six-week DHA sup-
plementation (1.2 g/day) was analyzed in a cohort of pediatric patients with familial
hypercholesterolemia (FH). In the intervention group, endothelial-derived flow-mediated
dilation of the brachial artery (a surrogate atherosclerosis marker) increased significantly
with respect to the control group, demonstrating that DHA supplementation may have
a positive effect on endothelial function, thus preventing the progression of early CHD
in high-risk children, such as those with FH [115]. Barkas et al. showed that omega-3
fatty acids supplementation might lead to a reduction in TC in patients with FH. In this
study [116], the authors demonstrated no impact on HDL-C levels in FH individuals and a
non-significant trend (likely due to the small sample size and design of the study) in TC
and LDL-C reduction, supporting the conflicting evidence regarding the impact of omega-3
fatty acids on cholesterol [117,118]. In another trial, a significant non-HDL-C and apoB
reduction was highlighted in subjects who followed a diet rich of icosapent ethyl, which is
a highly purified EPA [119].
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In a systematic review and meta-analysis, fish oil supplementation considerably re-
duced BMI but not TC, HDL-C and LDL-C serum levels in obese children [120]. In a pilot
study carried out in children and adolescents, an emulsified combination of plant sterols,
fish oil and group-B vitamins resulted in lower levels of the atherogenic lipoprotein VLDL,
IDL-1 and IDL-2 subfractions [121]. The putative mechanism of this cholesterol-lowering
effect may be the competition between intestinal plant sterols/stanols and intestinal choles-
terol absorption in mixed micelles and an overexpression of the enterocyte transport
proteins [122]. This complex interaction has been seldom explored in children and adoles-
cents [123]; thus, further studies are needed to investigate the effect of omega-3 LCPUFAs
on the lipid profile in pediatric patients with hypercholesterolemia in order to perform a
preventive and individualized therapeutic intervention.

5.3. Hypertriglyceridemia

Hypertriglyceridemia, especially in its mild and moderate form, is a very common
dyslipidemia in childhood and adolescence, involving up to 10% of children in the general
population [124–126]. Primitive forms of hypertriglyceridemia are genetically determined
usually rare conditions, and patients suffering from these conditions need to be referred
to a Pediatric Lipid Clinic for tailored and strict nutritional counseling and clinical follow-
up [114]. The most common cause of mild or moderate hypertriglyceridemia in childhood
is secondary to weight excess, which leads to the development of insulin resistance and to
altered lipid metabolism [127]. The National Expert Panel on Cholesterol Levels in Children
and the Expert Panel on Cardiovascular Health Risk Reduction in Children stated normal
lipid values in childhood [6]. However, triglycerides levels are better stratified in the 2010
guidelines of the Endocrine Society [128], as shown in Table 6.

Table 6. Triglycerides levels stratification in pediatric age.

Age Normal Borderline High Very High Severe Very Severe

0–9 years <75 ≥75–99 ≥100–499 ≥500–999 ≥1000–1999 ≥2000
10–19 years <90 ≥90–129 ≥130–499 ≥500–999 ≥1000–1999 ≥2000

Hypertriglyceridemia is one of the criteria of metabolic syndrome, and it is also
correlated to the increase in cardiovascular risk and acute pancreatitis [129,130]. The first-
line treatments for patients with hypertriglyceridemia are nutritional intervention and
lifestyle change. It is important to increase daily physical activity, reduce caloric intake
and replace simple sugars with complex carbohydrates. Furthermore, in the presence of
severe hypertriglyceridemia, it is recommended to follow a very low-fat diet (less than
10% of fat) [131]. Pharmacotherapy represents the second-line intervention. The use of
fibrates and niacin is widely studied among adults but not among children. The few
studies available are not recent and not very reassuring. For instance, a multicenter study
on the use of niacin in pediatric patients with hypercholesterolemia did not show any
triglycerides and HDL levels reduction. In addition, some children had to drop out of
the study because of significant adverse reactions [132]. Considering that there are few
studies of pharmacotherapy in pediatric age, the use of omega-3 LCPUFAs seems to be
a promising strategy [133]. Most of the studies considered fish oil supplements rich in
omega-3 LCPUFAs even though alternative sources, such as nut oils or vegetable oils, can
be considered as well [134]. Omega-3 LCPUFAs exert their cardio-protective role through a
reduction in plasma triglycerides levels, thus achieving an anti-inflammatory effect through
the regulation of transcription factors, membrane fluidity and gene expression [135] In a
small study conducted in Slovakia involving 25 participants (mean age 16 years), patients
were given an emulsified preparation containing plant sterol esters (1300 mg), fish oil
(1000 mg eicosapentaenoic acid and 1000 mg docosahexaenoic acid), vitamins B12 and B6,
folic acid and coenzyme Q10 daily for 16 weeks. After 16 weeks, a significant reduction
in triglycerides levels was highlighted in the group of children between 10 and 16 years
(baseline mean triglycerides level 1.1 mmol/L) [121].
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Barkas et al. conducted a metanalysis on the effects of plasma lipid reduction on
cardiovascular risk. The results of 17 trials, performed in adults and children, have been
collected. Supplementation with of omega-3 LPUFAs led to a reduction in triglycerides
and total cholesterol plasma levels in patients with hypercholesterolemia [116]. Omega-3
LCPUFAs supplementation had a positive effect on the triglycerides plasma level in pedi-
atric patients with insulin resistance. In a randomized controlled trial involving 201 obese
children with insulin resistance, the effects on lipid profile of omega-3 LCPUFAs and of
metformin were compared. Triglycerides levels were significatively lower in the group
treated with omega-3 LCPUFAs [136]. However, there are studies in the literature that have
demonstrated a clinically relevant but not statistically significant reduction in triglycerides
levels and triglycerides/HDL ratio associated with the dietary supplementation of LCP-
UFAs in pediatric patients. In a retrospective study conducted in pediatric patients with
dyslipidemia in Toronto, fish oil (at a dosage of 500 mg <10 years and 1000 mg >10 years)
supplementation was compared to placebo: in the intervention group, no significative
variation in lipid profile was found [137]. In another study conducted by De Ferranti et al.,
the effect on lipid profile of an omega-3 supplement was evaluated in healthy children and
adolescents, aged 10 to 19 years, with moderate to severe hypertriglyceridemia recruited
from Boston Children Hospital and community pediatricians. Omega-3 LCPUFAs were
administered for a six-month period: though well tolerated by pediatric patients, they did
not lead to a significant reduction in triglyceride levels at 3 and 6 months follow up [138].
In conclusion, LCPUFAs’ effect on pediatric patients with hypertriglyceridemia is still
debated, and further studies are needed to verify the effect of these nutraceuticals on
triglycerides levels.

5.4. Blood Pressure

Most studies have focused mainly on the influence that LCPUFAs have on visual
and cognitive development, but only few have investigated the possible relationship with
blood pressure in pediatric population prior to the study by Forsyth et al. in 2003. In their
follow-up study, 147 infants born at term were subdivided in two groups, 71 infants in
the LCPUFAs supplementation group and 76 infants in the non-supplementation group,
and each child was fed with the corresponding test formula during the first four months
of life. Data collected at 6 years of age revealed that the LCPUFAs group showed sig-
nificantly lower mean blood pressure (95% confidence interval—0.5 to 5.4 mmHg; mean
difference—3.0 mmHg) and diastolic blood pressure (confidence interval—0.6 to 6.5 mmHg;
mean difference—3.6 mmHg) compared to the group that did not receive supplementa-
tion. In addition, the LCPUFAs group showed blood pressure values comparable to the
reference group of 83 breastfed infants. Despite the various limitations of the study, the
authors concluded that dietary intake of LCPUFAs during the first months of life appears
to be associated with lower blood pressure in later childhood. Consequently, since blood
pressure trends originate from childhood, early supplementation of LCPUFAs in the diet
may decrease cardiovascular risk in adulthood [139].

6. Conclusions

LCPUFAs exert positive effects on cardiovascular risk factors in developmental age,
especially in subjects with dyslipidemia and with NAFLD. Their intake is safe and presents
no adverse effects, and their positive effect on global health has been worldwide recognized
in pediatric patients. A limitation to the evaluation of LCPUFAs’ healthy-heart effects
in developmental age is that LCPUFAs doses and the length of their administration are
not standardized and may vary greatly form one study to another. As demonstrated in
studies conducted in adult subjects, a high dosage of LCPUFAs is often necessary to obtain
a positive modification of cardiovascular risk factors. However, studies in adult subjects
often focus on secondary prevention, whereas pediatric studies mainly focus on primordial
or on primary prevention; therefore, lower dosages given for longer periods of times may
have positive effects as well. In conclusion, LCPUFA’s effect on cardiovascular risk factors
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in developmental age seems to be promising, but further studies are needed to better define
the specific effects of different LCPUFAs intakes on various CHD risk factors.
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