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Abstract: To explore the independent and combined effects of ESRα methylation and progesterone on
impaired fasting glucose (IFG) and type 2 diabetes mellitus (T2DM), a case-control study including
901 subjects was conducted. Generalized linear models were performed to assess the independent
and combined effects of ESRα methylation and progesterone on IFG or T2DM. Methylation level of
cytosine-phosphoguanine (CpG) 1 in the estrogen receptor α (ESRα) gene was positively related to
IFG in both men (odds ratio (OR) (95% confidence interval (CI)): 1.77 (1.05, 3.00)) and postmenopausal
women (OR (95% CI): 1.82 (1.09, 3.04)), whereas the association between CpG 1 and T2DM was not
significant. Positive associations of progesterone with IFG and T2DM were observed in both men (OR
(95% CI): 2.03 (1.18, 3.49) and 3.00 (1.63, 5.52)) and postmenopausal women (OR (95% CI): 2.13 (1.27,
3.56) and 3.30 (1.85, 5.90)). Participants with high CpG 1 methylation plus high progesterone had an
increased risk of IFG and T2DM, both in men and postmenopausal women. ESRα methylation and
progesterone were positively associated with IFG, and the positive association between progesterone
and T2DM was also found. Importantly, we firstly found the combined effects of ESRα methylation
and progesterone on IFG and T2DM.

Keywords: type 2 diabetes mellitus; combined effect; estrogen receptor alpha; DNA methylation
progesterone; impaired fasting glucose

1. Introduction

Diabetes, as a serious, chronic condition, has placed a heavy economic burden on
society. Updated data show that there were approximately 537 million adults worldwide
with diabetes, of which up to 140.9 million were in China, ranking first around the world [1].
A survey conducted in rural China estimated that the age-standardized prevalence of type
2 diabetes mellitus (T2DM) in rural areas had reached 6.98% [2]. Impaired fasting glucose
(IFG) is a type of prediabetes, defined as the condition of raised blood glucose levels above
the normal range and below the diabetes diagnostic threshold [1]. Patients with IFG have a
substantially increased risk of developing diabetes [3–6]. A recent study proposed that the
prevalence of IFG, even among the undiagnosed Chinese rural population, was 7.22% [7].
Implementing preventive interventions can delay or halt the progression from IFG to
diabetes [8]. Given these, it is critical to identify risk factors of IFG and T2DM to take
effective interventions.

Mounting studies have noted that epigenetic mechanisms might be involved in the
formation and progression of aberrant glucose metabolism, in particular DNA methyla-
tion [9–11]. Several studies in humans and rodents models suggested that, at physiological
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levels, oestradiol was involved in maintaining normal glucose homeostasis [12,13]. Ad-
ditionally, the beneficial metabolic effects of estrogens are mainly mediated by estrogen
receptor α (ESRα), such as anti-lipogenesis and improvement of insulin sensitivity and
glucose tolerance [14–16]. Animal experiments have found that ESRα knockout mice
demonstrated insulin resistance (IR), glucose intolerance, and obesity [17–20]. Furthermore,
the man with an inactivating mutation of the ESRα gene was reported to exhibit IR, glucose
intolerance, and hyperinsulinemia [21]. The function of ESRα could be silenced by ESRα
promoter hypermethylation [22–24]. Meanwhile, ESRα methylation has been shown to
increase the risk of many diseases, such as breast cancer [25], hepatocellular carcinoma [26],
and colorectal cancer [27]. However, little research has explored the association between
ESRα methylation and disturbed glucose metabolism.

Progesterone is an endogenous hormone essential for reproduction [28], neurological
function [29], and immune regulation [30]. Many experimental data have linked elevated
progesterone to glucose disturbance [31–33]. As for population studies, a cross-sectional
study conducted in Germany found positive associations of progesterone with fasting
glucose and HbA1c in postmenopausal women [34]. Recently, a retrospective study has
reported that patients with 17-hydroxylase/17,20-lyase deficiency were susceptible to
abnormal glucose metabolism due to high levels of progesterone [35]. Furthermore, proges-
terone could contribute to IR by suppressing the phosphatidylinositol-3-kinase (PI3K)/Akt
pathway [36]. Conversely, ESRα mediated the effect of estrogen to increase protein kinase
B (AKT) phosphorylation and glucose transporter 4 (GLUT4) expression, consequently
improving insulin sensitivity [37–40]. Moreover, there was growing evidence for cross-talk
between ESR and progesterone receptor pathways [41,42]. Meanwhile, we have previously
found that prediabetes and T2DM were positively linked to progesterone in a rural Chinese
population [43]. Therefore, we hypothesized that there might be combined effects of ESRα
methylation and progesterone on T2DM or IFG. However, few studies examined this.

Given these, we designed this case-control study to assess the independent associations
of ESRα methylation in cytosine-phosphoguanine (CpG) 1 and progesterone with IFG and
T2DM, and then we explored their combined effects on IFG and T2DM among the Chinese
rural population.

2. Materials and Methods
2.1. Study Design and Population

The study subjects were selected from the Henan Rural Cohort (registration number:
ChiCTR-OOC-15006699), a prospective population-based cohort study of chronic non-
communicable diseases. The baseline survey was conducted from July 2015 to September
2017 in Suiping, Yuzhou, Tongxu, Yima, and Xinxiang counties of Henan Province, China,
with a total of 39,259 subjects recruited through a multi-stage stratified whole-group
sampling. Detailed information about the cohort study has been previously described [44].

In this case-control study, we first included 925 T2DM patients aged 18 to 79, and
925 IFG patients and 925 controls were matched to the T2DM patients based on being
the same age (±3 years) and gender. Due to the massive impact of the menstrual cycle
on progesterone levels, premenopausal women were excluded (n = 301). Participants
lacking data on ESRα gene methylation levels (n = 1536) or progesterone levels (n = 5)
were also excluded. Participants missing information on homeostasis model assessment
(HOMA)2-β (n = 1), insulin (INS) (n = 17), or glycosylated hemoglobin A1c (HbA1c) (n = 14)
were further excluded. The study ultimately included 901 subjects, including 338 normal
glucose tolerance (NGT), 249 IFG patients, and 314 T2DM. All participants signed a written
informed consent prior to inclusion in the study.

The study was conducted in accordance with the guidelines of the Declaration of
Helsinki and was approved by the Ethics Committee of the Zhengzhou University Life
Science (code: [2015] MEC (S128)).
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2.2. Data Collection

Basic characteristics of participants regarding socio-demographic characteristics (in-
cluding gender, age, marital status, education level, per capita monthly income, and family
history of diabetes) and lifestyles (including smoking status, drinking status, and physical
activity) were collected by trained enumerators using a structured questionnaire. Detailed
criteria for the grouping of these variables have been reported previously [45]. In brief,
participants who had at least one parent or sibling diagnosed with T2DM were defined as
those with a family history of T2DM. More than 12 months without a menstrual period
was defined as menopause in female participants.

Anthropometric measurements, such as height (m) and weight (kg), were taken by
trained researchers [45]. Body mass index (BMI) was calculated as weight divided by
squared height (kg/m2). The blood pressure was measured using a sphygmomanometer
(Omron HEM-7071A) in triplicate at 30-s intervals in the sitting position. HOMA2-IR and
HOMA2-β were calculated by the updated computer-based homeostasis model introduced
by Wallace [46,47].

2.3. Laboratory Measurements

Venous blood samples were drawn from subjects after fasting for at least 8 h, centrifuged
on site, and stored in a −80 ◦C refrigerator. Lipid levels, including total cholesterol (TC),
triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein
cholesterol (LDL-C), were measured by enzymatic methods using the ROCHE Cobas C501
automatic biochemical analyzer; fasting plasma glucose (FPG) was measured by the glucose
oxidase method. HbA1c was measured by high performance liquid chromatography (HPLC)
using the Bio-Rad VARIANT II analyzer. INS was detected by radioimmunoassay.

The serum progesterone levels were determined using liquid chromatography-tandem
mass spectrometry (LC-MS/MS) (a Waters XEVO TQ-S system (Waters, Milford, MA,
USA)). To reduce measurement bias, blind determination was employed, and a blank and a
quality control sample were detected after every 12 samples tested [48].

2.4. Methylation Analysis

Genomic DNA was extracted from whole blood samples using the Whole Blood
Genomic DNA Extraction Kit III (Magnetic bead) (Bioteke Corporation, Beijing, China).
Three CpG islands (Length 231 (152128479-152128709), Length 237 (152129066-152128830)
and Length 233 (152129651-152129883)), including 49 sites located in the ESRα promoter,
were sequenced and detected their methylation levels using MethylTarget™ (Genesky
Corporation, Shanghai, China) following bisulfite sequencing [49,50]. Information on
the measurement, primer sequences, genomic regions, and CpG sites are summarized
(Supplementary Tables S1 and S2).

2.5. Ascertainment of Cases

According to the diagnostic criteria recommended by the American Diabetes Association
(ADA) (2002) and the World Health Organization (WHO) (1999) guidelines, after excluding
type 1 diabetes, gestational diabetes, and other specific types of diabetes, IFG was defined
as subjects meeting one of the following conditions: (1) 6.1 mmol/L ≤ FPG < 7.0 mmol/L;
(2) 5.7% ≤ HbA1C < 6.5%. T2DM was defined as subjects meeting one of the following
conditions: (1) FPG ≥ 7.0 mmol/L; (2) HbA1c ≥ 6.5%; (3) diagnosed with T2DM by physicians
and taking anti-glycemic drugs during the previous two weeks.

2.6. Statistical Analysis

The basic characteristics were presented as mean ± (standard deviations (SD)) (normal
distribution) or median (interquartile ranges (IQR)) (skewed distribution) for continuous
variables and numbers (percentages) for categorical variables. The differences in the
distribution of normal continuous, skewed continuous, and categorized variables between
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the case and control groups were compared using t-tests, Mann-Whitney U tests, and
Chi-square tests, respectively.

The associations of ESRα methylation with IFG or T2DM were examined with logistic
regression model. Two-sided p < 0.05/49 indicated significance when exploring the asso-
ciation between each CpG site and IFG or T2DM. Then, we explored the relationships of
3 CpG regions with IFG and T2DM, based on which a significant association was found
between CpG 1 (Chr6: 152128479_Chr6: 152128709) and IFG. Moreover, to investigate
the associations of ESRα methylation and progesterone with different glucose statuses,
ESRα methylation (CpG 1) and progesterone were divided into dichotomous variables
by their corresponding median values. Sex-stratified analysis was conducted throughout
the research due to sex differences in serum progesterone levels. Additionally, to esti-
mate potential non-linear relationships, levels of CpG 1 methylation and progesterone
were categorized in tertiles (T), with the lowest tertile group (T1) defined as the reference.
Generalized linear models were utilized to examine the effects of CpG 1 methylation and
progesterone on IFG and T2DM, with the effect estimates expressed as odds ratios (ORs)
and 95% confidence intervals (CIs) for IFG and T2DM by tertiles and dichotomies of vari-
ables. Furthermore, to study the dose–response relationships, trend tests were conducted
by entering tertiles as continuous variables.

Two models were constructed in the analysis: the crude model and the adjusted model
(adjusted for BMI, smoking status, drinking status, physical activity, per capita monthly
income, level of education, family history of T2DM, SBP, PP, TC, TG, HDL-C, and LDL-C).

HOMA2-β was natural logarithm-transformed into Ln-HOMA2-β due to its skewed
distributions. After adjusting multiple variables, linear regression was utilized to estimate
the relationships between progesterone, CpG 1 methylation, and glucose homeostasis
markers (including FPG, HbA1c, INS, HOMA2-IR, and Ln-HOMA2-β).

Furthermore, to examine the combined effects of CpG 1 methylation level and proges-
terone on IFG and T2DM, the terms of the corresponding dichotomies were included in
logistic regression model.

Finally, considering the potential effects of alcohol intake and smoking on DNA methy-
lation and disturbance of glucose metabolism [51–53], stratified analyses by alcohol intake
(drinking now and no drinking now) and smoking status (smoking now and no smoking
now) were examined in the adjusted model among men, since most postmenopausal female
subjects were non-drinkers and non-smokers.

All analyses were performed in SPSS software (version 21.0), and R Language software
(version 4.2.2), and a two-tailed p < 0.05 was considered statistically significant.

3. Results
3.1. Basic Characteristics

The basic characteristics of participants are shown in Table 1 and Figure 1. In men,
compared to NGT, patients with IFG were more likely to have higher levels of BMI, TC,
LDL-C, FPG, and HbA1c; T2DM patients were more likely to be smokers and to have
higher BMI, proportions of family history of T2DM, SBP, PP, TG, FPG, HbA1c, and INS, as
well as lower HDL-C. In postmenopausal women, individuals with IFG and T2DM seem to
have higher levels of BMI, TG, FPG, HbA1c, and INS, as well as lower HDL-C than those
with NGT. Additionally, T2DM patients who were postmenopausal women had higher
levels of SBP, PP, and TG, as well as higher proportions of family history of T2DM.

Compared with NGT, participants with IFG and T2DM had higher progesterone in
both men and postmenopausal women, whereas only IFG men tended to be with higher
CpG 1 methylation level (all p < 0.05).
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Table 1. Basic characteristics of the study population by gender.

Variables
Men Postmenopausal Women

NGT IFG T2DM NGT IFG T2DM

Subjects, n 160 124 147 178 125 167
Age (years) 61.00 (54.00, 65.00) 61.00 (54.00, 66.00) 61.00 (54.00, 65.00) 63.00 (57.75, 66.00) 63.00 (58.00, 66.00) 63.00 (58.00, 66.00)

BMI (kg/m2) 22.23 (20.75, 24.26) 23.93 (3.39) * 25.86 (23.57, 29.15) * 22.56 (20.77, 25.02) 24.47 (3.49) * 27.16 (23.86, 29.07) *

Smoking status, n (%)
Never smoking 52 (32.50) 49 (39.52) 52 (35.37) * 177 (99.44) 125 (100.00) 167 (100.00)

Give up smoking 22 (13.75) 20 (16.13) 37 (25.17) * 0 (0.00) 0 (0.00) 0 (0.00)
Smoking now 86 (53.75) 55 (44.35) 58 (39.46) * 1 (0.56) 0 (0.00) 0 (0.00)

Alcohol intake, n (%)
Never drinking 87 (54.38) 83 (66.94) 65 (44.22) 174 (97.75) 122 (97.60) 163 (97.60)

To give up drinking 24 (15.00) 15 (12.10) 21 (14.28) 0 (0.00) 0 (0.00) 0 (0.00)
Drinking now 49 (30.62) 26 (20.97) 61 (41.50) 4 (2.25) 3 (2.40) 4 (2.40)

Physical activity, n (%)
Low 50 (31.25) 37 (29.84) 45 (30.61) 39 (21.91) 28 (22.40) 47 (28.14)

Mediate 58 (36.25) 40 (32.26) 52 (35.37) 95 (53.37) 65 (52.00) 86 (51.50)
High 52 (32.50) 47 (37.90) 50 (34.01) 44 (24.72) 32 (25.60) 34 (20.36)

Marital status, n (%)
Married/cohabiting 143 (89.38) 112 (90.32) 133 (90.48) 151 (84.83) 111 (88.80) 150 (89.82)

Widowed/divorced/separation/single 17 (10.62) 12(9.68) 14 (9.52) 27 (15.17) 14 (11.20) 17 (10.18)

Level of education, n (%)
Illiteracy 30 (18.75) 16 (12.90) 16 (10.88) 73 (41.01) 44 (35.20) 62 (37.12)

Primary school 41 (25.62) 36 (29.03) 39 (26.53) 52 (29.21) 39 (31.20) 51 (30.54)
Junior secondary and above 89 (55.63) 72 (58.06) 92 (62.59) 53 (29.78) 42 (33.60) 54 (32.34)

Per capita monthly income, n (%)
<500, RMB 59 (36.87) 55 (44.36) 64 (43.54) 74 (41.57) 49 (39.20) 74 (44.31)
500~, RMB 51 (31.88) 36 (29.03) 38 (25.85) 60 (33.71) 41 (32.80) 49 (29.34)

1000~, RMB and above 50 (31.25) 33 (26.61) 45 (30.61) 44 (24.72) 35 (28.00) 44 (26.35)
Family history of T2DM, n (%) 3 (1.88) 2 (1.61) 11 (7.48) * 1 (0.56) 0 (0.00) 10 (5.99) *

SBP (mmHg) 116.00 (108.00, 127.75) 120.94 (15.31) 124.00 (112.00, 138.00) * 120.50 (111.75, 135.25) 123.00 (114.00, 135.00) 132.00 (120.00, 143.50) *
PP (mmHg) 43.67 (39.67, 51.50) 45.00 (41.33, 51.17) 47.00 (41.67, 54.33) * 50.28 (12.51) 50.60 (12.20) 53.96 (12.83) *

TC (mmol/L) 4.37 (0.71) 4.62 (0.89) * 4.47 (3.99, 5.12) 4.84 (0.77) 4.90 (0.87) 5.01 (1.00)
TG (mmol/L) 1.32 (0.92, 2.04) 1.46 (0.98, 2.25) 1.72 (1.20, 2.94) * 1.43 (1.02, 2.10) 1.84 (1.28, 2.72) * 1.97 (1.42, 2.84) *

HDL−C (mmol/L) 1.29 (1.10, 1.58) 1.24 (1.02, 1.49) 1.15 (0.99, 1.43) * 1.48 (0.36) 1.28 (1.14, 1.55) * 1.30 (0.29) *
LDL−C (mmol/L) 2.65 (0.66) 2.92 (0.80) * 2.61 (0.85) 2.96 (0.69) 2.95 (0.86) 2.89 (2.24, 3.66)

FPG (mmol/L) 4.89 (0.50) 5.21(4.83, 5.56) * 8.25 (7.27, 10.33) * 5.04 (0.46) 5.32 (4.94, 5.81) * 7.96 (7.24, 9.89) *
HbA1c (%) 5.30 (5.10, 5.50) 5.90 (5.70, 6.00) * 7.50 (6.70, 9.10) * 5.40 (5.20, 5.50) 5.90 (5.80, 6.00) * 7.50 (6.70, 9.00) *

INS (pmol/L) 11.64 (9.42, 14.21) 12.30 (9.28, 16.12) 14.11 (10.42, 18.32) * 12.30 (4.38) 12.95 (10.28, 17.28) * 15.79 (12.66, 21.91) *
Progesterone (ng/mL) 0.80 (0.52, 1.05) 0.94 (0.69, 1.36) * 1.30 (0.82, 1.74) * 0.80 (0.56, 1.05) 1.03 (0.72, 1.30) * 1.15 (0.92, 1.64) *

CpG 1 methylation −4.72 (0.41) −4.54 (−4.98, −4.24) * −4.73 (−5.05, −4.43) −4.68 (−4.97, −4.34) −4.58 (0.60) −4.67 (−4.96, −4.35)
CpG 2 methylation −4.47 (0.31) −4.44 (−4.66, −4.26) −4.50 (0.28) −4.46 (−4.65, −4.21) −4.43 (0.29) −4.50 (−4.66, −4.25)
CpG 3 methylation −4.53 (−4.96, −4.19) −4.45 (−5.01, −3.98) −4.49 (−4.92, −4.09) −4.42 (−4.87, −4.04) −4.68 (0.85) −4.52 (0.60)

Values are mean (standard deviation) or median (inter-quartile range) for continuous variables and number (percentages) for categorical variable. The ESRα methylation level in CpG islands
(M-value) was calculated as the log2 ratio of the intensities of methylated probe versus unmethylated probe. Abbreviation: BMI, body mass index; CpG, cytosine-phosphoguanine; FPG, fasting
plasma glucose; HDL-C, high-density lipoprotein cholesterol; HbA1c, glycosylated hemoglobin A1c; INS, insulin; IFG, impaired fasting glucose; LDL-C, low-density lipoprotein cholesterol; NGT,
normal glucose tolerance; PP, pulse pressure; RMB, renminbi; SBP, systolic blood pressure; TC, total cholesterol; TG, triglyceride; T2DM, type 2 diabetes mellitus. * Compared with NGT, p < 0.05.
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Figure 1. Basic characteristics of the study population by gender. (A–L) display the distribution of the
indices BMI, SBP, PP, TC, TG, HDL-C, LDL-C, FPG, HbA1c, INS, progesterone, CpG 1 methylation in men
and postmenopausal women, respectively. BMI, body mass index; CpG, cytosine-phosphoguanine; FPG,
fasting plasma glucose; HDL-C, high-density lipoprotein cholesterol; HbA1c, glycosylated hemoglobin
A1c; INS, insulin; IFG, impaired fasting glucose; LDL-C, low-density lipoprotein cholesterol; NGT,
normal glucose tolerance; PP, pulse pressure; SBP, systolic blood pressure; TC, total cholesterol; TG,
triglyceride; T2DM, type 2 diabetes mellitus. * Compared with NGT, p < 0.05.

3.2. Independent Effects of ESRα Methylation and Progesterone on IFG and T2DM

As Supplementary Table S3 shown, the positive associations between ESRα methy-
lation sites (including Chr6: 152128537, Chr6: 152128584, Chr6: 152128631, and Chr6:
152129681) and IFG were found. The associations of 3 CpG islands with IFG and T2DM
were summarized in Supplementary Table S4. The positive correlation was only found
between CpG 1 and IFG among men and postmenopausal women.

Table 2 presents the associations of CpG 1 methylation and progesterone with IFG and
T2DM in tertiles and dichotomies. After adjusting for confounders, a positive relationship
was found between CpG 1 methylation and IFG both in men (OR (95% CI): 1.77 (1.05,
3.00)) and postmenopausal women (OR (95% CI): 1.82 (1.09, 3.04)), whereas the association
between CpG 1 and T2DM was not significant. Additionally, when CpG 1 methylation
level was analyzed as tertiles, compared with the T1, only the T3 was correlated with a
102% (OR (95% CI): 2.02 (1.06, 3.84)) and 98% (OR (95% CI): 1.98 (1.06, 3.72)) higher risk
of IFG in men and postmenopausal women. Additionally, the effect became stronger as
tertiles increased (P-trend < 0.05).
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Table 2. Associations of ESRα methylation (CpG 1) and progesterone with IFG and T2DM.

Variables
Men Postmenopausal Women

Crude Model Adjusted Model a Crude Model Adjusted Model a

IFG
ESRα methylation (CpG 1)

Dichotomies 2.13 (1.32, 3.43) * 1.77 (1.05, 3.00) * 1.70 (1.07, 2.70) * 1.82 (1.09, 3.04) *
T1 Reference Reference Reference Reference
T2 1.10 (0.61, 1.97) 0.99 (0.52, 1.89) 1.09 (0.61, 1.93) 1.23 (0.66, 2.29)
T3 2.42 (1.35, 4.35) * 2.02 (1.06, 3.84) * 1.84 (1.05, 3.24) * 1.98 (1.06, 3.72) *

P-trend 0.003 0.030 0.033 0.033

Progesterone
Dichotomies 2.00 (1.24, 3.22) * 2.03 (1.18, 3.49) * 2.25 (1.41, 3.60) * 2.13 (1.27, 3.56) *

T1 Reference Reference Reference Reference
T2 1.25 (0.70, 2.24) 1.17 (0.62, 2.21) 1.37 (0.76, 2.46) 1.14 (0.61, 2.14)
T3 2.13 (1.19, 3.81) * 2.26 (1.15, 4.47) * 3.19 (1.79, 5.71) * 2.65 (1.42, 4.95) *

P-trend 0.011 0.020 <0.001 0.002

T2DM
ESRα methylation (CpG 1)

Dichotomies 1.10 (0.70, 1.71) 1.15 (0.64, 2.05) 1.04 (0.68, 1.58) 1.00 (0.57, 1.73)
T1 Reference Reference Reference Reference
T2 1.02 (0.59, 1.76) 0.83 (0.41, 1.69) 1.37 (0.81, 2.30) 1.42 (0.73, 2.76)
T3 1.29 (0.74, 2.23) 1.56 (0.77, 3.18) 0.97 (0.57, 1.62) 0.89 (0.45, 1.77)

P-trend 0.365 0.224 0.895 0.745

Progesterone
Dichotomies 4.05 (2.52, 6.51) * 3.00 (1.63, 5.52) * 4.45 (2.83, 6.99) * 3.30 (1.85, 5.90) *

T1 Reference Reference Reference Reference
T2 1.65 (0.92, 2.96) 1.52 (0.74, 3.10) * 2.69 (1.55, 4.68) * 2.87 (1.43, 5.77) *
T3 8.29 (4.43, 15.53) * 6.40 (2.83, 14.45) * 6.75 (3.79, 12.03) * 5.28 (2.52, 11.08) *

P-trend <0.001 <0.001 <0.001 <0.001

Abbreviations: CIs, confidence intervals; CpG, cytosine-phosphoguanine; ESRα, estrogen receptors α; IFG,
impaired fasting glucose; ORs, odds ratios; T2DM, type 2 diabetes mellitus; T, tertiles. a: adjusted for BMI,
smoking status, alcohol intake, physical activity, per capita monthly income, level of education, family history of
T2DM, SBP, PP, TC, TG, HDL-C, and LDL-C. * p < 0.05.

Likewise, progesterone was positively correlated with the prevalence of IFG and
T2DM among men (OR (95% CI): 2.03 (1.18, 3.49) and 3.00 (1.63, 5.52)) and postmenopausal
women (OR (95% CI): 2.13 (1.27, 3.56) and 3.30 (1.85, 5.90)) in the adjusted model. Likewise,
the T3 of progesterone was significantly related to a higher risk of IFG and T2DM versus
T1 (men: OR (95% CI): 2.26 (1.15, 4.47) and 6.40 (2.83, 14.45), including for postmenopausal
women—OR (95% CI): 2.65 (1.42, 4.95) and 5.28 (2.52, 11.08)). The effect was heightened by
the increasing tertiles (P-trend < 0.05).

In short, methylation level of CpG 1 of ESRα and progesterone were positively associated
with IFG, and the positive association between progesterone and T2DM was also found.

3.3. Associations of ESRα Methylation (CpG 1) and Progesterone with Glucose
Homeostasis Markers

The relationships of CpG 1 methylation of ESRα and progesterone with glucose home-
ostasis markers are summarized in Figure 2. After multivariate adjustment, participants
experiencing high progesterone levels were related to a 11% (95% CI: −6%, 28%) and 16%
(95% CI: 1%, 31%) higher HOMA2-IR, a 1.09 mmol/L (95% CI: 0.62, 1.57) and 0.87 mmol/L
(95% CI: 0.39, 1.34) higher FPG, a 0.62 mmol/L (95% CI: 0.33, 0.92) and 0.60 mmol/L (95% CI:
0.30, 0.90) higher HbA1C, and a 25% (95% CI: −37%, −13%) and 17% (95% CI: −28%, −6%)
lower Ln-HOMA2-β compared with those who experienced low progesterone levels in
men and postmenopausal women, respectively. Compared with T1, the T3 of progesterone
was related to a 31% (95% CI: −46%, −16%) and 26% (95% CI: (−40%, −13%) decrease in
Ln-HOMA2-β, an 1.41mmol/L (95% CI: 0.81, 2.00) and 1.71 mmol/L (95% CI: 0.59, 1.76)
increase in FPG, and an 0.85mmol/L (95% CI: 0.48, 1.21) and 0.84 mmol/L (95% CI: 0.48,
1.20) increase in HbA1c in men and postmenopausal women. However, the relationships
between CpG 1 methylation and glucose homeostasis markers were not significant.
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Figure 2. Associations of ESRα methylation (CpG 1) and progesterone with glucose homeostasis markers
in men and postmenopausal women. Adjusted for BMI, smoking status, alcohol intake, physical activity,
per capita monthly income, level of education, family history of T2DM, SBP, PP, TC, TG, HDL-C, and
LDL-C; CI, confidence interval; CpG, cytosine-phosphoguanine; ESRα, estrogen receptors α; FPG, fasting
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insulin resistance; INS, insulin; Ln-, natural log-transformed; T, tertiles.

Progesterone was positively correlated with HOMA2-IR, FPG, and HbA1C, whereas it
was inversely correlated with Ln-HOMA2-β in both men and postmenopausal women.

3.4. Combined Effects of ESRα Methylation (CpG 1) and Progesterone on IFG and T2DM

Figure 3 presents the combined effect of CpG 1 methylation of ESRα and progesterone
on IFG and T2DM. After adjusting for confounders, combined effects of CpG 1 methylation
and progesterone on IFG and T2DM were observed both in men and postmenopausal
women. Compared with participants with low levels of CpG 1 methylation and proges-
terone, the combination of high levels of CpG 1 methylation and progesterone is more
susceptible to IFG (men: OR (95% CI): 3.73 (1.70, 8.17). The following values were obtained:
postmenopausal women: OR (95% CI): 3.72 (1.79, 7.70)) and T2DM (men: OR (95% CI): 3.42
(1.46, 8.05); postmenopausal women: OR (95% CI): 3.22 (1.44, 7.22)).

3.5. Stratification Analysis

The results of the stratified analysis are shown in Supplementary Tables S5 and S6.
When stratified by alcohol intake, the association of CpG 1 methylation of ESRα with
IFG was only significant among men with no drinking now. Interestingly, a relationship
between the T3 of CpG 1 methylation and T2DM emerged in the “No drinking now” group
(T3 vs. T1: OR (95% CI): 2.55 (1.01, 6.48)). Progesterone was significantly positively related
to IFG and T2DM only in the “No drinking now” group, and the association of tertiles
of progesterone with T2DM appeared to be stronger (T3 vs. T1: OR (95% CI):12.27 (4.03,
37.39)). When stratified by smoking status, progesterone was significantly related to IFG
and T2DM only in men not smoking now. The positive associations have not altered
substantially. No significant associations of CpG 1 methylation with IFG and T2DM were
observed across smoking status categories in men.
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activity, per capita monthly income, level of education, family history of T2DM, SBP, PP, TC, TG,
HDL-C, and LDL-C; CI, confidence interval; CpG, cytosine-phosphoguanine; OR, odds ratio; M,
ESRα methylation; P, progesterone; Ref., reference, with (1, 1) as the reference.

As shown in Supplementary Figure S1, the combined effects of ESRα methylation
(CpG 1) and progesterone on IFG and T2DM were only found in men with no drinking
now or no smoking now.

4. Discussion

This case-control study was conducted to explore the independent and combined
effects of ESRα methylation and progesterone on different glucose statuses. We found
a positive association of progesterone with IFG and T2DM and a positive association
between CpG 1 methylation of ESRα gene and IFG. Furthermore, combined effects of CpG
1 methylation and progesterone on IFG and T2DM were observed in this study, implying
that people exposed to high levels of CpG 1 methylation of ESRα gene and progesterone
had a higher risk of developing glucose metabolic disorders compared to other subgroups.

The present study found that high ESRα methylation levels were correlated with high
IFG risk. At present, direct studies on ESRα methylation are lacking, but some indirect
evidence can provide support for the results of this study. A previous study conducted on
Swedish men evidenced that ESRα gene polymorphism was associated with fasting plasma
glucose [54]. Moreover, considerable experimental data have reported that ESRs, especially
ESRα, perform key roles in glucose homeostasis, including the regulation of insulin sen-
sitivity, adiposity, and pancreatic β-cell function [55], and ESRα knockout mice exhibited
increased fasting blood glucose levels and IR [19,20]. Considering that ESRα methylation
could decrease the expression level of ESRα, ESRα methylation might have effects on blood
glucose metabolism. The corresponding explanation is that ESRα-mediated estradiol (E2)
effect activates PI3K/AKT pathway by promoting nucleus-plasma membrane shuttle of
ESRα, increasing AKT phosphorylation and increasing GLUT4 expression translocation,
thereby improving insulin-stimulated glucose uptake [37,38]. ESRα has also been shown to
contribute to the tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) protein,
which occurs prior to PI3K/AKT activation [39,40]. In addition, ESRα has been reported to
mediate the effect of E2 in protecting pancreatic β-cells from apoptosis induced by oxidative
stress [56]. As known, DNA hypermethylation of the ESRα promoter region can lead to
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the downregulation of ESRα expression [22–24]. Disruption of ESRα function due to lower
gene expression results in increased insulin insensitivity and apoptosis of pancreatic β-cells,
which may lead to an increased risk of IFG.

Several studies have linked progesterone with abnormal glucose metaboli-
sm [31,33–35,57–59]. Consistent with our results, an eight-year longitudinal study of
Swedish opposite-sex twins indicated that progesterone was associated with markers of
insulin resistance [57]. Nevertheless, one subsequent longitudinal study failed to find
an association between progesterone with diabetes and insulin metabolism [58]. A cross-
sectional study conducted in China reported that progesterone was significantly decreased
in T2DM and impaired glucose tolerance patients [59]. In our study, however, proges-
terone was found to be positively correlated with IFG and T2DM, as well as glucose
homeostasis markers HOMA2-IR, FPG, and HbA1C, whereas it was inversely correlated
with Ln-HOMA2-β. The differences in findings may stem from the ethnicity and sample
size of the study population, different outcomes of interest, and other confounding factors.
Biochemical evidence offers possible explanations for the association between progesterone
and glucose disturbances. Progesterone contributed to IR by promoting IRS-1 degradation
and by inhibiting GLUT4 translocation in the IRS/PI3K/AKT pathway [36]. Furthermore,
the Cb1/TC10 pathway functioned in parallel with the PI3K pathway [60], and proges-
terone hindered TC10 activation by decreasing Cbl phosphorylation [36]. Additionally,
progesterone acted at the plasma membrane to blockade the L-type voltage-dependent Ca2+

channels in rat β-cells, inhibiting insulin release [61]. Besides, progesterone can induce
apoptosis of insulin-secreting cells by triggering endoplasmic reticulum stress [32]. In a
nutshell, progesterone may promote the development of IFG and T2DM and affect glucose
homeostasis markers by leading to increased IR and decreased glucose intake, reducing
insulin release, and inducing apoptotic death of insulin-producing cells. However, the
exact mechanism still needs to be further explored.

It has been reported that progesterone might downregulate ESR expression [62,63].
We further explored the combined associations of ESRα methylation and progesterone
levels on different glucose statuses, finding that individuals with high levels of CpG 1
methylation of ESRα gene and progesterone exhibited a significantly higher prevalence of
IFG and T2DM compared with individuals with low levels of CpG 1 methylation of ESRα
gene and progesterone. The mechanism of the combined effect of ESRα methylation and
progesterone in the pathology of glucose disorder remains unclear, but there are several rea-
sonable explanations. In the PI3K/AKT pathway, progesterone promoted down-regulation
of IRS-1 protein, upstream of the PI3K/AKT activation and suppressed the subsequent
phosphorylation of Akt, and it inhibited GLUT4 translocation and glucose uptake in a step
distal to Akt phosphorylation [36]. To the contrary, up-regulation of PI3K/Akt signaling
was observed by ESRα-mediated E2 effect through enhanced activity of IRS-1, increased
AKT phosphorylation, and increased insulin-stimulated GLUT4 translocation [37–40]. The
high level of ESRα methylation led to low expression of its protein, resulting in reduced
progesterone antagonism of ESRα on the common PI3K/AKT signaling pathway. More-
over, progesterone caused an augmentation of oxidative species generation in RINm5F
insulin-producing cells, and low expression of ESRα impairs the ability to circulate E2 to
prevent β-cell apoptosis after exposure to oxidative stress, thus the combination of high
ESRα methylation and high progesterone may lead to a greater susceptibility to IFG and
T2DM. However, the exact biological mechanisms need to be further investigated.

To our knowledge, this was the first study which has focused on combined effects of
ESRα methylation and progesterone on T2DM and IFG. Nonetheless, several limitations
in the study need to be considered. Firstly, this study is a case-control design with the
possibility of reverse causality, and the findings of this study need to be further validated
in a large prospective cohort study. Secondly, the ESRα methylation was determined from
whole blood, thus the results might be perturbed by the different leukocyte subtypes.
Thirdly, the methylation status of peripheral blood mononuclear cells may differ from that
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of other tissues. Ultimately, our participants were confined to Henan rural areas in China,
so the conclusion may be limited to extended to other countries and areas.

5. Conclusions

In a word, progesterone levels were positively related to T2DM. Meanwhile, both
methylation level of CpG 1 in the ESRα gene and progesterone were positively related
to increased risk of IFG, and they have combined effects on IFG and T2DM, indicating
that maintaining low levels of CpG 1 methylation of ESRα gene and progesterone could
decrease the risk of glucose metabolic disorders. These findings provide preliminary clues
to the combined effect of ESRα methylation and progesterone on glucose disturbance.
However, prospective studies are warranted to verify these associations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu15071659/s1, Table S1. The details of methylation measurement
method. Table S2. The primer sequences of ESRα gene. Table S3. The ORs (95% CI) of individual
CpG site with IFG and T2DM. Table S4. The ORs (95% CI) of target genomic regions with IFG and
T2DM. Table S5. Associations of ESRα methylation (CpG 1) and progesterone levels with IFG and
T2DM stratified by alcohol intake in men. Table S6. Associations of ESRα methylation (CpG 1) and
progesterone levels with IFG and T2DM stratified by smoking status in men. Figure S1. Combined
effects of ESRα methylation (CpG 1) and progesterone on IFG and T2DM stratified by alcohol intake
and smoking status in men.
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GLUT4 glucose transporter 4
CpG cytosine-phosphoguanine
HOMA homeostasis model assessment
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HbA1c glycosylated hemoglobin A1c
NGT normal glucose tolerance
BMI body mass index
TC total cholesterol
TG triglyceride
HDL-C high-density lipoprotein cholesterol
LDL-C low-density lipoprotein cholesterol
FPG fasting plasma glucose
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WHO World Health Organization
SD standard deviations
IQR interquartile ranges
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OR odds ratios
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