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Abstract: Nutrition is a cross-cutting sector in medicine, with a huge impact on health, from car-
diovascular disease to cancer. Employment of digital medicine in nutrition relies on digital twins:
digital replicas of human physiology representing an emergent solution for prevention and treatment
of many diseases. In this context, we have already developed a data-driven model of metabolism,
called a “Personalized Metabolic Avatar” (PMA), using gated recurrent unit (GRU) neural networks
for weight forecasting. However, putting a digital twin into production to make it available for
users is a difficult task that as important as model building. Among the principal issues, changes to
data sources, models and hyperparameters introduce room for error and overfitting and can lead to
abrupt variations in computational time. In this study, we selected the best strategy for deployment
in terms of predictive performance and computational time. Several models, such as the Transformer
model, recursive neural networks (GRUs and long short-term memory networks) and the statistical
SARIMAX model were tested on ten users. PMAs based on GRUs and LSTM showed optimal and
stable predictive performances, with the lowest root mean squared errors (0.38 ± 0.16–0.39 ± 0.18)
and acceptable computational times of the retraining phase (12.7 ± 1.42 s–13.5 ± 3.60 s) for a pro-
duction environment. While the Transformer model did not bring a substantial improvement over
RNNs in term of predictive performance, it increased the computational time for both forecasting
and retraining by 40%. The SARIMAX model showed the worst performance in term of predictive
performance, though it had the best computational time. For all the models considered, the extent of
the data source was a negligible factor, and a threshold was established for the number of time points
needed for a successful prediction.

Keywords: metabolism; deep learning; gated recurrent unit; long short-term memory; transformer;
wearables; forecasting; diet plans; digital nutrition; digital twin; SARIMAX

1. Introduction

Over the past few decades, precise diagnosis and personalized treatment have become
increasingly important in healthcare [1]. Nutrition, as an important factor of personalized
treatments, has a huge impact on health, from cardiovascular disease to cancer [2,3].
Nutritional habits have been linked to stronger immunity, a lower risk of noncommunicable
diseases (such as diabetes and cardiovascular disease) and increased life expectancy [4,5].

Increased knowledge of the effects of nutrition on pathophysiologies of diseases,
achieved with new diagnostic and monitoring technologies spanning from -omics [6,7]
to wearable devices [8], has offered innovative solutions for personalized treatments.
Among the most striking innovations, digital twins (DTs), which are digital replicas of
human physiology, represent an emergent solution for prevention and treatment of many
diseases [9,10]. DT technology holds the promise of starkly reducing the cost, time and
manpower required to test effects of dietary and physical-activity plans, to run clinical trials
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and to create personalized diets for citizens and patients. DT models are built on data flows
sourced from connected biomedical devices on the Internet of Things (IoT) and collected
through digital web-based applications integrating dietary, anthropometric and physical
activity data, such as the one developed by our research group [11]. Artificial intelligence
algorithms have shown good performance in analysis of biometric signals [12,13]. The
data streams provided by these data acquisition platforms can be analyzed with data-
driven models of human metabolism, such as the personalized metabolic avatar (PMA) [14]
developed by our group, to estimate personalized reactions to diets. The PMA consists of a
gated recurrent unit (GRU) deep-learning model trained to forecast personalized weight
variations according to macronutrient composition and daily energy balance. This model
can perform simulations and evaluations of diet plans, allowing definition of tailored goals
for achieving ideal weight. However, putting PMAs into production and transforming them
in a reliable, fast and continuously updating model for predictive analytics is a difficult
task. Among the principal issues, challenges can arise from changes to data sources, models
and model parameters, which introduce room for error and overfitting and can lead to
abrupt variations in computational time. To overcome these issues, here, we selected the
best strategy for deployment in terms of predictive performance and computational time.
Among statistical models, we selected, as a representative, the SARIMAX (Seasonal Auto-
Regressive Integrated Moving Average with eXogenous factors) model: the most complete
for multivariate forecasting. Among deep-learning models, we selected recurrent neural
networks (RNNs), such as gated recurrent units (GRUs) [14] and long short-term memory
(LSTM) networks, and a new model recently introduced, the Transformer model [15],
which has shown great results both in natural language processing and in time-series
forecasting [16]. Moreover, we have tested the influence of the data number retrieved,
which, in real settings, can vary in range from user to user, on the models. These efforts are
necessary to put these models into production to augment citizens’ self-awareness, with
the aim of achieving long-lasting results in pursuing a healthy lifestyle.

2. Materials and Methods
2.1. Study Population

In this single-arm, uncontrolled-pilot prospective study, a group of 10 voluntary adults
(60% females and 40% males, 3 overweight and 7 normal), recruited among our lab staff,
self-monitored daily their weight, diet and activities completed for at least 100 days, as
explained in a previous work [11]. The participants shared their personal data after signing
informed consent.

2.2. Wearables and Devices

To track anthropometric data, the following devices were used:

• The MiBand 6, a smartband of Xiaomi Inc.® (Beijing, China), for estimating calories
burned during exercise (walking, running, etc.).

• The Mi Body Composition Scale, an impedance balance of Xiaomi Inc.® (Beijing,
China), for tracking weight and RMR.

These devices were already used in 4 studies on PubMed, and 11 clinical trials have
been performed using the MiBand1. Validation results in estimating RMR can be retrieved
in recent publications [4]. For tracking the food diary for each participant, a website app
(ArMOnIA, https://www.apparmonia.com, accessed on 7 February 2023) developed by
our group was used for the storing of food data. These data had already been validated in
two other studies [11,14].

2.3. Datasets

As already shown in [14], for the development of the deep-learning models imple-
menting PMAs, the following data were used:

• var1: Weight: w(t) [kg]

https://www.apparmonia.com
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• var2: Energy Balance (EB): Eb(t) [kcal]
• var3: Carbohydrates: mc(t) [g]
• var4: Proteins: mp(t) [g]
• var5: Lipids: ml(t) [g]

Where varj stands for variable j, with j = 1, . . . , 5.
In Figure 1a,b, the representative time series of the five selected quantities are reported.
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We reframed the time-series forecasting problem as a supervised learning problem,
using lagged observations (including the seven days before the prediction, e.g., t − 1, t − 2,
t − 7) as input variables to forecast the current time step (t), as already explained in [12].
The inputs of our model were var1(t− 7), . . . , var5(t− k), . . . , varj(t− i), . . . , var5(t− 1),
with i = 1, . . . , 7 indicating the lagged observation and j = 1, . . . , 5 indicating the input
variable. Therefore, the total number of inputs for the PMA was 7·5 = 35. In this notation,
the output of the PMA is var1(t), i.e., the weight at time t.

The dataset fed to the SARIMAX model is described in the next section.

2.4. Description of Models

As explained in the introduction, DDMs are divided into two types: statistical and
deep-learning models. To select the best option for the development of the PMA, we chose
to compare 4 different models:

SARIMAX:
The SARIMAX model (Seasonal Auto-Regressive Integrated Moving Average with

eXogenous factors) is a linear regression model: an updated version of the ARIMA model.
It is a seasonal equivalent model, like the SARIMA (Seasonal Auto-Regressive Integrated
Moving Average) model, but it can also deal with exogenous factors, which are accounted
for with an additional term, helping to reduce error values and improve overall model
accuracy. This model is usually applied in time-series forecasting [17].

The general form of a SARIMA(p,d,q)(P,D,Q,s) model is

Θ(L)pθ(Ls)p∆d∆D
s wt = Φ(L)q ϕ(Ls)Q∆D

s εt (1)

where each term is defined as follows:

1. Θ(L)p is the nonseasonal autoregressive lag polynomial;
2. θ(Ls)p is the seasonal autoregressive lag polynomial;
3. ∆d∆D

s wt is the time series, differenced d times and seasonally differenced D times;
4. Φ(L)q is the nonseasonal moving average lag polynomial;
5. ϕ(Ls)Q is the seasonal moving average lag polynomial.
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When dealing with n exogenous values, each defined at each time step, t, denoted as
xi

t for i ≤ n, the general form of the model becomes

Θ(L)pθ(Ls)p∆d∆D
s wt = Φ(L)q ϕ(Ls)Q∆D

s εt + ∑n
i=1 βixi

t, (2)

where βi is an additional parameter accounting for the relative weight of each exoge-
nous variable.

In Supplementary Materials (Section S1), additional details about the model are reported.
We implemented this model on Python using the StatsModels library (https://www.

statsmodels.org/stable/index.html, accessed on 7 February 2023), with the SARIMAX (https:
//www.statsmodels.org/0.9.0/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html,
accessed on 7 February 2023) class.

For the SARIMAX model, var2, var3, var4 and var5 (i.e., EB and macronutrients) are
considered as exogenous variables, with the weight as output. Considering our dataset
structure, the exogenous variables at time t correspond to the inputs for the forecasting
of the weight at time t + 1. However, in the SARIMAX equation, the exogenous term is
considered at the same time, t, with respect to the output. To overcome this issue, we shifted
the exogenous values of ∆T = 1 day with respect to weight. In this way, the exogenous term
changed as follows: ∑n

i=1 βixi
t−1.

LSTM:
Long short-term memory (LSTM) networks [18], a variant of the simplest recurrent

neural networks (RNNs), can learn long-term dependencies and are the most widely used
for working with sequential data such as time-series data [19–21].

The LSTM cell (Figure 2) uses an input gate, a forget gate and an output gate (a
simple multilayer perceptron). Depending on data’s priority, these gates allow or deny data
flow/passage. Moreover, they enhance the ability of the neural network to understand
what needs to be saved, forgotten, remembered, paid attention to and output. The cell state
and hidden state are used to gather data to be processed in the next state.
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The gates have the following equations:

1. Input Gate:
i = σ(Wiht−1 + Wiht), (3)

2. Forget Gate:

f = σ
(

W f ht−1 + W f ht

)
, (4)

3. Output Gate:
o = σ(Woht−1 + Woht), (5)

4. Intermediate Cell State:
g = tanh

(
Wght−1 + Wght

)
, (6)

5. Cell State (Next Memory Input):

ct = (g ∗ i) + ( f ∗ ct−1), (7)

6. New State:
ht = o ∗ tanh(ct), (8)

with Xt as the input vector, ht as the output vector, W and U as parameter matrices and f as
the parameter vector.

We implemented the LSTM network using the TensorFlow Keras library (https://
www.tensorflow.org/api_docs/python/tf/keras, accessed on 7 February 2023), which
implements an LSTM cell as an available class on Python (https://www.tensorflow.org/
api_docs/python/tf/keras/layers/LSTM, accessed on 7 February 2023), which we added
into a model as a monolayer neural network.

GRU:
The gated recurrent unit, just like the LSTM network, is a variant of the simplest RNN

but with a less complicated structure. It has an update gate, z, and a reset gate, r. These two
variables are vectors that determine what information passes or does not pass to output.
With the reset gate, new input is combined with the previous memory while the update
gate determines how much of the last memory to keep.

The GRU has the following equations:

1. Update Gate:
z = (Wzht−1 + Uzxt), (9)

2. Reset Gate:
r = (Wrht−1 + Urxt), (10)

3. Cell State:
c = tanh(Wc(ht−1 ∗ r) + Ucxt), (11)

4. New State:
ht = (z ∗ c)((1− z) ∗ ht−1), (12)

A GRU cell is shown in Figure 3.
A more accurate description can be found in the Supplementary Materials (Section S3)

of a previous work [14].
As for the LSTM network, we implemented the GRU in TensorFlow using a GRU

cell (https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRU, accessed on 7
February 2023) implemented into a monolayer neural network.

https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRU
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Transformer:
LSTM and GRUs have been strongly established as state-of-the-art approaches in

sequence modeling and transduction problems such as language modeling and machine
translation [22–26] because of their ability to memorize long-term dependency. Since they
are inherently sequential, there is no parallelization within training examples, which makes
batching across training examples more difficult as sequence lengths increase. Therefore, to
allow modeling of dependencies for any distance in the input or output sequences, attention
mechanisms have been integrated in compelling sequence modeling and transduction
models in various tasks [24,27]. Commonly [28], such attention mechanisms are used in
conjunction with a recurrent network. In 2017, a team at Google Brain® developed a new
model [15], called “Transformer”, with an architecture that avoids recurrence and instead
relies entirely on an attention mechanism to draw global dependencies between inputs
and outputs. This architecture uses stacked self-attention and pointwise, fully connected
layers for both the encoder and the decoder, shown in the left and right halves of Figure 4,
respectively. In Supplementary Material (Section S2), a more accurate description of the
model is reported.
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The implementation of the model in Python followed the Transformer starting code
shared by the Google Brain team (https://keras.io/examples/timeseries/timeseries_
transformer_classification/, accessed on 7 February 2023).

2.5. Model Selection and Comparison
2.5.1. Implementation and Selection of Models

For each selected model, parameter scanning was performed, and the best model was
selected. Below, procedures are indicated according to models.

SARIMAX:
Augmented Dickey–Fuller (ADF) tests, applied to a weight time series, yielded

p-values larger than α = 0.05 for 90% of the overall participants. Therefore, we transformed
the weight time series into a stationary one that performed first-order differentiation. The
ADF test, repeated on preprocessed series, confirmed stationarities for all of the transformed
time series. Following this adjustment, the terms d and D were each set to 1.

We started with fitting a SARIMAX model for all the datasets available, considering
the ranges in Table 1.

Table 1. Parameter range for the selection of the best SARIMAX model.

p q d P Q D S

(1–9) (1,2) (1,2) (1–5) (1,2) (1,2) (7)

In the literature, the most common way to find the best parameters for SARIMAX
models is based on a simple grid search following the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC), respectively. These criteria help to select the
model that explains the greatest amount of variation using the fewest possible independent
variables, using maximum likelihood estimation (MLE) [29], and they both penalize a
model for having increasing numbers of variables, to prevent overfitting.

Therefore, we ranked the models according to the lowest AIC values. The first 5 models
were then trained on the datasets, and the root mean squared error (RMSE) scores were
calculated. The model with the lowest RMSE was then selected.

The LSTM and GRU Models:
Hyperparameter tuning with the aim of minimizing loss function was carried out to

select the best deep-learning model [14]. Typically, in time-series forecasting, tuning is
carried out to reduce the RMSE of test-training forecasting.

Considering that the LSTM and GRU models had the same configuration and the
same hyperparameters, we proceeded with both to parameter scanning in the range shown
in Table 2.

Table 2. Hyperparameter range for the selection of the best GRU and LSTM models.

Units Epoch Batch Size Dropout Activation Function Optimizer

(50, 100, 150) (50, 100, 150) (8, 16, 32) (0.2) (‘ReLU’) (‘adam’)

We selected the best model via considering the lowest RMSE obtained from a predic-
tion on the same training-test sets.

Transformer:
The implementation of this model into Keras was like that of the other two neural

networks, with some exceptions for the hyperparameters. We considered a grid search that
would take into account the range of the hyperparameters shown in Table 3.

https://keras.io/examples/timeseries/timeseries_transformer_classification/
https://keras.io/examples/timeseries/timeseries_transformer_classification/
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Table 3. Hyperparameter range for the selection of the best Transformer model.

Head Size Num Heads Epoch Batch Size Dropout Activation
Function Optimizer

(64, 128, 256) (2, 4, 8) (50, 100, 150) (8, 16, 32) (0.2, 0.25) (‘ReLU’) (‘adam’)

Differently from LSTM and GRU, there are two more parameters: head size, which is
the dimensionality of the query, key and value tensors after the linear transformation, and
num heads, which is the number of attention heads.

In this case, we also chose the best model via minimizing the RMSEs on the training-
test sets.

2.5.2. Performance of Models with Datasets of Varying Length

Following model selection and parameter optimization, we compared the mod-
els, considering, as a quality index, the RMSE, which indicates errors in weight predic-
tion with a test-set length of 7 days, considering a training set of more than 100 days
(mean ± SD = 161.3 ± 22.4) for each participant.

In addition, since scarcity of data is a common problem in deployment of PMAs in
production, we tested the models in more realistic settings. We thus divided the dataset
of each participant into 9 independent groups of 15 days. Then, we evaluated the RMSE
on a test set with a length of 1 day for each group (with a training set of 14 elements). The
final RMSE was the average of these 9 RMSEs. An ANOVA followed by a Tukey test was
applied for pairwise comparison of RMSEs.

2.5.3. Computational Time

In addition to prediction performance, the computational times were calculated for
the retraining and prediction phases for the four models.

A Kruskal–Wallis test followed by a Dunn test was applied for pairwise comparison
of computational times.

2.6. Computational Requirements and Python Libraries

Computational requirements were minimal in order to allow deployment on virtual
machines available on the web. The code for the development of the models was run
in Google Colab with the default settings (free plan). The code requires the following li-
braries: tensorflow = 2.9.2 (https://pypi.org/project/tensorflow/, accessed 7 February 2023),
pandas = 1.3.5 (https://pandas.pydata.org/, accessed 7 February 2023), numpy = 1.21.6
(https://numpy.org/, accessed 7 February 2023), matplotlib = 3.2.2 (https://matplotlib.org/,
7 February 2023), seaborn = 0.11.2 (https://seaborn.pydata.org/, accessed 7 February
2023), statsmodels = 0.12.2 (https://www.statsmodels.org/stable/index.html, accessed
on 7 February 2023), scipy = 1.7.3 (https://pypi.org/project/scipy/, accessed on 7 February
2023), bioinfokit = 2.1.0 (https://pypi.org/project/bioinfokit/0.3/, accessed on 7 Febru-
ary 2023), scikit-learn = 1.0.2 (https://scikit-learn.org/stable/, accessed 7 February 2023)
and scikit-posthocs = 0.7.0 (https://scikit-posthocs.readthedocs.io/en/latest/, accessed on
7 February 2023).

3. Results
3.1. Selection of the Optimal Model

We started with optimizing parameters for each selected model and each participant,
as explained in par. 2.6.1.

For the GRU, LSTM and Transformer models, we considered an Adam optimizer and,
as a loss function, the mean absolute error (MAE), defined with the formula

MAE =
∑n

i=1|yi − xi|
n

, (13)

https://pypi.org/project/tensorflow/
https://pandas.pydata.org/
https://numpy.org/
https://matplotlib.org/
https://seaborn.pydata.org/
https://www.statsmodels.org/stable/index.html
https://pypi.org/project/scipy/
https://pypi.org/project/bioinfokit/0.3/
https://scikit-learn.org/stable/
https://scikit-posthocs.readthedocs.io/en/latest/
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where yi is the actual value and xi is the prediction.
In Table S1, the selected parameters for each user are reported for each type of model.

As shown in [14], we trained a model for each user to adapt it to the personalized charac-
teristics of metabolism.

3.2. Comparison between Models

As explained in par. 2.6.2, to compare model performance, we used the RMSE of the
prediction of the test set for each participant. Datasets were structured to make the training
and test set homogeneous, ensuring that the models learned from the same data and tested
their knowledge under identical conditions. In Figure 5, we report the forecasting with
each model for a single participant.
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Figure 5. Predictions of test set of user 0, for all models.

From a visual inspection, the GRU and LSTM models follow the variations of weight
more accurately while the SARIMAX model shows the worst result. In Figure 6, we
show the RMSEs, grouped based on models, for each participant. Indeed, there is an
evident difference between the SARIMAX model and the others, confirming that neural
networks outperform statistical models in time-series forecasting. On the other hand, the
deep-learning models show comparable RMSEs to each other.

Hence, the Transformer model did not demonstrate improvement with respect to the
GRU or LSTM models, having, on the contrary, slightly worse results.

To quantify these observations, we carried out an ANOVA among the RMSEs of the
models, showing a p-value lower than α = 0.05

(
4.31·10−4) and confirming that there was

at least one model different from the others. We then performed a Tukey test for pairwise
comparison, and the results, reported in Table 4, confirmed that the SARIMAX model
is different from the others (adjusted p-value lower than α), while there is no statistical
difference among the other three models, yielding a p-value bigger than α.
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Table 4. Tukey test results: Diff represents the mean difference between the pair of groups; Lower
and Upper the lower and upper difference between the pair of groups, respectively; q-value is a
value that provides a means to control the positive false discovery rate (pFDR); and p-value is the
probability of obtaining test results at least as extreme as the result observed, under the assumption
that the null hypothesis is correct.

Group 1 Group 2 Diff Lower Upper q-Value p-Value

SARIMAX LSTM 0.458859 0.152600 0.765117 5.706676 0.001490
SARIMAX GRU 0.467519 0.161261 0.773778 5.814384 0.001196
SARIMAX Transformer 0.397567 0.091309 0.703826 4.944415 0.006675

LSTM GRU 0.008660 −0.297598 0.314919 0.107708 0.900000
LSTM Transformer 0.061291 −0.244967 0.367550 0.762261 0.900000
GRU Transformer 0.069952 −0.236307 0.376210 0.869969 0.900000

3.3. Analysis of the Performance with a Limited Dataset Length

As explained in Section 2.6, PMAs often operate on datasets with limited length. For
example, diet diaries are often compiled for a limited amount of time. Therefore, we carried
out a test to show the performances of these models, considering a limited dataset of
15 days. The model was trained to predict the weight for the day afterward.

To acquire a reliable index of the performance of each model, we tested the models on
nine subsets of data in the original dataset for each participant. In this way, we could refer
to a mean RMSE for each model and for each participant.

In Figure 7, the RMSE distribution of each model is reported (each point represents
a user). From a visual inspection, we can conclude that, again, the SARIMAX model
displays the worst results, while the others have similar performances. To confirm this
observation, we carried out an ANOVA (p-value = 0.019) followed by a Tukey test. The
pairwise comparison showed that only the SARIMAX model presented accuracy that was
statistically different from that of the deep-learning models.

3.4. Performance versus Data Length

The results reported in the previous section show how the model provided accurate
solutions for few data. In this section, we analyze changes in performance with decreasing
data length. We considered the following subsets: 100% of the dataset and 100, 80, 60, 40
and 30 days. In Figure 8, we report the RMSE versus the data length for each participant
and for each model, with error bars representing the standard deviations (SDs).
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While the SARIMAX model showed an important decrease in performance as data
length decreased, the others were characterized with stable performances, also with data
collected only for thirty days.
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3.5. Computational Time

In the evaluation of the performance of a model in a production environment, we must
consider another important parameter: the computational cost, expressed in time. This
computational time is the sum of the (re)training time and the forecasting time, since in a
production environment, the model must be retrained every time and data are gathered in
real time. In Table 5, we report, for each model, the computational time, the (re)training
time and the forecasting time. The times are averaged based on the number of participants.

Table 5. Time costs for the training and forecasting (of 7 days) mean for each model, averaged based
on 10 participants.

Model Computational Time Standard Deviation Retraining Time Forecasting Time

SARIMAX 1.83 s 1.06 s 1.56 ± 1.05 s 0.29 ± 0.03 s
LSTM 13.5 s 3.60 s 12.6 ± 3.30 s 0.92 ± 0.33 s
GRU 12.7 s 1.42 s 12.0 ± 1.22 s 0.86 ± 0.26 s

Transformer 48.6 s 10.7 s 47.9 ± 10.7 s 0.85 ± 0.13 s

It is possible to observe how the GRU and LSTM models each require about 1/5 of the
time requested to retrain and forecast with the Transformer model but 10× more time than
that of the SARIMAX model. Therefore, a major burden of the Transformer model resides
in the retraining time, since it requires more complex operations than the others.

To quantify these observations, a Kruskal–Wallis test was carried out [30] among
the models, since a Shapiro–Wilk test [30] had confirmed that distributions would not be
normal. The test yielded a p-value < 0.05, showing the presence of a statistical difference
between the models. Therefore, a posthoc test (Dunn test [31]) was carried out to investigate
the pairwise comparison. The test showed no statistical difference between the GRU and
LSTM models, confirming that they have similar performances (Figure 9), which are better
than that of the Transformer model.
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4. Discussion

Obesity and cardiovascular disease, as the most serious public health challenges of the
21st century, are strongly conditioned through dietary habits. Digital health can help people
to monitor themselves and prevent these diseases. The advent of wearable devices and the
evolution of smartphone technology have allowed the development of an infrastructure
able to retrieve data that could be used for the development of what is defined as a “Digital
Twin”: a digital representation of human physiology. With this technology, it is possible to
import digital health into the lifestyles of citizens, promoting a healthy lifestyle, since people
would be in conditions to better know their own physiologies and responses to nutrition
and physical activity. Here, we relied on the ArMOnIApp application, which is able to
fetch, preprocess and analyze spontaneous and voluntary physical activities (PAs), dietary
measures and anthropometric measures from a set of commercial wearables and other
smart devices provided to the end user [11]. These data led to the development of a model,
the PMA, that is able to give personalized responses for each end user, such as personalized
reactions to the introduction of a particular food in their diet [14]. Here, we compared
predictive and computational performances of several models, with the aim of providing
useful parameters to put the PMA into production. Moreover, we tested the influence of
the data number retrieved, which, in real settings, can vary in range from user to user, on
the four models. In a production environment, the practice of automating deployment,
integration and monitoring of machine-learning (ML) models is called MLOps [32], and this
automation is crucial to increase the speed at which organizations can release models into
production. MLOps also involves ensuring continuous quality and dynamic adaptability
of projects throughout the entire model lifecycle [32].

To make an efficient and accurate PMA, data must be retrieved in real time. Therefore,
web applications must be structured to continuously fetch new data as they are made
available with devices, and to control data quality using algorithms. To include these
functionalities, we relied on our web application, ArMOnIApp [11]. Moreover, ML models
require automation of model retraining, and in this framework, the time cost for this
procedure has an important role to optimize end performance. To this aim, we evaluated
the time necessary for retraining of and prediction for the most used and reliable forecasting
models. The results (summarized in Table 6) show how the GRU and LSTM models require
about 1/5 of the computational time of the Transformer model, despite this time being
more than 10 times that of the SARIMAX model.

Table 6. In this table, the overall results are summed up for each model, reporting each mean value
and its associated SD.

Model RMSE RMSEreduced Computational Time Retraining Time

SARIMAX 0.85 ± 0.37 1.95 ± 2.30 1.83 ± 1.06 s 1.56 ± 1.05 s
LSTM 0.39 ± 0.18 0.48 ± 0.24 13.5 ± 3.60 s 12.6 ± 3.30 s
GRU 0.38 ± 0.16 0.45 ± 0.30 12.7 ± 1.42 s 12.0 ± 1.22 s

Transformer 0.45 ± 0.25 0.66 ± 0.28 48.6 ± 10.7 s 47.9 ± 10.7 s

On top of these optimizations, there is a need to monitor quality of predictions. To this
aim, we outlined a workflow to evaluate the performances of different models with varying
data lengths. We found out that the SARIMAX model, though being the fastest, had the
worst RMSE, with a great variability among users. This RMSE, being four times higher
than that of the GRU or LSTM model, penalizes the SARIMAX model in the deployment of
the PMA. In terms of the RMSE, the Transformer model had a better performance than the
SARIMAX model as well, but was comparable with RNNs. However, the time cost was the
highest (four times higher than for the GRU/LSTM model), and this criticality has a strong
impact on production development.

According to the performances and computational times, we can conclude that the
PMAs built on the GRU or LSTM model show optimal predictive performances with accept-
able computational time, making them the best candidates for a production environment.
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Another issue is the need to compare the effectiveness of training several ML models
specialized in different groups versus training one unique model for all the data. To address
this issue, planning to create a unique model accounting for the metabolisms of a cohort of
participants will require an increased number of participants.

Before these models are put into production, several ethical concerns must be moreover
addressed. In regard to privacy concerns, collection and storage of personal health data by
wearable devices can potentially compromise users’ privacy if this information is shared
with third parties without their consent. In this study, we retrieved health data from the
Zepp API, where users have explicitly consented to data sharing. The privacy policy can
be retrieved on the Zepp website (https://www.zepp.com/privacy-policy, accessed on 24
February 2023). There are, in any case, security risks. Wearable devices are often connected
to the internet, making them vulnerable to hacking and data breaches. This can result
in sensitive personal data being stolen or compromised, potentially leading to identity
theft or other forms of fraud. In addition, discrimination is an issue to be addressed,
since use of wearable devices and data collected can potentially lead to discrimination
against individuals with pre-existing health conditions or disabilities. This can result in
denial of insurance coverage or job opportunities. Finally, there are social implications:
use of wearable devices to track personal data can promote unhealthy obsessions with
self-monitoring. These issues have been constantly monitored in pilot and clinical studies,
but protocols must be developed and optimized before the use of these systems on a large
scale is allowed. Some of these protocols already exist or are under research [33,34].

5. Conclusions

Putting the PMA into production can produce diets and activity regimens that are
specifically tailored to users’ needs. Thanks to the PMA, pertinent hints can be found to
provide citizens and nutritionists with scientific knowledge and reliable tools, enhancing
their self-awareness and assisting them in their quests for healthy lifestyles. An important
development might be inclusion of newly developed lipid metabolism indicators (such
as membrane lipids and fluidity of red-blood-cell membranes) as input in the PMA to
research the impacts and influences of dietary components on their results [35–39]. Ad-
ditionally, cutting-edge and promising anthropometric markers, such as VO2max and
heart rate frequency, monitored using wearable technology can enhance the accuracy of
weight predictions [40]. These integrations could group and cluster various PMA responses,
providing insights into these variables that could affect an individual’s metabolism. An-
other important advancement may come from the advent of quantum computing and the
achievement of quantum supremacy [41], which will revolutionize ML models, including
the PMA, via increasing their performances and reducing their computational times.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu15051199/s1, Table S1: The results of the tuning of each model
are reported in the table, in particular for the SARIMAX model the parameters are the following:
(p,dq)x(P,D,Q,S); for the LSTM and GRU: (units, epochs, batch size, dropout); for the Transformer:
(head size, num heads, epochs, batch size, dropout); Section S1: SARIMAX architecture; Section S2:
Transformer architecture; Section S3: Models’ parameters.
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