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Abstract: Polyunsaturated fatty acids (PUFAs) are a diverse set of molecules with remarkable
contributions to human physiology. They not only serve as sources of fuel but also cellular structural
components as well as substrates that provide bioactive metabolites. A growing body of evidence
demonstrates their role in inflammation. Inflammation in the presence of a polymicrobial biofilm
contributes to the pathology of periodontitis. The role PUFAs in modulating immuno-inflammatory
reactions in periodontitis is only beginning to be uncovered as research continues to unravel their
far-reaching immunologic implications.
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1. Introduction

Periodontitis is a chronic disorder characterized by the inflammatory breakdown of
tooth supporting tissues including periodontal ligament and alveolar bone, subsequently
resulting in tooth loss. It is well understood from both human and animal studies that the
periodontal tissue degradation occurs due to an immunoinflammatory response. Such a
response has been associated with dysbiosis of the subgingival microbiota which compli-
cates it further [1]. Additionally, the host response will be determined by the individual’s
immunotype and their immune fitness towards a biofilm.

Accumulating evidence shows that resolution of inflammation is a tightly orchestrated
process which involves specific pro-resolving mediator pathways and fatty acid derived
specialized pro-resolving mediators or SPMs [2]. The key events of resolving inflammation
include eliminating inflammatory cells and re-establishing tissue homeostasis. Impairment
in any of the components responsible for resolving acute inflammation will allow its
progress to a persistent inflammatory state which, as we know, is the underlying cause for
many non-communicable diseases [3]. The complex chronicity of periodontitis may be a
manifestation of deficient resolution pathways. The efficacy and success of a resolution
response depends upon the quantitative expression of SPM receptors, enzymatic synthesis,
intracellular signaling and, most importantly, bioavailability that depends on a diet rich
in essential polyunsaturated fatty acids. In this review, we highlight the biochemical,
metabolic, immunologic and inflammatory aspects of n−6 and n−3 polyunsaturated fatty
acids (PUFA) and their immunomodulatory actions in periodontitis.

2. Fatty Acids

Fatty acids (FAs) are long-chain carboxylic acids. They are the residues that form
lipids. The basic structure of a fatty acid residue comprises straight acyl chains with a
carboxylic acid group at one end and a methyl group at the other end. FAs can be saturated
which contain no double bonds, monounsaturated containing a single double bond and
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polyunsaturated containing two or more double bonds. Their double bond representation
determines the biologic properties of the lipids; long and saturated FAs are found in fats
that are solid at room temperature, whereas shorter and more unsaturated FAs form lipids
that are liquid at room temperature (referred to as oils). The order of numbering carbon
atoms in FAs starts with the carbon in the carboxyl group (COOH) which is designated as
C1 and the carbon atom that is furthest from the carboxyl group is denoted by the letter
omega–ω or n. PUFAs comprise of four families classified according to theω or n carbon.
They include the n−3 series derived from α-linolenic acid (ALA,18:3,ω−3); the n−6 Series
derived from cis-linoleic acid (LA,18:2,ω−6); the n−9 series derived from oleic acid (OA,
18:1,ω−9) and the n−7 series derived from palmitoleic acid (PA, 16:1,ω−7). The affiliation
of an FA to a series of n−3, n−6 or n−9 fatty acids is determined by the distance from
carbonω (or n) to the first double bond between carbon atoms in the hydrocarbon chain
(-C = C-). Thus, the chemical structure of FAs is interpreted by the number of carbon atoms,
the number of double bonds and the groupω [4].

2.1. Metabolism

PUFAs originate from primary producers (photosynthetic marine and freshwater
microalgae and bacteria) in food webs and animals can only modify them by bioconversion
and elongation [5]. Humans do not possess enzymes capable of forming double bonds
in fatty acid chains and are therefore unable to produce LA and ALA in the sufficient
amounts. Both LA and ALA give rise to essential unsaturated fatty acids of high physi-
ological significance and therefore must be acquired through dietary sources (Figure 1).
Once consumed through diet, more than 90% of FAs are absorbed into cells via FA trans-
porters [6]. Once inside the cell, they are converted to FA acyl-CoA thioesters, which are
substrates for three metabolic pathways: beta oxidation pathway for ATP production; syn-
thesis of triglycerides, cholesterol esters and polar lipids (phospholipids and sphingolipids)
and elongation/desaturation reactions generating long chain PUFAs from the initial C18
precursors. The latter conversion occurs in the endoplasmic reticulum through consec-
utive elongation and desaturation reactions synthesizing longer-chain PUFAs as shown
in Figure 1 [7]. The substrates for the synthesis of longer PUFAs, LA and ALA, compete
for the same enzymes (elongase and desaturase) and yield arachidonic acid (AA), eicos-
apentaenoic acid (EPA), and docosahexaenoic acid (DHA). The incorporation of PUFAs in
cell membranes contributes to their fluidity, which plays an important role in determining
correct hormone-receptor binding [8].
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Interestingly, there are differences found between men and women in their capacity to
generate long-chain PUFAs. In young women, this capacity is enhanced generating more
long chain PUFAs from ALA, which may be due to the effects of estrogen [9].

2.2. Bioactive Metabolites: Eicosanoids and SPMs

Eicosanoids are a family of fatty acid metabolites derived from the 20-carbon PUFAs
such as EPA, DGLA and AA. The eicosanoids from AA are derived from its hydrolysis in
membrane glycerophospholipids by cytosolic phospholipase A2 as shown in Figure 2 [10].
Since they are not stored, eicosanoids are promptly synthesized de novo after cell activation
through a ligand-receptor interaction that stimulates the expression of phospholipase A2,
cleaving AA from membrane phospholipids, where AA is found in high abundance [11].
The liberated AA will be oxygenated by three oxygenases: cyclooxygenases (COXs), P450
cytochrome epoxygenases (CYP450), and lipoxygenases (LOXs) [12].
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Figure 2. Metabolic pathways for n-6 (orange) and n-3 (blue) polyunsaturated fatty acids. COX,
cyclooxygenase; CYP, cytochrome P450; CysLTs, cysteinyl leukotrienes; DHA, docosahexaenoic acid;
DPA, docosapentaenoic acid; EET, epoxyeicosatetraenoic acid; EPA, eicosapentaenoic acid; HETE,
hydroxy eicosatetraenoic acid; HpETE, hydroperoxy eicosatetraenoic acid; LTB4, leukotriene B4; LOX,
lipoxygenase; LX, lipoxin; MaR, maresin; MCTR1, maresin conjugates in tissue regeneration 1; PCTR,
protectin conjugates in tissue regeneration; PD, protectins; PG, prostaglandin; RvD, D-series resolvin;
RvE, E-series resolvin; RvT, thirteen-series resolvin; Tx, thromboxane.

Mammalian tissues have a wide distribution of COXs where it is expressed in two
isoforms, COX−1 and COX−2 [13]. The activation of COX leads to the synthesis of
prostaglandins (PGs) and thromboxanes (Txs), mediators that are collectively known as
prostanoids. The oxygenation of AA will generate series 2 PGs (PGD2, PGE2, PGI2, and
TxA2), whereas series 1 PGs (PGD1, PGE1, and TxA1) and series 3 PGs (PGD3, PGE3,
PGI3, and TxA3,) are oxygenation products of DGLA and EPA, respectively [14]. The
role of aspirin in the biosynthetic pathway of eicosanoids is vital as irreversibly acetylates
COX−2 enzyme which then oxygenates AA to form 15(R)- hydroxyeicosatetraenoic acid
(15(R)-HETE) and EPA to form 18(R)-hydroxyeicosapentaenoic acid (18(R)-HEPE). Both
15(R)-HETE and 18 (R)-HEPE are precursors to some of the SPMs [15].

Lipoxygenases (LOX) are nonheme iron-containing enzymes that are categorized
according to their oxygenation of specific positions in AA: 5-LOX, 12-LOX, and 15-LOX [16].
The 5-LOX enzyme is well known for its ability to generate leukotrienes (LTs). It oxygenates
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AA to 5- 5(S)- HpETE, which is further converted to the unstable leukotriene A4 (LTA4),
which is either converted to leukotriene B4 (LTB4) or leukotriene C4 (LTC4) in platelets
and endothelial cells. LTC4 is further degraded by peptidases to form LTD4. Collectively,
LTC4, LTD4, and LTE4 are named cysteinyl LTs (cysLTs) and are known to be produced
in leukocytes only [17]. The 15-LOX enzyme oxygenates AA to 15-HpETE, which is
the precursor of lipoxins (LX) A4 and B4 and belong to SPMs due to their pro-resolving
characteristics (detailed below) [18].

CYP450s are a family of heme-containing monooxygenases that can metabolize AA
into epoxyeicosatrienoic acids (EETs) (). Upon hydration with soluble epoxide hydrolase
(sEH), EETs undergo a rapid conversion to dihydroxyeicosatrienoic acids (DHETs) which
are more stable and less biologically active [19].

SPMs were identified after being isolated from inflammatory exudates. They are potent
bioactive lipid mediators derived from AA, EPA, DPA and DHA [18]. These omega−3
FAs are metabolized by the same COX-, LOX and CYP-pathways generating resolvins
(Rv), protectins (PD), maresins (MaR) and lipoxins (LXs). SPMs orchestrate the events
involved in the resolution of acute inflammation by reducing further leukocytic infiltration,
stimulating efferocytosis and exerting anti-inflammatory actions that promote healing [20].
SPMs mediate their pro-resolution actions through cell-surface G-protein coupled receptor
(GPCRs). SPMs can activate more than one specific GPCR in a stereospecific manner
generating downstream signals, which are transduced into pro-resolving functions. These
are discussed in detail in our previous publication [3].

3. PUFAs in Immunity and Inflammation
3.1. N−6 Fatty Acids

The n−6 FAs are structural components of membranes and determine membrane
fluidity, signal transduction as well as the expression of cellular receptors. Their biochemical
function as precursors of eicosanoids is crucial as eicosanoids are considered to be locally
acting hormones that are involved in the modulation of renal and pulmonary functions,
vascular tone and inflammation. The cytochrome P−450 metabolites (EETs, DiHETEs and
HETEs) are important paracrine factors and second messengers with regulatory functions
in pulmonary, cardiac, renal, and vascular systems as well as modulating inflammatory and
growth responses, whereas LXA4 and LXB4 are potent anti-inflammatory mediators [21].
Studies have shown that increasing dietary intake of n−6 FAs results not only in increased
incorporation of AA into inflammatory cells, but also the production of inflammatory
eicosanoids [22,23].

A diet comprised of high n−6 FAs and low n−3 FAs i.e., a higher n−6/3 ratio, appears
to lower immune cell function [24]. This effect is undesirable in many ways as long-term
effects can result in lower immunity. Currently, the n−6/3 ratio in a typical Western diet
is 20-fold higher than what it was hundred years ago [25]. As we know, a high n−6 FA
diet leads to increased incorporation of AA in immune cell membranes. In neutrophils,
monocytes and lymphocytes, almost 20% of the membranous FAs are AA as opposed to
just 1% EPA and 2.5% DHA [26]. The high AA content ensures an increased supply of
its metabolites; the pro-inflammatory eicosanoids, which can predispose our bodies to
supra-physiologic inflammatory responses and eventually perpetuate low-grade inflam-
mation [27]. However, n−6 FA does remain an essential requirement for the growth and
maintenance of immune cells and tissues. An abundance of in vitro evidence exists for
the role of AA metabolites and their regulatory role in immune cell development and
functions, including monocyte growth and differentiation, Th1 and Th2 cytokine regula-
tion, T cell proliferation and migration, antigen-presenting cell functions and macrophage
TNF-α and IL−1regulation [28–33]. Also, lymphocytes preferentially incorporate n−6 fatty
acids during growth and proliferation in vitro. This can be explained by the fact that the
mounting of an immune response requires increased cell proliferation in the lymph nodes,
which in turn would demand an increased amount of PUFA. [34]. AA derived prostanoids,
especially PGE2, influence T cell activation depending on its concentration. At low con-
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centrations, it inhibits T cell activation and differentiation, whereas at high concentrations,
PGE2 enhances T cell proliferation [35]. PGD2 also exerts different effects but these are not
concentration-dependent; rather receptor (type) dependent. PGD2 engages with both DP1
and DP2 receptors. Engaging with DP1 promotes T cell apoptosis while DP2 delays Th2
apoptosis [36]. Studies examining the role of TXA2 in human T lymphocytes revealed an in-
hibitory effect on T cell proliferation and cytokine production [37]. Leukotrienes LTD4 and
LTE4 on the other hand are known to enhance Th2 cell activation and cytokine production.
This effect is further amplified in the presence of fellow eicosanoid PGD2 [38]. The AA
derived pro-resolving lipoxins play an important role in T-cell mediated inflammation as
well. Aspirin-triggered LXA4 and LXB4 inhibit production of TNFα in anti-CD3 antibody
stimulated T lymphocytes [39].

Based on several lines of evidence, n−6 FAs are considered pro-inflammatory. These
include the membrane AA and its oxygenated products, the association of plasma n−6
FA levels with certain inflammatory diseases and augmented autoimmunity in certain
diseases [40]. Non-metabolized AA alone is capable of exerting direct effects on cell
membranes as seen in its involvement in the production of reactive oxygen species (ROS),
partly via NADPH oxidase NOX−2 which is located in the plasma membrane [41,42]. Non-
metabolized AA can also alter the mechanical properties of the bilayer, thereby modulating
the function of membrane channels and perturbing the localization of transmembrane
receptors [43,44].

Paradoxically, the n−6 FAs have demonstrated protective effects in immune-mediated
inflammatory diseases. An interesting finding has highlighted AA’s role in preventing
pro-inflammatory signaling cascades indirectly [44]. Zhang et al. discovered that AA not
only prevented the TLR4 complex formation with accessory proteins which is induced
by saturated fatty acid but also the induction of pro-inflammatory cytokines in cultured
cardiomyocytes and macrophages. This was due to AA’s ability to directly bind to TLR4
co-receptor, myeloid differentiation factor 2 (MD2) which prevented saturated fatty acids
from activating TLR4 pro-inflammatory signaling pathway [44].

The anti-inflammatory effects n−6 FAs are similar to n−3 FAs and have been observed
in other studies where n−6 FAs induced the production of nuclear transcription factors,
enzymes, and cytokines in human cells [45]. Similar to the effects of DHA and EPA,
GLA enhanced levels of the transcription factor peroxisome proliferator-activated receptor-
gamma (PPAR-γ), which propagates anti-inflammatory effects decreased production of
pro-inflammatory cytokines including interleukins (IL) 6 and 8 [45].

3.2. N−3 Fatty Acids and SPMs

Increased consumption of n−3 FAs, including EPA and DHA, results in increased
proportions of those fatty acids in inflammatory cell membranes [46,47]. The incorpo-
ration of EPA and DHA into inflammatory cell membranes occurs in a dose dependent
manner whilst outcompeting AA. As a result, less substrate AA becomes available for the
synthesis of inflammatory eicosanoids by inflammatory cells decreasing their production
of PGE2, thromboxane B2, LTB4, and LTE4 [48]. With increased availability of EPA and
DHA in membranes, the inflammatory eicosanoids not only decrease, but an alternate
family of mediators are produced including EPA derived eicosanoids (PGE3, LTB5), endo-
cannabinoids, and SPMs (E-series and D-series resolvins, protectins and maresins). EPA
derived eicosanoids are less biologically active than those produced from AA [49,50]. Being
structurally different, the eicosanoid receptors have a lower affinity for the EPA-derived
mediators [51].

With increased dietary intake of DHA, an increase in the activity of phagocytes (neu-
trophils and monocytes) occurs. An intake of a DHA rich fish oil (3 g per day) containing
54% DHA can increase the phagocytic activity of neutrophils and monocytes by 62% and
145% respectively [52]. These changes were not observed with EPA rich fish oil [53]. This
impact on phagocytes shows DHA’s immunomodulatory strength in an acute inflam-
matory response. Nuclear factor kappa B (NFκB) is an important transcription factor
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involved in inflammatory responses. It is the main transcription factor required for up-
regulating the genes encoding inflammatory cytokines, adhesion molecules as well as
COX−2 [54]. When activated by extracellular inflammatory stimuli, NFκB’s inhibitory
subunit (IκB) undergoes phosphorylation, which then allows translocation of the remain-
ing NFκB dimer to the nucleus [55]. Both EPA and DHA can reduce NFκB activation in
response to endotoxin in cultured macrophages and human monocytes due to decreased
IκB phosphorylation [56,57].

The modulatory actions of n−3 FAs on T cells are generally suppressive in nature and
specific cell responses are modulated according to the T cell subtype [58]. These suppressive
actions are thought to be mediated through the perturbation of lipid rafts in the plasma
membrane [59]. Lipid rafts can be defined as dynamic nanoscale domains formed via lipid-
lipid and lipid-protein interactions. Incorporation of n−3 FAs in T helper cell membranes
destabilizes the rafts resulting in the displacement of many signaling proteins necessary
for T cell activation, including the Src family kinases Lck and Fyn [60–62]. Both EPA
and DHA affect the motility of T cells as their membranous incorporation interferes with
cytoskeletal rearrangements [63]. Furthermore, n−3 FAs increase the formation of M2
macrophages, also known as pro-resolving or regulatory macrophages, which then induce
the differentiation of T cells into regulatory T cells [64].

SPMs are potent anti-inflammatory mediators which were discovered as distinct EPA-
and DHA- derived mediators. They share some of the basic pro-resolving and protective
actions of lipoxins with great potency in several inflammatory disease models. Distinct
SPM facilitate the resolution of inflammation and accelerate tissue regeneration and tissue
repair [65]. SPMs suppress the synthesis of pro-inflammatory cytokines including IL−1,
IL−6, and IL−8 via down-regulation of the NFκB pathway [15]. This, in addition to halting
leukocyte infiltration into inflamed tissues, distinguishes the EPA-derived resolvins (E-
series resolvins), DHA-derived resolvins (D-series resolvins), and DHA-derived protectins
as immunoresolving agents [15]. Maresins, also derived from DHA, stimulate phagocytosis
whilst reducing neutrophil infiltration [66]. 13(S),14(S)-epoxymaresin also inhibits the pro-
duction of LTB4 derived from AA through direct inactivation of the LTA4 hydrolase enzyme,
which catalyzes the conversion of leukotriene A4 into the pro-inflammatory metabolite,
LTB4 [67]. SPMs also promote the the return to a homeostatic milieu by removing apoptotic
cellular debris from tissues and limiting the formation of free radicals [68]. The bioactions
of SPMs occur within a low nanomolar range as demonstrated by in vitro and in vivo
studies [69].

4. Immunomodulatory Impact in Periodontitis
4.1. Periodontitis

Periodontitis is a highly prevalent oral inflammatory disease in adult populations with
rates ranging from 30–50% in the United States and 7% of the population globally [70,71].
Severe periodontitis is the main cause of tooth loss in adults, which is preceded by the
mobility and drifting of teeth [72]. The risk determinants (non-modifiable risk factors) for
periodontitis include age, gender, ethnicity, and genetics while smoking, diabetes mellitus,
obesity, socioeconomic status and inflammophilic periodontal bacteria are modifiable
factors [73,74].

The classification of periodontal diseases comprises staging and grading. The four stages
of periodontitis depend on the severity of disease as well as the complexity of its management,
while the grading of the disease is based on the rate of its progression (grade A: slow rate of
progression, grade B: moderate rate of progression, grade C: rapid rate of progression) [75].

In health, protection against periodontitis is determined by the immune fitness of the
host and how it combats the microbial challenge in periodontal tissues to allow a return to
homeostasis [76]. However, if the microbial challenge and inflammatory tissue destruction
persist due to any underlying dysfunction in the host’s immunity, the lesion can progress
to a state of chronic inflammation. Alongside environmental factors, immune fitness
is also determined genetically. Suspicions regarding single nucleotide polymorphisms
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(SNPs) in cytokine genes increasing the host’s susceptibility have led to numerous studies
exploring the association. The pro-inflammatory IL−1 gene cluster polymorphisms have
been shown to be associated with periodontitis [77]. Similarly, polymorphisms in the IL−8
and IL−4 genes have been shown to influence susceptibility of periodontitis. A recent study
demonstrated that haplotypes formed by three SNPs in the IL−8 gene were associated
with periodontitis susceptibility [78]. These genetic variants also seem to influence the
periodontopathogenic colonies which further complicate the disease. For example, IL−6
haplotypes (polymorphisms rs 2069827 and rs 2069825) were shown to be associated with
Aggregatibacter actinomycetemcomitans counts in subgingival plaque samples [79].

In the case of IL−4, an anti-inflammatory cytokine, two haplotypes in its gene con-
ferred different extents of susceptibility. In individuals carrying the genotype TCI/CCI,
susceptibility towards periodontitis was five times higher whereas those carrying geno-
type CTI/TTD appeared to have low susceptibility or better protection from developing
periodontitis [80].

Conventional periodontal therapy is aimed at reducing or eliminating oral bacterial
biofilm via mechanical debridement and/ or chemical plaque control, often supplemented
with antibiotics. In addition, modifiable risk factors including smoking cessation and
glycemic control have been addressed to improve periodontal parameters. Conventional
therapy often requires periodontal maintenance due to bacterial recolonization of the
subgingival environment following treatment [81]. Cortellini and colleagues reported a
higher rate of recurrence in patients treated with surgical flap treatment after 20 years of
follow-up [82]. This shows that periodontal health is largely associated with one’s immune
fitness. Therefore, the emergence of host modulation as an additional therapeutic approach
in the treatment of periodontitis is attractive. Most importantly, host modulation therapy
aims to address the chronic insufficiency of resolution of inflammation, which in turn
would minimize tissue destruction and enhance tissue restoration in the periodontium by
downregulating destructive pro-inflammatory mechanisms and upregulating protective
and/or regenerative components of the host response [83].

4.2. Anti-Inflammatory Actions

The overall positive effect of n−3 FA supplementation in the treatment of periodontitis
has been observed via significant reduction of pocket depth and clinical attachment lev-
els [84]. By decreasing the host inflammatory response, n−3 FAs prevent tissue breakdown,
which reduces the availability of protein-derived energy source for periodontopathogens
(). By decreasing IL−1β and TNF-α levels, n−3 FAs have a stabilizing effect on collagen
fibers, as well as a modulating effect on the inflammatory destruction of gingival connective
tissue [85]. Similar tissue regenerative actions were observed by Hankenson and colleagues
in medial collateral ligament (MCL) fibroblasts where their exposure to EPA enhanced
overall collagen synthesis and the proportion of collagen produced. In addition to IL−1β
and TNF-α, EPA also decreases PGE2 production [86]. The decrease in pro-inflammatory
cytokines is in fact a result of decreased AA: EPA ratio in the membrane phospholipids
of mononuclear cells [87]. Host modulation by dietary n−3 FAs in periodontal soft tissue
was observed three decades ago when Alam and co-workers showed how dietary n−3 FAs
decreased levels of AA by half and PGE2 by 83% in rat gingiva. They also showed that
n−3 FAs significantly reduced LTC4 production as compared to rats of corn oil fed control
group [88]. Similarly, a higher dietary intake of DHA is also associated with a lower preva-
lence of periodontitis [89]. Some animal studies also report an increase in the concentration
of the anti-inflammatory cytokine IL−10 by n−3 FAs [90]. In addition to cytokines, cell
culture models and animal studies have demonstrated decreased expression of adhesion
molecules on endothelial cells, macrophages and lymphocytes that were exposed to n−3
FAs [91,92]. High expression of adhesion molecules is associated with inflammation [93].

In animal models of periodontitis, n−3 FAs are found to be substrates for neutrophil
production of resolvins and protectins, both key mediators in the resolution of inflamma-
tion [94,95]. A recent study reported lipid mediator profiles that differed between healthy,
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periodontitis and treated periodontitis in gingival tissue [96]. In periodontitis patients prior
to treatment, increased levels of SPM pathway markers were detected due to the increased
activity of SPM synthesis [96]. Lipoxin A4 had a high detection frequency in periodontitis
patients prior to treatment compared to the after treatment and control groups. This finding
reflects an increased activity of the LX pathway in periodontitis [97]. Conversely, the SPM
pathway marker (for both leukotrienes and lipoxins) 5-HETE is also higher in periodontitis
patients [96]. Another study found increased levels of 15-HETE and 5-HETE in saliva and
whole blood samples in patients with aggressive periodontitis as compared to healthy
controls. This shows elevated omega−6-driven pro-resolving as well as pro-inflammatory
activities [98]. SPMs also enhance the release of fibroblast growth factor (FGF) from human
periodontal ligament (PDL) cells, stimulate non-phlogistic macrophage recruitment and
formation of pro-resolving macrophages, which are vital for tissue regeneration [99,100].
A recent study by Kantarci and colleagues demonstrated the expression of SPM receptors
GPR32 and ALX/FPR2 in PDL fibroblasts. The application of RvD1 (100 nM) not only
reversed IL−1β-induced inhibition of wound healing and proliferation of PDLF, but also
the production of pro-inflammatory cytokines and matrix metalloproteinases [101].

4.3. Protective Functions in Bone Metabolism

Bone resorption is a result of an imbalance between the activity of bone forming
osteoblasts and bone resorbing osteoclasts. Alveolar bone loss is one of the main charac-
teristics of periodontitis which, if uncontrolled, eventually culminates in tooth loss. The
receptor activator of nuclear factor kappa B (RANK) and its ligand (RANKL) are key in
osteoclast proliferation and differentiation signaling. RANKL is expressed by many cells,
including osteoblasts, fibroblasts and T cells and its production is regulated in response to
the presence of inflammatory cytokines such as TNF-α and IL−1 [102–104].

n−3 FAs (both EPA and DHA) stimulate osteoblast survival by activating pro-survival
Akt signaling and suppressing the glucocorticoid-induced pro-death pathway [105]. This is
due to their anti-inflammatory actions which modulate PPAR-γ signaling and lower levels
of inflammatory cytokines such as IL−1, IL−6 and TNF-α, whilst suppressing AA-derived
synthesis of eicosanoids including PGE2 [106,107]. In addition to enhancing osteoblastic
activity, both EPA and DHA have been shown to promote osteoblastogenesis and prevent
bone resorption by altering membrane function and regulating calcium balance [108]. The
role of n−3 FAs in modulating inflammatory bone loss is a positive one as they are in-
versely associated with periodontal alveolar bone loss (Figure 3) [109–111]. Their direct
antimicrobial actions may influence periodontal pathogenesis by inhibiting putative peri-
odontopathogens and reducing the strength of the biological stimulus [112]. Indirectly, n−3
FAs are anti-inflammatory and modulate the synthetic pathways for many inflammatory
mediators including IL−1, IL−6 and TNF-α (as discussed above). Both DHA and AA
can decrease bone resorption by suppressing the expression of osteoclast-specific genes
including NFATc1, CTSK, TRAP, c-Fos, MMP−9 and DC-STAMP in differentiating osteo-
clasts, thus reducing their overall numbers [113–115]. In addition, DHA and AA inhibit
the migration and adhesion of osteoclasts by downregulating expression of RANK and
vitronectin receptor (or VNR, which helps mediate the attachment of the cells to the bone
matrix) [116]. The anti- osteoclastogenic strategy is further strengthened by DHA’s ability
to trigger apoptosis of mature osteoclasts by inducing Bim expression, a Bcl−2 family
protein [117].

The immunoresolving actions of SPMs are far more potent than their parent com-
pounds. The first study showing bone-protective actions of LXs in addition pro-resolution
was in a rabbit model of periodontal disease where topical treatment with 6 µg of the
LX analog ASA-triggered LXA4 three times a week diminished alveolar bone loss [118].
The same study provided the first in vivo evidence for RvE1’s bone-protective actions.
Periodontal disease was induced in New Zealand white rabbits via application of silk
ligature and the periodontal pathogen P. gingivalis to the second mandibular premolar.
RvE1 was topically administered (4 µg) three times per week. Evaluation after 6 weeks
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showed a significant inhibition of bone loss, determined by morphometric analysis and
radiography [118]. The direct action of RvE1 on osteoclasts was determined by in vitro
studies using murine bone marrow–derived primary osteoclasts. RvE1 was administered to
primary osteoclast cultures in nanomolar doses (3–30 nM), which markedly decreased the
number and size of differentiated osteoclasts induced by macrophage colony-stimulating
factor and RANKL [119]. RvE1 can directly target BLT1 receptors on osteoclasts to inhibit
osteoclast fusion and maturation, while inducing the release of osteoprotegerin (OPG) to
antagonize the resorptive role of osteoclast-stimulating RANKL, and thus facilitates the
prevention of alveolar bone loss [119]. Th17 cells are potent inducers of osteoclastogenesis.
They do so by secreting IL−17, RANKL, TNF, IL−1, and IL−6 [120]. The secreted IL−17
then stimulates the release of RANKL by osteoblasts and therefore potentiates osteoclas-
togenic activity of RANKL by upregulating RANK [121]. RvE1, RvD1, RvD2 and MaR
prevent IL−17 expression and IL−17A secretion by Th17 cells [122].
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4.4. Antimicrobial Actions

In addition to their anti-inflammatory actions, n−3 FAs also exhibit antimicrobial
activity. Both EPA and DHA inhibit the activity of periodontal pathogens, such as Por-
phyromonas gingivalis, Fusobacterium nucleatum, and Prevotella intermedia [112]. Huang and
Ebersole reported on the strong antibacterial activity of both EPA and DHA against oral
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pathogens, including Streptococcus mutans, Candida albicans, and Porphyromonas gingivalis (at
50% inhibitory concentration from 1 to 10 µg/mL) [123].

Similar findings regarding EPA and DHA’s antimicrobial activity on mature biofilms
grown on hydroxyapatite discs were reported recently where both EPA and DHA signif-
icantly reduced the bacterial counts and cell viability in an in vitro multispecies biofilm
model (Streptococcus oralis, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nu-
cleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans) [124]. The
underlying mechanisms for n−3 FAs’ antibacterial effect are still unknown. It might be that
the incorporation of EPA and DHA into the cell plasma membrane results in greater mem-
brane fluidity and permeability, which in turn would compromise its integrity, eventually
leading to cell death [125,126]. Interestingly, the presence of unsaturated double bonds can
exert a toxic effect directly on the bacterial cell membrane [127].

5. Conclusions

There is a large body of evidence that clearly shows the positive modulating actions
of n−3 FAs, especially EPA and DHA, in periodontitis. The intake of EPA and DHA is
associated with reduced inflammation, bone loss and increased clinical attachment gain, all
desirable endpoints in periodontal therapy. Their use as adjuncts may be of paramount rele-
vance as host modulating agents in patients who respond poorly to conventional treatment.
Future research should be aimed at capturing the potency of SPMs in resolving inflamma-
tion and making them a leading class of therapeutic agents in resolution pharmacology.
Until that time, the use of dietary n−3 FAs will suffice in the prevention and halting of
inflammation in the periodontal tissues.
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