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Abstract: With the improvement of living standards, dietary interventions have become an appro-
priate approach to enhance memory and cognitive performance. The present study investigated
the potential mechanisms of spatial memory and cognitive function improvement with the milk
fat globule membrane (MFGM) intervention in mice. The Morris water maze experiment revealed
that the trajectories of mice in group M were more disordered. Also, the immunohistochemical
results demonstrated a significantly higher number of neurons in group M compared with group C,
especially in the hippocampal dentate gyrus (DG) area. It is suggested that MFGM enhanced mice’s
spatial memory and cognition from macroscopic behavior and microscopic cytology, respectively.
Meanwhile, 47 differentially expressed proteins (DEPs) were identified, including 20 upregulated
and 27 downregulated proteins. Upregulated (Sorbs 2, Rab 39, and Cacna 1e) and downregulated
(Hp and Lrg 1) DEPs may improve spatial memory and cognition in mice by promoting synapse
formation and increasing neurotransmitter receptors. KEGG enrichment analysis of the DEPs iden-
tified seven signaling pathways that were significantly enriched (p < 0.05). One of these pathways
was neuroactive ligand-receptor interactions, which are strongly associated with improved spatial
memory and cognitive performance. These findings give some new insights and references to the
potential mechanisms of spatial memory and cognitive enhancement by MFGM.

Keywords: milk fat globule membrane; memory and cognition; proteomics; DEPs

1. Introduction

Stressful events are ubiquitous in our surroundings and are valid for all of us. Stress
can negatively affect learning and memory skills, causing alterations such as memory loss
and reduced learning ability [1,2]. It is worth mentioning that stress-induced alterations in
learning and memory are also thought to contribute to stress-related psychiatric disorders
such as major depression or post-traumatic stress disorder [3]. On the other hand, with
the overall aging of human society, cognitive impairment in the elderly, as represented
by Alzheimer’s disease (AD), is evolving into a significant public health issue [4]. The
most populous country in the world is China (about 18.32% of the world’s population),
and it is rapidly transforming into an aging country. By 2050, there will be 400 million
Chinese citizens aged 65+, 150 million of whom will be 80+ [5]. The prevention of cognitive
decline in the Chinese elderly has also become an urgent medical issue. However, memory
and cognitive loss problems in AD patients are usually treated with pharmacological
approaches.

Nevertheless, many problems associated with taking these medicines have been de-
scribed in these patients. The disease progresses and worsens even more, causing effects
such as neuronal damage and mature neurons becoming immature [6–8]. Therefore, schol-
ars have conducted a great deal of research in non-pharmacological treatment modalities
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that do not pose a risk to improving the ability to enhance learning and memory. One of
the most direct and effective ways is to intervene in the daily diet.

Milk fat globule membrane (MFGM), a relatively new substance that encases milk
fat globules, has a unique three-layer membrane structure and a thickness of about
10–50 nm [9]. In recent years, more and more scholars have focused their research on
the biological activity of MFGM and its ability to enhance learning and memory. Previous
studies indicated that diets supplemented with MFGM improved neurodevelopment and
enhanced cognitive abilities in infants and newborn piglets, achieving similar effects to
those in breastfed infants [10–12]. Similarly, an MFGM-supplemented formula has been
reported by parents to be associated with lower behavioral problems in school-going
children [13,14]. Additionally, O’Mahony et al. indicated that dietary intervention with
MFGM significantly improved cognitive impairment caused by early stress in mice [15].
Furthermore, MFGM improved neurodevelopment in growth-restricted immature rats
by upregulating the expression of hippocampal neurodevelopment-related genes (brain-
derived neurotrophic factor (BDNF), dopamine receptor 1, (Drd1), glutamate receptor
(GluR-1) and ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialytransferase 4 (St8Sia4)) and
improving T-Maze scores [16]. There is no doubt that the effects of MFGM on cognitive
function are widely recognized. However, many previous studies are based on young
animals or infants, and there is a lack of research on the adolescent stage. Moreover, the
current studies lack a possible mechanism of memory and cognitive regulation based on
proteomic upregulation and downregulation of proteins.

The hippocampus is the region of the brain that controls memory, learning, and
cognition. Therefore, this study aimed to investigate the effects of MFGM intervention
on behavioral, neuronal, and hippocampal proteomics in mice. The above can more
completely elucidate the mechanisms by which MFGM improves mouse cognition and
memory abilities.

2. Materials and Methods
2.1. Materials

MFGM was kindly donated by Hilmar Ingredients (Hilmar, CA, USA). All other
chemicals and solvents were analytical grade unless otherwise stated.

2.2. Determination of Physicochemical Composition of MFGM

The determination methods of crude protein content, moisture, and primary amino
acid composition and content of MFGM are based on the published literature [17]. The fat
content was determined by the Soxhlet extraction method in accordance with the Chinese
Standard GB 5009.6–2016. Furthermore, phospholipids, which are the major lipid compo-
nents in MFGM, were measured for their main five glycolipids (phosphatidylcholine (PC),
phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), and
sphingomyelin (SM)) contents according to the method described previously by Ferraris
et al. [18].

2.3. Animals and Experimental Design

All animal husbandry and experimental designs were carried out in strict accordance
with the Beijing Regulations on the Management of Laboratory Animals and approved by
the Ethics Committee of Peking University School of Medicine (Approval No.: LA2021477).
Male BALB/c mice (7–8 weeks old, SPF grade) were obtained from Beijing Weitong Li-
hua Experimental Technology Co., Ltd. (Beijing, China). The mice were fed standard
chow and water ad libitum for one week in a temperature-controlled (23 ± 1 ◦C) and
constant humidity (60 ± 10%) environment and subjected to a 12 h light–12 h dark cycle
to acclimatize them to their new environment. Subsequently, the mice were randomly
divided into two groups (n = 10) according to body weight (BW): (1) the control group
(C); and (2) the MFGM group (M). The M group was given MFGM sterile saline solution
(400 mg/kg BW) by intragastric gavage once a day. Meanwhile, the control group (Control)
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was administered equal volumes of sterile saline solution for 18 weeks successively with
gavages. The body weight of each mouse was weighed and recorded every three days
throughout the experiment. All efforts were made to minimize the number of animals used.
All mice were used following protocols approved by the Institutional Animal Care and
Utilization Committee.

2.4. Morris Water Maze (MWM) Experimental Design

The experiment followed the method described by Tucker et al. [19] with appropriate
modifications. Briefly, a large circular tank filled with water (diameter = 120 cm, temper-
ature = 25 ◦C) was prepared in advance, and the water surface was manually divided
into four quadrants. Mice were placed at different random locations each time to train
the ability to find a hidden/submerged escape platform (1 cm below the water level) in
a circular tank using distal spatial cues. The monitoring time of mice swimming was set
to 60 s. Mice that did not find the platform were guided to the platform and allowed to
stay for 10 s. This procedure required four trials per day for four consecutive days with the
platform fixed in the first quadrant. Afterwards, the underwater platform was removed
from the tank, and the mice were retested and recorded. It is worth mentioning that, based
on the fact that BALB/c is a white mouse, 20 g of food-grade melanin needs to be added
to the water before the experiment so that the instrument can accurately record the mice
swimming.

2.5. Histological Analysis of the Hippocampus
2.5.1. Hematoxylin and Eosin (H&E) Staining

At the end of the MWM test, mice were euthanized by intraperitoneal injection of
50 mg/kg pentobarbital sodium [19]. Mice were stripped of their brains on ice immediately
after losing consciousness, and the left hippocampus was fixed with 4% paraformaldehyde
for subsequent staining analysis. The method of H&E staining was referred to in the
previously published literature by Wang et al. and Geng et al. [20,21]. In brief, the fixed left
hippocampus was trimmed, dehydrated in gradient alcohol, xylene transparency, and then
embedded in paraffin. The thickness of the section was 5 µm, dried at 37 ◦C, and dewaxed
in xylene. Morphological changes in mouse hippocampal cells were observed under a
light microscope (Nikon Eclipse E100, Tokyo, Japan) and an imaging system (Nikon DS-U3,
Tokyo, Japan).

2.5.2. Nissl Staining

Nissl staining was used to observe the number of neurons in the hippocampal region.
Pre-section processing was carried out in the same way as H&E staining. The sections were
deparaffinized three times consecutively (10 min each) in xylene. Subsequently, the slices
were dehydrated with gradients of 100%, 95% and 80% ethanol, respectively, then, washed
with distilled water three times in succession (5 min each). Finally, the sections were treated
with Nissl staining solution for 5 min and then the above dehydration and washing steps
were repeated and the sections were sealed with neutral balsam. Resin coverslips were
used for section observation. The digital images were acquired with a microscope (Nikon
Eclipse E100, Tokyo, Japan). Positive areas in the images were quantified, and the average
optical density (AOD) was calculated using Image J 1.53k software (National Institutes of
Health, Bethesda, MD, USA).

2.6. Proteomics Analyses in Hippocampal Tissue of Mice
2.6.1. Tandem Mass Tag (TMT) Labeling

Three representative hippocampal tissues were selected from the two groups of mice.
Protein sample preparation and TMT labeling were performed according to the method
described by Wang et al. [21]. Briefly, hippocampal tissue was ground into a powder using
liquid nitrogen and mixed well before being transferred to a centrifuge tube. Subsequently,
the appropriate amount of lysate (including 8 M urea and 1% protease inhibitor mixture)
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was added to the centrifuge tube and sonicated three times on ice with a high-intensity
processor. The supernatant was collected by centrifugation at 10,000× g for 30 min at 4 ◦C.
Immediately after, the protein solution was reduced with 10 mM dithiothreitol (DTT) at
55 ◦C for 30 min, and incubated with 25 mM iodoacetamide (IAA) in the dark at room
temperature for 60 min. The treated samples were digested using 1 M urea and trypsin
(1:100 w/w) at 37 ◦C for 14 h. The digested peptides were vacuum-dried and dissolved in
50 µL triethylammonium bicarbonate buffer (TEAB; 200 mM, pH 8.5) for TMT labeling.
Finally, the peptides were labeled with TMT reagent (0.8 mg powder consisting of TMT
dissolved in 41 µL acetonitrile) and incubated at room temperature for 60 min. The reaction
was then terminated by adding 5% hydroxylamine and incubating at room temperature for
15 min.

2.6.2. Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) and
Bioinformatics Analysis

The LC-MS/MS analysis was performed by referring to the literature previously
published by Zhong et al. [22]. In detail, the enriched peptide was dissolved in 0.1% formic
acid (FA) and loaded onto a fractionation C18 column (Wasters BEH, 4.6 × 250 mm, 5 µm)
on a Rigol L3000 HPLC system. Then, the bound peptide was eluted into ten different
fractions. All fractions were vacuum-dried and dissolved in 20 µL of 0.1% FA. Each fraction
was loaded onto a C18 Nano-Trap column (75 µm × 2 cm, 3 µm) of an EASY-nLCTM
1200 UHPLC (Thermo-Fisher Scientific, San Jose, CA, USA) system. Peptides were eluted
on a reversed-phase C18 column (150 µm × 15 cm, 1.9 µm) with a 90 min gradient of
6–100% buffer solution (80% acetonitrile and 0.1% formic acid) and 0.1% FA. Finally, the
eluates were subjected to LC-MS/MS analysis. In addition, to characterize the properties of
differential express proteins (DEPs), the Gene Ontology (GO) enrichment analysis (https:
//www.geneontology.org/ (accessed on 20 September 2022)) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis were performed.

2.7. Statistical Analysis

Unless otherwise specified, all measurements were performed in triplicate. Data were
analyzed by one-way analysis of variance, and the results were expressed as mean ±
standard deviation. Differences between control and experimental groups were determined
by using Student’s t-test. p < 0.05 was considered statistically significant. Statistical analysis
was performed using SPSS software (24.0, SPSS Inc., Chicago, IL, USA). The images were
drawn using the Origin software (Origin Lab Co., Pro.9.0, San Diego, CA, USA).

3. Results
3.1. Composition Analysis of MFGM

Crude protein, fat, phospholipid, moisture, and amino acid composition and content
are the basic indicators for evaluating MFGM (Table 1). The crude protein, fat, and moisture
contents of MFGM were 66.47%, 14.98%, and 5.79%, respectively. Meanwhile, the primary
amino acids in MFGM are glutamate, proline, aspartate, lysine, leucine, valine, tyrosine,
phenylalanine, isoleucine, and serine, accounting for 16.42%, 10.83%, 10.53%, 9.44%, 8.32%,
6.72%, 5.54%, 5.08%, 4.69% and 4.18% of the total protein, respectively. The composition
of these components indicated that MFGM could meet the basic nutritional needs of mice
during the experiment. It is noteworthy that the contents of PC, PE, PI, PS and SM are
1.97%, 2.61%, 0.14%, 0.88% and 1.86% respectively. The content of major phospholipids
reached a high percentage of 7.46%. MFGM has been reported to have beneficial effects on
brain development and function, possibly due to its high phospholipid content [10].

https://www.geneontology.org/
https://www.geneontology.org/
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Table 1. Basic composition analysis.

Composition Content

Crude protein 66.47 ± 6.56%
Fat 14.98 ± 0.20%

Moisture 5.79 ± 0.14%
Glutamate 16.42 ± 0.01%

Proline 10.83 ± 0.01%
Aspartate 10.53 ± 0.04%

Lysine 9.44 ± 0.02%
Leucine 8.32 ± 0.02%
Valine 6.72 ± 0.01%

Tyrosine 5.54 ± 0.03%
Phenylalanine 5.08 ± 0.01%

Isoleucine 4.69 ± 0.03%
Serine 4.18 ± 0.04%

Threonine 3.78 ± 0.02%
Histidine 3.40 ± 0.03%
Arginine 3.14 ± 0.01%
Alanine 2.92 ± 0.01%

Methionine 2.59 ± 0.02%
Glycine 2.27 ± 0.02%
Cysteine 0.14 ± 0.01%

Phosphatidylcholine (PC) 1.97 ± 0.02%
Phosphatidylethanolamine (PE) 2.61 ± 0.01%

Phosphatidylinositol (PI) 0.14 ± 0.01%
Phosphatidylserine (PS) 0.88 ± 0.03%

Sphingomyelin (SM) 1.86 ± 0.02%
Data are shown as means ± standard deviation (n = 3).

3.2. Growth and Morris Water Maze Performance

To confirm whether MFGM poses a risk of obesity in mice, we monitored the changes
in body weight throughout the 18-week study. As shown in Figure 1A, the body weight
of the control and experimental groups increased with the rearing time, and there was no
significant difference in growth rate and final body weight. On the other hand, to assess
MFGM intervention’s effect on mice’s cognitive behavior, we performed the MWM test
and analyzed the experimental trajectory and data. The trajectory of group M looks more
disordered than groups C (Figure 1B). During the spatial exploration experiment, the M
took less time (38.55 ± 4.13 s) to find the original underwater platform (Figure 1C), stayed
longer (20.24 ± 5.34 s) in the target quadrant (Figure 1D) and crossed the original platform
location more often (4.23 ± 0.86, Figure 1E). However, the corresponding data for the
control mice were 48.25 ± 3.22 s, 13.55 ± 2.33 s, and 1.12 ± 0.53, respectively. Meanwhile,
there was no apparent difference in body weight and no external signs of pathological
injury or disease, indicating that the mice were healthy before the model was constructed.
The above findings suggest that MFGM can enhance the learning and spatial memory
abilities of BALB/c mice.
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Figure 1. The effects of body weight, learning, and memory capacity after 18 weeks of MFGM inter-
vention in mice: (A) changes in body weight of mice with feeding time; (B) schematic diagram of 
mice movement trajectory in the space exploration experiment. The red square represents the point 
where the mouse entered the water, the blue square represents the point where the mouse was lo-
cated after the 60 s timing, and the green circle dotted line represents the original platform place-
ment point; (C) analysis of the exploration time; (D) analysis of time in the target quadrant; and (E) 
analysis of the number of times crossing. All experiments were in triplicate. Different lowercase 
letters (a, b) in C-E means significant statistical differences. Capital letters "C" and "M" in A-B rep-
resent control and experimental groups, respectively. Data are presented as mean  ±  SEM, p < 0.05 
compared to the control group. 

3.3. Effect of MFGM on Hippocampus Histological Analysis 
To investigate the effect of MFGM intervention on neurons in the mice hippocampus, 

we observed the morphological changes of hippocampal neurons by H&E staining. As 
shown in Figure 2A, the number of neurons was significantly increased in group M com-
pared with group C, especially in the hippocampus’s dentate gyrus (DG) area. Also, a 
small number of neurons in the hippocampus of group C had shrunk. Strikingly, it was 
found that neurons in the whole brain areas, including the DG, CA1, and CA3 regions of 
the hippocampus in group M were more intensive than in group C. On the other hand, 
the results of Nissl staining specified that the hippocampal neuronal cells in group M were 
more evenly distributed with regular morphology and significantly more Nissl bodies 
than in groups C (Figure 2B). At the same time, we quantified the average optical density 
(AOD) of neuronal nuclei (NeuN) using image J software (National Institutes of Health, 
Bethesda, MD, USA). The expression level of NeuN in group M was distinctly higher than 
in groups C (Figure 2C), indicating that group M had stronger spatial memory and cog-
nitive abilities.  

Figure 1. The effects of body weight, learning, and memory capacity after 18 weeks of MFGM
intervention in mice: (A) changes in body weight of mice with feeding time; (B) schematic diagram
of mice movement trajectory in the space exploration experiment. The red square represents the
point where the mouse entered the water, the blue square represents the point where the mouse
was located after the 60 s timing, and the green circle dotted line represents the original platform
placement point; (C) analysis of the exploration time; (D) analysis of time in the target quadrant; and
(E) analysis of the number of times crossing. All experiments were in triplicate. Different lowercase
letters (a, b) in (C–E) means significant statistical differences. Capital letters “C” and “M” in (A,B)
represent control and experimental groups, respectively. Data are presented as mean ± SEM, p < 0.05
compared to the control group.

3.3. Effect of MFGM on Hippocampus Histological Analysis

To investigate the effect of MFGM intervention on neurons in the mice hippocampus,
we observed the morphological changes of hippocampal neurons by H&E staining. As
shown in Figure 2A, the number of neurons was significantly increased in group M com-
pared with group C, especially in the hippocampus’s dentate gyrus (DG) area. Also, a
small number of neurons in the hippocampus of group C had shrunk. Strikingly, it was
found that neurons in the whole brain areas, including the DG, CA1, and CA3 regions of
the hippocampus in group M were more intensive than in group C. On the other hand, the
results of Nissl staining specified that the hippocampal neuronal cells in group M were
more evenly distributed with regular morphology and significantly more Nissl bodies than
in groups C (Figure 2B). At the same time, we quantified the average optical density (AOD)
of neuronal nuclei (NeuN) using image J software (National Institutes of Health, Bethesda,
MD, USA). The expression level of NeuN in group M was distinctly higher than in groups
C (Figure 2C), indicating that group M had stronger spatial memory and cognitive abilities.
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Figure 2. Effect of MFGM on hippocampal neurons in mice: (A) H and E; (B) Nissl staining of the 
mice’s hippocampus, dentate gyrus (DG), CA1 and CA3 region. Scale bars = 50 µm in CA1, CA3, 
and DG; Scale bars = 200 µm in hippocampus; and (C) The average optical density (AOD) of NeuN 
(neuronal nuclei) in the CA1, CA3, and DG region. All experiments were in triplicate. Different 
lowercase letters (a, b) in C means significant statistical differences. Capital letters "C" and "M" in 
A-B represent control and experimental groups, respectively.. Data are presented as mean  ±  SEM, 
p < 0.05 compared to the control group. 

  

Figure 2. Effect of MFGM on hippocampal neurons in mice: (A) H and E; (B) Nissl staining of the
mice’s hippocampus, dentate gyrus (DG), CA1 and CA3 region. Scale bars = 50 µm in CA1, CA3,
and DG; Scale bars = 200 µm in hippocampus; and (C) The average optical density (AOD) of NeuN
(neuronal nuclei) in the CA1, CA3, and DG region. All experiments were in triplicate. Different
lowercase letters (a, b) in (C) means significant statistical differences. Capital letters “C” and “M” in
(A,B) represent control and experimental groups, respectively. Data are presented as mean ± SEM,
p < 0.05 compared to the control group.

3.4. Proteomic Analysis
3.4.1. Full Protein Function Annotation

TMT quantitative proteomics was used to investigate the proteomic differences be-
tween groups C and M. A total of 7067 proteins were identified in the two treatment groups.
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Pearson correlation analysis and PCA were used to study the similarity of the whole
proteins in the two treatment groups based on the type and content of proteins in each
treatment group. Figure 3A shows the highest similarity between the parallel samples, and
the whole protein variability was higher in groups C and M. The PCA results in Figure 3B
demonstrate that PC1 and PC2 can reflect 60.8% of the total information. The extraction
was relatively complete, indicating that these two PCs can replace the original components
to reflect the sample information. PC1 had the most significant impact on the overall results,
representing 36.6% of all information. The above results indicated that MFGM significantly
altered protein expression in the hippocampus of mice.
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respectively); and (B) PCA analysis. “MFGM” in (B) represent experimental groups.

3.4.2. MFGM Altered the Hippocampus Proteomic Profiles

This study used proteomic techniques to determine how MFGM improves mouse
cognition and spatial memory. At p < 0.05, proteins with >1.2 fold−change (FC) values
were considered as significantly upregulated, while proteins with <0.83 FC values were
considered as significantly downregulated [20]. The expression of 7067 proteins was
identified from the protein database. The most upregulated proteins were Rab39 (1.55),
Sorbs2 (1.55), and Cacna1e (1.48). Meanwhile, the most downregulated proteins were Hp
(0.36), and Lrg1 (0.48). To better understand the protein−protein interactions between
DEPs in the hippocampus, protein interaction analysis was performed using the string
database to identify the protein interactions in the protein set (Figure 4A). According
to a degree, the top two genes in the network were Hp and Lrg 1, and the proteins of
these genes exhibited close interactions. Moreover, Figure 3B is a volcanic map of all the
differentially expressed proteins, illustrating the close correlation between various proteins.
Compared to group C, it also indicated that 20 proteins were upregulated and 27 were
downregulated in group M (Figure 4B). At the same time, to visualize the expression of
proteins in the differential protein set in each group of samples, we performed a clustering
heat map analysis (Figure 4C). The blue represents the lower expression level. The white
represents the median value, and the red refers to the higher expression level. The genes
with high expression levels in groups C (Lrg 1, Hp) and M (Rab 39, Sorbs 2, and Cacna
1e) are listed. These are consistent with the results of the upregulated and-downregulated
proteins analyzed above, further suggesting that MFGM can improve cognition and spatial
memory in mice by upregulating and downregulating the expression of related proteins.
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Figure 4. (A) Interaction map of differential expression proteins; (B) volcano plot of the differentially
expressed protein in the M group compared to the C group; and (C) the differentially expressed
protein expression heatmap. The blue represents the lower expression level. The white represents
the median value, and the red refers to the higher expression level. (C1, C2, C3 and M1, M2, M3
represent parallel samples of the control and experimental groups, respectively). Genes in red dashed
boxes in C are strongly correlated with memory and cognitive ability.

3.4.3. Functional Annotation of Differentially Expressed Proteins

To better understand the functions and characteristics of the DEPs identified in this
study, GO analysis was used to reveal the top GO terms. As shown in Figure 5A, the proteins
with different expression proteins were classified into three sub-components: biological
processes, molecular functions, and cellular components. In the biological process category,
most DEPs were involved in the cellular process, biological regulation, metabolic process,
and response to the stimulus. The cellular component category indicated that over half
of the identified proteins were located in the cellular anatomical entity. For the molecular
function part, many proteins identified were associated with binding and catalytic activity.
Of course, the subcellular localization and classification of altered proteins indicated that
the cytoplasmic, nuclear, and extracellular accounted for 70% of the above (Figure 5B).
Furthermore, KEGG pathway analysis was performed to identify the associated signaling
pathways. It mainly included neuroactive ligand-receptor interaction, calcium signaling
pathway, complement and coagulation cascades, serotonergic synapse, and dopaminergic
synapse (Figure 5C). Meanwhile, KEGG enrichment analysis of the DEPs identified a total
of 202 pathways, with only 7 signaling pathways significantly enriched (p < 0.05), which
might be associated with improved learning memory capacity in group M (Table 2).



Nutrients 2023, 15, 534 11 of 16

Table 2. Results of KEGG enrichment analysis of differentially expressed proteins in hippocampus.

KEGG Description DEPs Number Pathway ID p Value

Staphylococcus aureus infection 5 mmu05150 <0.01
Complement and coagulation cascades 6 mmu04610 <0.01

Systemic lupus erythematosus 5 mmu05322 <0.01
Neuroactive ligand-receptor interaction 5 mmu04080 <0.01

Pertussis 4 mmu05133 0.03
Coronavirus disease-COVID-19 6 mmu05171 0.03

Kaposi sarcoma-associated herpesvirus infection 6 mmu05167 0.04
Nutrients 2023, 15, 534 11 of 17 
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4. Discussion

The body weight of groups C and M increased with increasing experimental time,
and there was no significant difference in growth rate and final weight. This result is
similar to those of previous studies [23,24], indicating MFGM does not cause the risk of
obesity in mice. On the other hand, the high phospholipids (~7.46%) in MFGM have
been demonstrated to have a variety of health benefits, including improved cognitive
abilities across the lifespan [25]. In our research, the motion trajectory of MWM in group
M was more disordered compared with group C. Mice with a greater spatial memory
for information learned during training will spend more time in areas proximal to the
former location of the platform and may pass through that exact location (the “annulus”)
multiple times [19]. During the spatial exploration experiment, the M took less time to find
the original underwater platform, stayed longer in the target quadrant, and crossed the
original platform location more often. These behavioral aspects of mice suggest that MFGM
significantly improves their cognitive and spatial memory abilities. Previous studies have
indicated that animals’ performance in MWM tests highly depends on hippocampal func-
tion [26]. The learning and memory abilities of animals are also inextricably linked to their
hippocampus [16,24,27,28]. The hippocampus is closely associated with cognitive function,
and the hippocampus’s DG, CA1, and CA3 regions are the main areas of neurogenesis in
the brain [29]. Whether H and E staining or Nissl staining were performed, there were
significantly more neurons (especially in the DG region) in group M, and the AOD value
of NeuN was higher. This indicates that MFGM can slow down the apoptosis of neurons.
These results suggest that MFGM may play a neuroprotective role by reducing neuronal
apoptosis to enhance cognition and spatial memory in BALB/c mice [16].

Pearson correlation analysis and PCA were employed to analyze the similarity of
whole proteins in groups C and M according to the types and contents of proteins in the
two groups. The closer the Pearson correlation was to 1, the higher the similarity of protein
composition between groups C and M [30]. In addition, 47 differentially expressed proteins
(DEPs), including 20 upregulated and 27 downregulated proteins were identified. It cannot
be ignored that phospholipids not only have a positive effect on behavior, but also par-
ticipate in the upregulation of genes such as neurodevelopment in the hippocampus [31].
The most upregulated proteins were associated with memory and cognition [32–35]. Rab
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proteins are a vesicle transporter regulatory group. They are located in different membrane
structures and regulate vesicle transport, affecting neuromodulation and cognitive ability
by affecting the formation of synapses [36]. Deletion of Rab39b resulted in impairments of
synaptic structures and functions, with reductions in NMDA receptors in the postsynaptic
density [32]. NMDA receptors, ionotropic glutamate receptor, is central to memory con-
solidation and spatial processing in the hippocampus [37]. Thus, upregulated expression
of Rab 39 may promote synaptic structure formation and increased function to improve
memory and cognitive performance in mice. Furthermore, in a previous study, the deletion
of Sorbs2 in mice reduced dendritic complexity and excitatory synaptic transmission in DG
granule cells and impaired acoustic startle response and long-term memory. The Cacna1e
gene encodes CaV2.3 channels, which are widely expressed throughout the nervous sys-
tem and are located in presynaptic terminals, dendritic spines, and some extrasynaptic
sites. Disruption of CaV2.3 channel function leads to increased anxiety-like behavior and
impaired spatial memory [38]. On the other hand, the top two proteins in the interaction
network according to the degree of protein interaction were Hp and lrg1 (Figure 4A), the
two most downregulated proteins. Multiple studies have shown that the expression of
these two proteins leads to higher cognitive impairment [39,40]. The findings of Guerrero-
Berroa et al. suggest that patients with type 2 diabetes and poor glycemic control carrying
the Hp 1-1 genotype may be at increased risk of cognitive impairment, particularly in the
attention/working memory domain [39]. Also, compelling evidence indicates that Lrg1
can promote apoptosis and autophagy to exacerbate ischemia/reperfusion-induced brain
injury through the transforming growth factor beta (TGFβ)/SMAD signaling pathway [41].
In another study, Akiba et al. indicated that Lrg overexpression in the hippocampus can
lead to synaptic dysfunction and to memory impairment with age [42].

KEGG pathway analysis was performed to identify the associated signaling pathways
to understand better the functions and characteristics of the DEPs identified in this study. It
has been shown that the disruption of genes involved in “neuroactive ligand-receptor inter-
actions” leads to decreased memory function [43]. The results of Qiu et al. revealed a close
link between behavioral changes and altered neurotransmitter receptor gene expression
in Benzo(a)pyrene-treated rats [44]. Also, the calcium pathway regulates memory forma-
tion in neurons [45]. As observed in Table 2, “neuroactive ligand-receptor interactions”
are one of the signaling pathways involved. It is positively correlated with memory and
cognitive performance [46]. The possible mechanism of MFGM intervention to enhance
mice’s cognitive and memory abilities is shown in Figure 6. In detail, the upregulation of
Sorbs 2 may have a certain protective effect on neuronal cells, thereby delaying the natural
apoptotic cycle of neuronal cells. Also, the upregulation of Rab 39 and Cacna 1e promotes
the formation of synaptic structures, the increase of neurotransmitter receptors, and the
smoothness of calcium channels. The downregulation of Hp and Lrg 1, two genes that
inhibit synaptic conduction and neuromodulation, also promotes memory and cognition
from another perspective.

Based on the above analysis, MFGM may mainly upregulate positively correlated
proteins and downregulate proteins negatively correlated with cognition. On the other
hand, it enhances the “neuroactive ligand-receptor interaction” pathway, thereby improving
spatial memory and cognitive impairment.
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5. Conclusions

The present study showed that dietary supplementation by MFGM significantly im-
proved memory and cognitive impairment in BALB/c mice. Mice supplemented with
MFGM showed stronger spatial memory in the Morris water maze experiment compared
to the control group. Furthermore, indications of H and E and Nissl staining suggest
that MFGM reduces the loss of neuronal cell numbers. MFGM intervention may enhance
learning and spatial memory abilities in mice by promoting synaptogenesis and neurotrans-
mission. Our study provides novel insights and references to the potential mechanisms by
which MFGM enhances learning and spatial memory abilities.
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