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Abstract: Hippuric acid (HA) is a metabolite resulting from the hepatic glycine conjugation of benzoic
acid (BA) or from the gut bacterial metabolism of phenylalanine. BA is generally produced by gut
microbial metabolic pathways after the ingestion of foods of vegetal origin rich in polyphenolic
compounds, namely, chlorogenic acids or epicatechins. It can also be present in foods, either naturally
or artificially added as a preservative. The plasma and urine HA levels have been used in nutritional
research for estimating the habitual fruit and vegetable intake, especially in children and in patients
with metabolic diseases. HA has also been proposed as a biomarker of aging, since its levels in the
plasma and urine can be influenced by the presence of several age-related conditions, including
frailty, sarcopenia and cognitive impairment. Subjects with physical frailty generally exhibit reduced
plasma and urine levels of HA, despite the fact that HA excretion tends to increase with aging.
Conversely, subjects with chronic kidney disease exhibit reduced HA clearance, with HA retention
that may exert toxic effects on the circulation, brain and kidneys. With regard to older patients with
frailty and multimorbidity, interpreting the HA levels in the plasma and urine may result particularly
challenging because HA is at the crossroads between diet, gut microbiota, liver and kidney function.
Although these considerations may not make HA the ideal biomarker of aging trajectories, the study
of its metabolism and clearance in older subjects may provide valuable information for disentangling
the complex interaction between diet, gut microbiota, frailty and multimorbidity.
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1. Introduction

The burden of frailty and disability in our aging society is amplifying the demand
for reliable biomarkers that can help clinicians and researchers to better identify the aging
trajectory of older persons [1,2]. Recently, hippuric acid has been proposed as one of these
markers, because its metabolism is strongly dependent on the exposure to environmental
factors, such as diet, and intrinsic host factors, such as the gut microbiota, that play an
important role in the pathophysiology of frailty [3].

Hippuric acid is the glycine conjugate of benzoic acid. In human beings, it was first
studied in the fields of occupational medicine and toxicology because it represents the final
metabolite of toluene detoxification metabolic pathways [4]. After toluene exposure, the
liver cytochrome P450 enzymes produce benzyl alcohol, which is then transformed into
benzoic acid by alcohol dehydrogenase. Benzoic acid is, finally, subjected to conjugation
with glycine to form hippuric acid, which is then excreted into the urine (Figure 1) [4].
For this reason, urinary hippuric acid excretion is even today used to monitor workers’
exposure to toluene in high-risk occupations [5,6].
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acid levels in older individuals in order to shed light on the complex interplay between 
nutrition, microbiota and frailty in this population. 

 
Figure 1. Schematic representation of pathways leading to hippuric acid synthesis in human beings, 
putative actions of this compound on the target organs and mechanisms of excretion. 
Figure 1. Schematic representation of pathways leading to hippuric acid synthesis in human beings,
putative actions of this compound on the target organs and mechanisms of excretion.

In the last decade, human metagenomics and bacterial metabolism studies have
contributed to boosting our knowledge about the role of the gut microbiome in human
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health [2,7]. Several compounds contained in foods undergo a relevant metabolic trans-
formation by the gut bacteria resulting in the production of bioactive compounds with
important physiological functions for the host or with clinical significance as biomarkers of
physiological processes [8,9]. Hippuric acid is among these compounds, representing one of
the final microbial metabolites of dietary polyphenol biotransformation [9,10]. Additionally,
hippuric acid may originate from the bacterial metabolism of phenylalanine [11].

The possible pathways leading to hippuric acid synthesis in human beings are summa-
rized in Figure 1. One pathway involves epicatechins, a category of compounds belonging
to the flavonoid polyphenol subclass, which are frequently found in tea, pomes, berries,
broad beans and barley, among others; another pathway involves chlorogenic acids, a
family of polyphenol esters conjugates with quinic and caffeic acids, found in coffee beans,
berries and other fruits [10,12,13]. Both of these pathways converge in the gut microbiome-
mediated synthesis of benzoic acid, which is absorbed into the circulation and transformed
into hippuric acid after glycine conjugation in the liver or, to a lesser extent, in the kid-
ney [14,15]. Benzoic acid can also be present naturally in foods, especially in berries, milk
and dairy products, or artificially as a preservative, especially in beverages and other
industrial foods [16]. An alternative pathway, recently discovered, involves the amino acid
phenylalanine resulting from gut bacterial metabolism or food digestion, which is con-
verted into phenylpropionic acid by the bacterial metabolism, absorbed into the circulation
and then subjected to acyl-Coenzyme-A (acyl-CoA) dehydrogenase β-oxidation in the liver
to form hippuric acid [11].

In the blood, hippuric acid is approximately 30–35% bound to albumin [17]. Its
pathophysiological functions in the human body are, however, not fully understood to
date [18]. Some in vitro studies suggest that it may exhibit myoprotective properties
when incubated with skeletal muscle cells, stimulating glucose metabolism, preserving
mitochondrial functions and promoting protein synthesis [19,20].

Conversely, hippuric acid inhibits Organic Anion Transporter (OAT) 3 function in neu-
rons, favoring the toxic action of other compounds, including indoxyl sulfate [21]. At high
concentrations, hippuric acid may also exert toxic effects on renal tubular cells by disrupting
the redox balance through the downregulation of the Nuclear Factor Erythroid-2 (NRF2)
transcription factor, which is responsible for the expression of antioxidant enzymes [22],
and on endothelial cells, where it can induce massive mitochondrial reactive oxygen species
(ROS) production [23] and synthesis of miR-92a, a mediator involved in atherosclerosis
related to chronic kidney disease (CKD) [24]. Hippuric acid is then excreted by the kidneys
through active secretion mediated by OAT1 and OAT3 [25].

Despite its potentially toxic effects, the plasma and urine levels of hippuric acid have
been generally considered a marker of good health and a healthy lifestyle. In fact, hippuric
acid is mostly derived from polyphenols and polyphenol-derived compounds, whose
nutritional intake has been associated with several positive health effects, especially in
aging [26]. In particular, the polyphenol intake has been associated with longevity, extended
health span and protection against cognitive decline [27–29].

In this context, disentangling the real significance of plasma or urine hippuric acid lev-
els in older individuals may result particularly challenging. As people age, in fact, changes
in dietary habits, alterations in liver and kidney function, chronic illnesses and gut micro-
biota dysbiosis may significantly disrupt hippuric acid synthesis and metabolism [18,30,31].
Therefore, the objective of this narrative review is to critically assess the multiple factors
contributing to the variability of the plasma and urine hippuric acid levels in older indi-
viduals in order to shed light on the complex interplay between nutrition, microbiota and
frailty in this population.

2. Urinary Hippuric Acid as a Nutritional Marker

Several experimental studies have shown that both serum and urinary hippuric acid
levels increase after the ingestion of foods or beverages with a high polyphenol load [32–36].
For example, cranberry juice consumption is associated with an increase in serum hippuric
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acid levels and urinary 24 h hippuric acid excretion in healthy young adults [32,33]. Ac-
cording to these studies, the serum hippuric acid levels were also associated with beneficial
metabolic effects of polyphenol metabolites, such as the improvement of insulin secretion,
the reduction of fasting plasma glucose and a favorable alteration of the post-prandial
serum lipid load [35,36].

In this context, the 24 h urinary hippuric acid excretion has been proposed and vali-
dated as a marker of fruit and vegetable (FAV) intake, in view of the fact that polyphenols
are mainly present in these categories of foods [37]. A high FAV intake is associated with a
reduced risk of a large number of chronic diseases, including diabetes and obesity, whose
burden is dramatically rising worldwide [38]. Traditional methods of assessment of the
FAV intake, such as the use of food frequency questionnaires or dietary diaries, suffer from
several limitations, including recall bias [39,40]. Therefore, the availability of laboratory
markers of FAV intake can be considered extremely important for both clinical and research
purposes, especially for those individuals who generally have the lowest FAV intakes, such
as children and obese subjects [38].

The twenty-four-hour urinary hippuric acid excretion showed a fairly good correlation
with FAV intake, estimated from 3-day weighted dietary records, in 287 healthy adolescents
residing in Germany (unadjusted r = 0.64) [41]. Similarly, hippuric acid excretion was
correlated with the baseline intake of FAV, detected through two 24 h dietary recalls, in a
small group of healthy adults undergoing a high-FAV diet intervention [42]. The correlation
coefficients between FAV intake and 24 h hippuric acid excretion, however, seemed to be
higher in children than in adolescents or healthy adults [43]. These findings strengthen
the rationale for using urinary hippuric acid excretion as a nutritional marker mainly in
the pediatric population [38]. In adult subjects, in fact, the inconsistency between food
intake and related metabolite excretion that typically emerges suggests that non-nutritional
factors as determinants of hippuric acid excretion are involved [44].

Therefore, in adult subjects, the 24 h urinary hippuric acid excretion is not recom-
mended for the precise assessment of the levels of FAV intake but can simply be used for
monitoring adherence to dietary interventions [45] or for providing a raw estimation of
the habitual FAV consumption in the presence of diseases that have a strong association
with dietary habits, such as kidney stone disease [46]. In this condition, a low FAV intake
is associated with an increased risk of renal colic [47,48]. Conversely, a high-FAV diet
intervention can reduce the risk of stone recurrence [49]. Therefore, urinary hippuric acid
excretion may be considered a marker of the risk of kidney stone recurrence [50].

Despite its limitations as a nutritional marker, urinary hippuric acid may in any case
be associated with physiological parameters and clinical outcomes of interest in adult
subjects. Urinary hippuric acid excretion levels can in fact predict the serum lipid profile in
adolescence [51] and insulin sensitivity [52] in adulthood. Furthermore, in obese subjects,
the levels of hippuric acid in the blood are associated with an obesity phenotype [53] and
visceral fat mass [54], suggesting that this compound may also be used as a marker of
metabolic health.

3. Hippuric Acid Metabolism in Aging and Age-Related Conditions
3.1. The Physiology of Hippuric Acid in Aging

In aging, the urinary 24 h hippuric acid excretion tends to increase and reaches its
maximum after the age of 55 [50]. The reasons underlying this phenomenon are not
completely understood and do not seem to be related simply to dietary habits. In a large
study conducted on kidney stone formers of different ages, the FAV intake was significantly
increased in subjects older than 55 with respect to young adults and adolescents and was
significantly correlated with hippuric acid excretion [50]. However, the FAV intake of
this population was, in absolute terms, well below the recommended threshold. Studies
specifically conducted in aging populations from Western and low-income countries in fact
uncovered that the FAV intake was inadequate in the majority of the participants [55,56].
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Urinary hippuric acid excretion increases after a high-polyphenol diet challenge
in older as well as in younger populations, maintaining its validity as a marker of the
nutritional intake of FAV, at least in experimental conditions [57,58]. Interestingly, in older
subjects, the excretion of other terminal products of polyphenol metabolism, such as vanillic
acid, does not increase after a targeted high-polyphenol dietary intervention [58].

A critical step of hippuric acid synthesis is the bioavailability of glycine for conjugation
with benzoic acid in the liver, as highlighted in Figure 1. Metabolic studies conducted in
mouse models suggest that this pathway is unaffected by aging, contributing to explain
why hippuric acid synthesis is maintained also in older age [31]. However, under stressful
conditions such as after major surgery, the bioavailability of glycine in older individuals
may decrease, leading to a transient condition of reduced hippuric acid synthesis [59].

Furthermore, hippuric acid clearance strongly depends on the renal function and the
capacity of active secretion by OATs. Aging, even with a healthy active pattern, is always
associated with a certain degree of decline in the glomerular filtration rate (GFR) [60,61].
This phenomenon is emphasized in subjects whose situation is characterized by frailty and
multimorbidity, even in the absence of clear signs of chronic kidney disease (CKD) [62,63].
Furthermore, CKD itself is often underdiagnosed in older individuals because the equations
for GFR estimation do not adequately account for the age-related reduction of creatinine
release from skeletal muscle cells due to muscle wasting and sarcopenia [62,63].

This scenario may help to explain why a tendency towards a mild decrease in the
24 h urinary hippuric acid excretion can be observed in oldest old subjects with respect to
those in the 55–70-year age group [50]. Furthermore, the hippuric acid levels in the plasma
increase in older subjects, even when no clear signs of kidney disease are present [64,65].
In the Baltimore Longitudinal Study of Aging, the plasma hippuric acid levels measured
in 616 adults between the ages of 38 and 94 years were positively correlated with the
estimated GFR [65]. Interestingly, in a study investigating the associations between the
Mediterranean diet score, a parameter strongly correlated with FAV intake, and the plasma
levels of gut microbial metabolites, including hippuric acid, the correlation between plasma
hippuric acid levels and renal function masked the well-known association between diet
and hippuric acid metabolism [66]. Therefore, the complexity of the interaction between
dietary patterns in older individuals, metabolic pathways leading to hippuric acid synthesis,
and age-related decline in renal function possibly affecting hippuric acid clearance should
be carefully assessed when the plasma or urine hippuric acid levels are being investigated.

3.2. The Role of Chronic Kidney Disease

The retention of hippuric acid in the plasma is particularly pronounced in the context
of advanced CKD because the capacity of tubular secretion through OATs is impaired in
that condition [67]. Pre-clinical studies also suggest that hippuric acid retention in the
human body may have toxic effects, especially on the brain, kidneys and endothelium
(Figure 1) [67].

In fact, hippuric acid is one of the uremic toxins responsible for the uremic syndrome
associated with advanced CKD [67]. The plasma and cerebrospinal fluid levels of hippuric
acid are associated with a decline in cognitive performance in neuropsychological tests [68].
However, experimental evidence suggests that hippuric acid does not directly impair the
brain function but inhibits the function of OATs at the blood–brain barrier level, favoring
the retention in the brain tissue of other toxins with more direct neurotoxic actions, such
as indoxyl sulfate or indole acetate [21]. Additionally, hippuric acid retention in patients
with advanced CKD has been associated with atherogenesis through the disruption of the
endothelial function [23,24] and renal fibrosis [22].

The clinical relevance of these mechanisms, however, has been recently questioned. In
a cohort of 230 Taiwanese patients with advanced CKD undergoing maintenance hemodial-
ysis, the serum hippuric acid levels were not related to cognitive performance, despite
the positive blood–brain barrier penetration ability of the compound [69]. Furthermore,
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the abrupt decrease in serum hippuric acid levels after kidney transplantation was not
associated with significant variations in cognitive performance after three months [70].

Increased plasma levels and decreased urine levels of hippuric acid are in any case
associated with an increased risk of progression of CKD of diabetic etiology according to a
recent study conducted on 41 patients subjected to an untargeted metabolomic analysis of
plasma samples [71]. Even moderate CKD is associated with alterations in hippuric acid
clearance, with increased plasma levels and decreased urinary excretion; these changes
should therefore be considered as early clinical markers of kidney disease [72].

Overall, these studies suggest that the presence of CKD should always be evaluated
when hippuric acid levels in the serum and urine are being investigated.

3.3. The Role of Age-Related Gut Microbiota Changes

Since hippuric acid synthesis is the result of an interaction between food bioactive
compounds and the gut microbiota, age-related changes in gut microbiota composition and
functionality may have important consequences for hippuric acid metabolism. However,
this issue has not been specifically studied to date.

In older subjects, the gut microbiota loses its stability of composition and resilience
to external perturbations and is generally characterized by an increased representation
of opportunistic pathogens, including Gram-negative bacteria of the Enterobacteriaceae
family, at the expense of bacterial taxa with purported health-promoting activity, such
as Bifidobacteria, Akkermansia, Faecalibacterium and other bacteria able to synthetize short-
chain fatty acids (SCFAs) [73–77]. Centenarians who reach extreme ages in relatively good
health generally show less pronounced changes, with the maintenance of some core taxa
capable of modulating age-related chronic inflammation, gut intestinal permeability and
the anabolic–catabolic balance [78,79]. Conversely, aging subjects who show signs of frailty
and multimorbidity and who exhibit a poor physical and cognitive performance have
generally higher levels of gut microbiota dysbiosis, i.e., an imbalance between pathobionts
and symbionts [80,81]. The most pronounced degrees of dysbiosis are generally observed
in older patients residing in nursing homes [82] or hospitalized for acute illness [83].

A study conducted in patients with Crohn’s disease, a gastrointestinal condition
associated with marked levels of gut microbiota dysbiosis, has shown that dysbiosis
reduces the capacity of the host to synthetize hippuric acid even after the administration
of a sodium benzoate load as a dietary supplement [84]. Furthermore, in a group of
1529 females belonging to the TwinsUK Cohort, the plasma levels of hippuric acid were
inversely associated with the Shannon Index, a measure of gut microbiome diversity [85].
Subjects with reduced hippuric acid levels were also more likely to develop metabolic
syndrome and had a reduced dietary intake of FAV [85].

These findings suggest that dysbiosis may have important consequences on the
metabolic pathways shown in Figure 1 and could be associated with reduced hippuric acid
synthetic capacity, even when the dietary intake of FAV is high. Therefore, the presence
of age-related dysbiosis should be carefully evaluated when the hippuric acid levels in
plasma or urine are being assessed.

4. Hippuric Acid in Physical Frailty and Sarcopenia

Epidemiological studies have underlined that, in older subjects, a high dietary FAV
intake is protective against frailty and its detrimental consequences [86], especially when the
amounts of intake recommended by nutrition societies are met [87,88]. More specifically,
high FAV intake was found to be protective against the onset of physical frailty and
sarcopenia, the age-related loss of muscle mass and function associated with adverse
outcomes in older subjects [89–91]. This association was detected in populations from
different geographical regions and with different dietary patterns [86–91].

However, recent evidence suggests that this relationship may be gender-specific
and that a high FAV intake is clearly protective against sarcopenia only in females [92].
Furthermore, the quality, variety and diversity of plant-based foods habitually consumed
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by older persons also seems to be related to the risk of developing frailty and sarcopenia,
and whole grains, vegetables, nuts and legumes are considered healthier choices that are
associated with the lowest risk [93,94]. In one study, the FAV variety in habitual diets was
not associated with frailty or sarcopenia, but it did predict the mortality of older adults [95].
Overall, this evidence supports the recommendation of increasing the FAV intake to prevent
physical frailty and sarcopenia, although most experts are convinced that more high-quality
research in this field is needed [96–98].

Mounting evidence also suggests that gut microbiota dysbiosis is pathophysiologically
involved in the onset and progression of physical frailty and sarcopenia [99,100]. The
human studies supporting this hypothesis, however, were not designed to assess the
hippuric acid metabolism [101].

In this scenario, measuring the urinary hippuric acid excretion may still provide
important information for estimating the risk of frailty and sarcopenia [3]. Data from
the Invecchiare in Chianti (InCHIANTI) Study suggest that the urinary excretion of total
polyphenols is inversely associated with the phenotypical aspects of physical frailty, includ-
ing exhaustion and slow walking speed [102]. The key findings of studies that specifically
investigated the relationship between frailty/sarcopenia and hippuric acid metabolism in
older subjects are summarized in Table 1 [103–107].

Overall, these studies support the hypothesis that low plasma levels of hippuric acid
are associated with detrimental consequences for the physiology of older subjects, namely,
muscle wasting [103], impaired muscle metabolism [106], low muscle mass [105] and frailty
phenotype [104] (Table 1).

One study, instead, found results apparently in opposition to those of the others, as it
uncovered that urinary hippuric acid excretion was negatively associated with the Short
Physical Performance Battery (SPPB) score [107] (Table 1). According to that study, the
patients with physical frailty and sarcopenia exhibited increased plasma and urine levels
of hippuric acid, a profile that was shown mainly in patients with renal failure.

However, the high degree of heterogeneity of designs, sample sizes, criteria of en-
rollment and methods of frailty assessment is an important factor to consider when the
findings of the studies listed in Table 1 are examined. In one study [106], frailty, which was
considered simply in terms of alterations of glucose metabolism, was not formally assessed
according to standard criteria. In another study [103], the participants were classified as “at
risk for sarcopenia”, but a comprehensive evaluation of their muscle mass and function was
not conducted. Given these considerations, no conclusive evidence regarding the possible
role of hippuric acid as a marker of frailty, physical frailty or sarcopenia was presented by
any of these studies.

Two further studies were conducted on a selected population of patients with CKD
undergoing hemodialysis. The results suggested that the levels of plasma hippuric acid
were negatively associated with handgrip strength, but the decline in physical performance
associated with the disease was not completely explained by the retention of uremic
toxins [108]. Furthermore, other uremic toxins, especially indoxyl sulfate, and not hippuric
acid, were associated with skeletal muscle toxicity and sarcopenia in these patients [109].
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Table 1. Overview of the key findings of studies that investigated hippuric acid in the plasma and urine as a marker of muscle wasting, sarcopenia or frailty in older
individuals.

Author, Year (Ref) Country Study Design Sample Size and
Characteristics Age Method of Frailty

Assessment Key Findings

Saoi et al., 2019 [103] Canada
Intervention (two weeks

of inactivity with
<1000 steps per day)

17 overweight
pre-diabetic older adults

at risk for sarcopenia
69 ± 17 Not described

Physical inactivity was associated with indirect
signs of muscle wasting and reduced plasma

levels of uremic toxins, including HA.
Resuming normal physical activity was not

associated with recovery of baseline HA levels.

Brunelli et al., 2021 [104] Italy Longitudinal
population-based

Profiling cohort: 65 fit
and 65 frail

Validation cohort: 124 fit,
59 pre-frail and 81 frail

Range 76–78
y.o. for all

cohorts

Frailty Index based on
32 health variables

or deficits

HA was the only marker, detected by an
untargeted metabolomic approach,

significantly lower in the plasma of the frail
with respect to that of fit subjects and linearly

associated with the FI. HA levels predicted
incident frailty.

Kameda et al., 2021 [105] Japan Cross-sectional 19 older community
dwellers 86 ± 7

Skeletal Muscle Index
measured by

bioimpedance analysis;
gait speed on 10 m
straight walkway;

grip strength

HA was among 22 plasma markers of
sarcopenia with significantly lower levels in

patients with low SMI detected by
bioimpedance analysis, but was not associated

with frailty.

Harmsen et al., 2022 [106] Netherlands Cross-sectional
12 older metabolically

compromised men
12 young fit adults

65 ± 9 (older)
22 ± 2 (young)

Altered glucose
metabolism

HA was significantly reduced in the plasma of
older men and associated with a marker of

altered skeletal muscle metabolism. The
amplitude of plasma HA variations over the

day was reduced in older men.

Douzi et al., 2022 [107] Finland RCT
33 patients undergoing
rehabilitation after hip

fracture surgery
80 ± 8 Fried phenotypical

criteria of frailty

Urinary HA was significantly increased in
patients with low physical performance,

measured by the SPPB score, and in patients
who died during hospital stay.

HA = hippuric acid; FI = Frailty Index; SMI = Skeletal Muscle Index; SPPB = Short Physical Performance Battery; RCT = Randomized Controlled Trial.
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5. Hippuric Acid and Cognition in Older Adults

A high FAV intake in older age is protective against cognitive decline and the onset
of dementia [110,111]. This effect, which is mediated by several nutrients and bioactive
compounds present in foods of vegetal origin, including polyphenols, cannot be considered
the effect of a single class of molecules [112]. This relationship depends on the overall
dietary pattern and not on the ingestion of a single food or a single class of foods [113]. In
particular, the Mediterranean and Dietary Approaches to Stop Hypertension (DASH) style
diets seem to be the best dietary patterns associated with the prevention of or the delay in
cognitive decline according to nutritional epidemiology studies [113,114].

The gut microbiota also plays an important role in modulating the age-related cog-
nitive decline [115] through multiple mechanisms that together represent the so-called
microbiota–gut–brain axis [116]. The gut microbial metabolism of food bioactives, including
polyphenols, may determine the synthesis of neuroprotective compounds, which represent
a key mechanism involved in the microbiota–gut–brain axis [117]. Despite the potential im-
portance of these mechanisms, comprehensive studies assessing the relationships between
gut microbiota metabolic functionality and cognitive performance in human beings are still
lacking [117].

In this context, high levels of urinary hippuric acid excretion may be considered
inversely associated with the risk of developing age-related cognitive disorders. Inter-
estingly, in a metabolomics study conducted on 20 patients with Alzheimer’s disease,
10 patients with mild cognitive impairment (MCI) and 29 controls, hippuric acid excretion
was significantly reduced only in the MCI group, and no differences were detected when
the results from the patients with dementia and the controls were compared [118]. An
increase in plasma and urinary hippuric acid was also observed in intervention studies
testing the cognitive effects of administering food supplements of vegetal origin, such as
blueberry derivatives [119–121] or Xanthoceras sorbifolium bunge husks [122]. These studies
did not, however, report any measurable effects of the nutritional intervention on cognitive
performance. There is only one study that reported that an increase in plasma hippuric acid
levels after the administration of a blueberry supplement was found to be associated with
an improved performance on the California Verbal Learning Test in a group of 38 healthy
older adults [121].

However, the relationship between hippuric acid metabolism and cognition should not
be considered only from a nutritional perspective. According to the few studies conducted
in human beings with dementia to date, the gut microbiota composition and function is
largely disrupted in this condition [123–130], so it can reasonably be assumed that hippuric
acid metabolism is markedly affected, considering the pathways leading to hippuric acid
synthesis shown in Figure 1. Unfortunately, no studies have specifically investigated the
plasma and urinary hippuric acid levels in patients with gut microbiota dysbiosis associated
with dementia. However, in a study comparing the gut microbial metabolites in 56 patients
with Parkinson’s disease, another neurodegenerative disease frequently associated with
dementia, and in 43 age- and sex-matched healthy controls, plasma hippuric acid was
positively associated with the disease but not with cognitive performance [131].

6. Hippuric Acid and Other Age-Related Chronic Conditions

Experimental studies suggest that the plasma hippuric acid levels are associated with
the dysfunction of endothelial cells and involved in the pathogenesis of atherosclerosis
and other major cardiovascular diseases. In patients with CKD, high plasma hippuric
acid concentrations were associated with an increased carotid atherosclerotic plaque bur-
den [66] and left ventricular hypertrophy [132]. In a group of patients with advanced
peripheral atherosclerosis undergoing major vascular surgery, the preoperative plasma
levels of hippuric acid were significantly associated with major cardiovascular events in
the postoperative period [133]. However, in two distinct studies, the plasma hippuric acid
levels exhibited a positive correlation with the ankle brachial index (ABI), an indicator
inversely associated with arterial stiffness [133,134]. These findings are apparently puzzling
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and suggest that in patients with no impairment of kidney function, the hippuric acid levels
may represent a marker of preserved arterial elasticity rather than of arterial stiffness. In
fact, in patients with no CKD, the plasma hippuric acid levels reflect a good FAV intake
and preserved gut microbiota composition and metabolic functionality, which are gener-
ally protective against the onset of peripheral artery diseases and other cardiovascular
illnesses [135,136]. Conversely, in subjects with CKD, hippuric acid retention may represent
a marker of CKD macroangiopathy.

Recent studies also suggested that urinary hippuric acid may represent a marker of col-
orectal and urogenital cancer. Namely, urinary metabolomics studies showed that reduced
levels of urinary hippuric acid were able to discriminate in a significant manner subjects
with colorectal cancer from adult subjects with no cancer diagnosis [137,138]. The levels
of hippuric acid in biopsies of renal tissues with renal cell carcinoma were significantly
reduced with respect to those in renal tissue samples of control subjects [139]. Furthermore,
a comprehensive urinary metabolomic analysis of urine samples from patients with bladder
cancer and controls revealed that hippuric acid excretion was significantly lower in the
patients with the disease and before the surgical resection of the tumor [140,141].

Finally, studies conducted in animal models of rheumatoid arthritis suggest that the
urinary levels of hippuric acid are inversely correlated with disease activity and markers of
inflammation [142].

These studies do not, however, allow us to draw definitive conclusions on the role of
hippuric acid as a biomarker of age-related diseases, but they do highlight the complexity
of hippuric acid synthesis, metabolism and clearance in health and disease and indicate
future directions of research.

7. Conclusions and Perspectives

The results of laboratory analyses of plasma and urinary levels of hippuric acid
are influenced by multiple pathophysiological processes, including aging, age-related
conditions, diet, gut microbiota composition and renal function (Figure 2). Therefore, an
exhaustive evaluation of hippuric acid metabolism in human beings can provide a wealth
of information on several mechanisms involved in aging. However, for the time being, the
multiple factors that can influence hippuric acid synthesis, blood metabolism and urinary
excretion in older individuals preclude it from being an ideal candidate for the role of
biomarker of the aging trajectory.

In fact, an increase in the plasma levels of hippuric acid may be either the result of an
increased FAV intake with maintained gut microbiota biodiversity or the consequence of
CKD and other chronic illnesses, including dementia (Figure 2). Conversely, low plasma
and urine levels of hippuric acid may simply underline an insufficient consumption of FAV
in the diet as well as severe conditions associated with gut microbiota dysbiosis, including
physical frailty, sarcopenia and mild cognitive impairment (Figure 2).

Unfortunately, the studies conducted to date in which the hippuric acid levels in
the plasma or urine were assessed did not consider the complexity of multiple factors
potentially influencing its synthesis and clearance. Instead, hippuric acid was mainly
studied in relation to only one of the multiple conditions listed in Figure 2. This is perhaps
the main limitation of the existing literature, especially with regard to studies focusing
on older subjects and geriatric conditions. In this context, interpreting the clinical and
pathophysiological significance of hippuric acid levels in the plasma and urine may result
particularly challenging. Furthermore, the precise effects of hippuric acid on different
organs and systems are still poorly understood. In some cases, the results of different studies
seem contradictory, with some evidence suggesting that hippuric acid may exert positive
physiological effects (for example, myoprotection), while other data, for the most part linked
to studies conducted in patients with CKD, indicate that it may exercise a toxic effect.
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Future studies will be able to contribute to disentangling these apparent contradictions
and explaining the multiple confounding factors that contribute to hippuric acid synthesis,
metabolism and clearance, especially with regard to aging. Some practical suggestions for
designing and conducting future studies assessing the possible role of hippuric acid as a
biomarker of aging trajectories are outlined in Figure 3.
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In conclusion, recently published studies in the literature do not fully support the use
of the plasma or urine levels of hippuric acid as a biomarker of the aging pattern. Hippuric
acid synthesis and clearance are in fact influenced by multiple environmental exposures,
physiological processes, chronic conditions and diseases that seem to impede efforts to
interpret the laboratory results. Hippuric acid is nevertheless at the crossroads between
diet, microbiota, physiological and pathological mechanisms of aging, and the study of
its complex metabolism will contribute to illuminating and disentangling the complexity
of the relationship between nutrition, gut microbiota and frailty linked to the trajectories
of aging.
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